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A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset

unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and

incompressible flows and is amenable to massively parallel computing environments. The approach provides a

general framework for performing highly efficient and discretely consistent sensitivity analysis for problems

involving arbitrary combinations of overset unstructured grids that may be static, undergoing rigid or deforming

motions, or any combination thereof. General parent–child motions are also accommodated, and the accuracy of the

implementation is established using an independent verification based on a complex-variable approach. The

methodology is used to demonstrate aerodynamic optimizations of a wind-turbine geometry, a biologically inspired

flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for

each problem is successfully reduced, and all specified constraints are satisfied.

Nomenclature

A = interpolation matrix
A, B = amplitudes of rotation in degrees
a, b, c, d = temporal coefficients
C = aerodynamic coefficient
C = mq × 1 vector of zeros and ones, indicator of time

derivatives
c = wing chord
CL = lift coefficient
CMx

, CMy
= lateral and longitudinal moment coefficients

CQ = torque coefficient
Cs = ms × 1 vector of zeros and ones, indicator of time

derivatives at solve points
CT = thrust coefficient
D = vector of design variables
Diag = diagonal matrix operator
E = total energy per unit volume
F = mq × 3 flux matrix
f, s = general functions
Finv, Fvisc = inviscid and viscous fluxes
fobj = objective function
G = grid operator
g1, g2 = explicit constraint functions
I = projector operator
i =

������
−1
p

J = number of cost function components
K = mx ×mx linear elasticity coefficient matrix
L = Lagrangian function
md = size of vector D

mf = size of solution vector at fringe points
mh = size of solution vector at hole points
mq = size of solution vector Q
ms = size of solution vector at solve points
mx = size of vector X
N = number of time levels
n = time level
n̂ = 3 × 1 outward-pointing normal vector
P = mh ×mq pseudo-Laplacian matrix
p = pressure; also cost function exponent
Q = mq × 1 vector of volume-averaged conserved

variables
q = mq × 1 vector of conserved variables
R = 3 × 3 rotation matrix
R = ms × 1 vector of spatial undivided residuals
R = mx ×mx block-diagonal rotation matrix
RGCL = residual of static geometric conservation law
RGCL = ms × 1 vector of RGCL

S = control volume surface area
T = 4 × 4 transform matrix
t = time
u, v, w = Cartesian components of velocity
V = control volume
V = mq ×mq diagonal matrix of cell volumes
W = 3 × 1 face velocity vector
X = mx × 1 vector of grid coordinates
x = 3 × 1 position vector
x = independent variable
x, y, z = Cartesian coordinate directions
α = interpolation coefficient
β = scaling parameter for incompressible continuity

equation
ε = perturbation
θ = angle of rotation; also blade pitch
θc = collective input
θ1c = lateral cyclic input
θ1s = longitudinal cyclic input
Λ = mq × 1 flowfield adjoint variable
Λg = mx × 1 grid adjoint variable
ρ = density
τn = mx × 1 translation vector
τ = 3 × 1 translation vector
ψ = blade azimuth
ω = cost function component weight
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ω1, ω2 = frequencies of rotation, rad∕s
∘ = Hadamard vector multiplication operator
⊙ = extension of ∘ to a vector-matrix product

Subscripts/Superscripts

c = child motion
f = fringe point
h = hole point
i, j, k,
m, n

= indices

in = quantity at initial conditions
nb = quantity at simply connected neighbor
p = parent motion
s = solve point
x, y, z = axis of rotation
∞ = quantity at freestream conditions
� = target quantity
– = volume-averaged or time-average quantity; also

complement of a vector

I. Introduction

A SACCESS to powerful high-performance computing resources
has become more widespread in recent years, the use of high-

fidelity physics-based simulation tools for analysis of complex
aerodynamic flows has become increasingly routine. The availability
and affordability of high-fidelity analysis tools has in turn stimulated
an enormous body of research aimed at applying such tools to formal
design optimization of complex aerospace configurations. A survey
of the relevant literature shows that optimization methods based on
the Euler and Reynolds-averaged Navier–Stokes equations have
indeed gained a strong foothold in the design cycle for problems
governed by steady flows [1,2]. Conversely, formal optimization
methods for problems involving unsteady flow are also under
development [3–9], but in general are not as mature at the present
time. This lag can be attributed at least in part to the increased
computational cost typically associated with unsteady simulations.
For gradient-based optimization of problems involving many

design variables, the ability to generate sensitivity information at a
relatively low cost is critical. Unlike forward differentiation
techniques such as finite differencing [10], direct differentiation [11],
and complex-variable methods [12], the adjoint approach performs
sensitivity analysis at a cost comparable to that of a flow solution and
independent of the number of design variables [13]. Efficient
evaluation of sensitivities of an output with respect to all input
parameters has led to numerous applications of adjoint-based
methods in various areas of research and engineering. Some recent
adjoint-based developments include a mathematically rigorous
approach to error estimation and mesh adaptation [14], simultaneous
design of shape and active flow control parameters for a high-lift
configuration [3], efficient methods for uncertainty quantification
[15], sonic boom optimization [16], laminar flow control [17], and
many others.
Adjoint methods can be further classified into continuous and

discrete variants, depending on the order in which the differentiation
and discretization of the governing equations is performed.Adiscrete
adjoint approach to sensitivity analysis is taken here. The
methodology has been widely used for a broad class of optimization
problems involving both steady and unsteady flows [3,5,18–24]. One
of the advantages of the discrete adjoint approach is that the
sensitivities computed by this method can be verified to machine
precision by comparison with complex-variable sensitivities [12].
The approach requires a complete linearization of the discrete
governing equations with respect to both the flowfield variables and
mesh coordinates. Strictly speaking, the adjoint approach for
unsteady flows requires the evaluation of these linearizations at
each physical time step. Therefore, the predominant challenge in
extending a steady-state implementation to the unsteady regime is the
development of an efficient infrastructure to store and access the
entire forward solution as needed.

The analysis of vehicles experiencing large relative motion of
vehicle components is often accomplished using overset discretiza-
tions. Design optimization for unsteady flows using such discretiza-
tions serves as the primary motivation for the current work. An
implementation of the discrete adjoint approach for optimiza-
tion of general three-dimensional unsteady turbulent flows on single-
block unstructured grids is described in [3,5]. Others have previously
demonstrated adjoint-based capabilities for overset mesh discretiza-
tions; however, such works have been restricted to steady flows
[25–29]. The methodology described here is intended for aero-
dynamic optimization of configurations characterized by large
dynamic grid motions.
The primary contributions of this paper are the development,

implementation, verification, and demonstration of an adjoint-based
methodology for optimization and design of the most general
unsteady aerodynamic flows. In the case of rotary-wing flows, an
optimization reported here involves a full helicopter configuration
subject to trimming constraints and completes the series of studies
addressing models of progressively higher fidelity. The previously
consideredmodels include actuator disk approaches [30], noninertial
formulations [20], and dynamic grid formulations involving isolated
rotors [5]. The generality of dynamic overset unstructured grid
methods makes this methodology applicable to the most general
flows occurring in a variety of practical computational fluid
dynamics applications, e.g., store/stage separation, turbomachinery,
wind-turbine systems, rotary-wing systems, biologically inspired
devices, and many others. Several diverse large-scale design
applications are demonstrated in this paper.
The material is presented in the following order. The governing

equations and some fundamental concepts of overset mesh systems
are presented first. The approach taken to solve the flow equations is
reviewed, followed by a derivation of the accompanying discrete
adjoint equations. Details of the solution strategy are covered, and the
accuracy of the implementation for a very general dynamic motion
case is verified using an independent approach based on complex
variables. Finally, successful demonstrations of the design method-
ology are shown for a wind-turbine geometry, a biologically inspired
flappingwing, and a realistic helicopter configuration. TheAppendix
contains derivations for high-order temporal schemes.

II. Governing Equations

In this paper, the unsteady turbulent flow equations are used in
both compressible and incompressible formulations. The primary
distinction between these formulations is that the incompressible
continuity equation does not have a time derivative term; all
other (compressible and incompressible) equations do have time
derivatives. For a simultaneous description of the unsteady
compressible and incompressible Navier–Stokes equations, it is
convenient to introduce an indicator of time derivative C and a
Hadamard vector multiplication operator [31]. The vector C is a
logical vector composed of zeros and ones and has the same
dimension as the residual vector. Ones correspond to equations with
time derivatives, while zeros correspond to equations with no time
derivatives. The logical complement to C, �C, is a vector of the same
dimension in which zeros are replaced by ones and vice versa. The
Hadamard operator is denoted as ∘ and acts on twovectors of the same
dimension, which are multiplied in an element-by-element fashion.
The result of the Hadamard multiplication is a vector of the same
dimension. The simultaneous description of the flow equations
involves the Hadamard multiplication of the vectorCwith the vector
of time derivatives. The resulting equations can be written in the
following form for both moving and stationary control volumes:

C ∘
∂
∂t

Z
V
q dV �

I
∂V
�Finv − Fvisc�n̂ dS � 0 (1)

whereV is the control volume bounded by the surface ∂V, and n̂ is an
outward-pointing unit normal. The vector q represents the conserved
variables for mass, momentum, and energy. The matrices Finv and
Fvisc denote the inviscid and viscous fluxes, respectively; the flux
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matrices are composed of three columns, each representing the flux
components along coordinate directions. The product of a fluxmatrix
and n̂ is a vector of the same dimension as q.
For amoving control volume, the viscous flux is unchanged, while

the inviscid flux accounts for the difference in the fluxes due to the
movement of control volume faces. Given inviscid fluxesF on a static
grid, the corresponding fluxesFinv on amoving grid can be defined as
Finv � F − �C ∘ q� �C�WT , where W � �Wx;Wy;Wz�T is a local
face velocity. In other words, for an equation with a time derivative
corresponding to the conservation of a scalar quantity q,
finv � f − qWT , where f and finv are corresponding rows of the
matrices F and Finv, respectively. For an equation without a time
derivative, finv � f −WT .
By defining a volume-averaged quantity �q within each control

volume,

�q � 1

V

Z
V
q dV (2)

the conservation equations given by Eq. (1) take the form

C ∘
∂� �qV�
∂t
�
I
∂V
�Finv − Fvisc�n̂ dS � 0 (3)

Here, the conserved variables and the inviscid flux matrix for
compressible flows are defined as �q � �ρ; ρu; ρv; ρw;E�T and

Finv �

2
6664

ρ�u−Wx� ρ�v−Wy� ρ�w −Wz�
ρu�u−Wx� � p ρu�v−Wy� ρu�w−Wz�
ρv�u−Wx� ρv�v−Wy� � p ρv�w −Wz�
ρw�u−Wx� ρw�v−Wy� ρw�w−Wz� � p

E�u−Wx� � pu E�v−Wy� � pv E�w −Wz� � pw

3
7775

(4)

and the perfect gas equation of state is assumed. For incompressible
flows, �q � �p; u; v; w�T and

Finv�

2
664

β�u−Wx� β�v−Wy� β�w−Wz�
u�u−Wx��p u�v−Wy� u�w−Wz�
v�u−Wx� v�v−Wy��p v�w−Wz�
w�u−Wx� w�v−Wy� w�w−Wz��p

3
775 (5)

where β is a scaling parameter analogous to the artificial compress-
ibility parameter [32]. Recall, however, that the incompressible
continuity equation does not have a time derivative. The viscous flux
Fvisc is not explicitly shown here. For turbulent flows, the equations
are closed with an appropriate turbulence model for the eddy
viscosity.
The high-order (up to third-order) backward difference (BDF)

discretizations for the time derivative of a function s are defined as

∂s
∂t
� 1

Δt
�asn � bsn−1 � csn−2 � dsn−3� (6)

where n is a time level, and the coefficients are given in Table 1. The
number after the BDF abbreviation indicates the order of the scheme.
The coefficients listed for the BDF2opt scheme are a linear
combination of the BDF2 and BDF3 coefficients taken from [33,34].
The resulting scheme is second-order accurate but has a leading
truncation error term less than that of the BDF2 scheme.

Using a BDF1 scheme, the discrete form of the flow equations at
time level n is given as

C ∘
�qnVn − �qn−1Vn−1

Δt
�Rn � 0 (7)

whereVn and �qn are a control volume and the corresponding solution
vector at time leveln, andRn is a vector of spatial undivided residuals
approximating the flux term in Eq. (3). The first-order temporal
scheme is chosen for the sake of simplicity; higher-order BDF
schemes are used in practical computations and the following
demonstrations. The Arbitrary Lagrangian–Eulerian [35] node-
centered finite volume discretization of Eq. (3) used in the current
work and described in [36] employs the following discrete
formulation:

C ∘
�qn − �qn−1

Δt
Vn �Rn � RnGCL�C ∘ �qn−1 � β �C� � 0 (8)

Here,

RnGCL �
I
∂V
�Wn�T n̂ dS (9)

whereWn is a vector of local face velocities at time level n. Note that
substituting a spatially and temporally constant state vector, �q, into
Eq. (7) results in a geometric conservation law (GCL) [37]

Vn − Vn−1

Δt
− RnGCL � 0 (10)

for an equation with a time derivative and

−βRnGCL � 0 (11)

for the incompressible continuity equation. Equation (8) is obtained
by subtracting the GCL residual, multiplied by �qn−1 for equations
with time derivatives, from Eq. (7).

III. Overset Grids

Anoverset grid formulation is characterized by the presence of two
or more overlapping component grids. Each grid point and its
corresponding control volume may be classified as one of four types
based on the nature of the equation to be solved for that control
volume. “Solve” points are points at which the discretized flow
equations given by Eq. (8) are defined. “Fringe” points are points in
overlap regions where interpolated data are specified in lieu of
boundary conditions. The equations defined at fringe points are
interpolation equations, such that the solution at a fringe point, �qf, is
defined as a linear combination of solution values at solve points, �qs:

�qf −
X
k

αk �qks � 0;
X
k

αk � 1 (12)

Typically, the fringe point and the solve points appearing in Eq. (12)
belong to different overlapping component grids. “Hole” points refer
to points outside the computational domain, e.g., within the
boundaries of a wing. In the current approach, the solution at hole
points, �qh, is set to the average of the solution values at its simply
connected neighbors, �qjnb. This averaging procedure is equivalent to a
discrete pseudo Laplacian, which is an elliptic operator:

X
j

� �qh − �qjnb� � 0 (13)

where the hole-point neighbors are identified by j. Finally, “orphan”
points refer to grid points located within the computational domain
for which neither the flow equations are imposed nor can suitable
points be found fromwhich to interpolate solution information. In the
current effort, the same pseudo-Laplacian procedure is defined for

Table 1 Coefficients for BDF schemes

Scheme a b c d

BDF1 1 −1 0 0
BDF2 3∕2 −2 1∕2 0
BDF3 11∕6 −3 3∕2 −1∕3
BDF2opt 1.66 −2.48 0.98 −0.16
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hole and orphan points, so that orphan points are treated as hole points
and are not considered as a separate entity in the formulation to
follow.
For dynamic grid motions, the character of each grid point may

change as a function of time. It is preferable to have grid topologies
such that the residuals of the governing equations at solve and fringe
points do not depend on solutionvalues at hole points. At aminimum,
hole-point solutions should not contribute to residuals at solve and
fringe points within the same time level. In practice, it can be difficult
to prevent solutions at hole points from contributing to residuals at
solve points through the time derivative; however, maximizing the
extent of fringe regions and reducing the time step can help to
alleviate this difficulty.
The domain-connectivity information required by the overset

implementation is established using the software libraries described
in [38]. This methodology has been used extensively with the flow
solver for performing analysis of multibody problems undergoing
large relative motions [30,36,39–45]. Given the topology of each
component grid, each grid point in the composite grid is determined
to be a solve, fringe, hole, or orphan point. This procedure is
performed dynamically during the solution process as required by the
grid motion. The mesh elements containing fringe points are
established, and the weighting coefficients required to interpolate
data at such points are evaluated. For cases inwhich the gridmotion is
periodic, the user may choose to store the domain-connectivity
information during the first cycle of motion for use in subsequent
cycles. Once the interpolation coefficients are known, the
complementary library described in [46] is used to determine the
current solution at fringe points. The solution at hole and orphan
points is determined based on user-supplied subroutines specifying
the desired treatment at such locations. In the current approach, the
pseudo Laplacian given by Eq. (13) is used.

IV. Flow Solver

References [23,36,47,48] describe the flow solver‡ used in the
current work. The code can be used to perform aerodynamic
simulations across the speed range, and an extensive list of options
and solution algorithms is available for spatial and temporal
discretizations on general static or dynamic mixed-element unstruc-
tured meshes, which may or may not contain overset grid topologies.
In the current study, the spatially second-order-accurate

discretization uses a finite volume approach in which the dependent
variables are stored at the vertices of tetrahedral meshes. Inviscid
fluxes at cell interfaces are computed using the upwind scheme of
Roe [49], and viscous fluxes are formed using an approach equivalent
to a finite element Galerkin procedure. The incompressible
implementation is based on [48,50]. For dynamic mesh cases, the
mesh velocity terms are evaluated using backward differences
consistent with the discrete time derivative; this makes the spatial and
GCL residuals dependent on grids at previous time levels. The eddy
viscosity is modeled using the one-equation approach of Spalart and
Allmaras [51]. The turbulence model is integrated all the way to the
wall without the use of wall functions and is weakly coupled, i.e.,
solved separately from the mean flow equations at each time step.
Scalability to thousands of processors is achieved through parallel
domain decomposition, preprocessing, and solver mechanics [3,52].
Postprocessing operations such as the generation of isosurface and
computational schlieren animations are also performed in parallel,
avoiding the need for a single image of the mesh or solution at any
time and ultimately yielding a highly efficient end-to-end parallel
simulation paradigm. To date, this approach has been used to carry
out computations on meshes containing as many as 2 billion points
and 12 billion tetrahedral elements.§

To collectively describe equations and solutions defined at solve,
fringe, and hole points, it is convenient to introduce corresponding

projectors Ins , Inf, and Inh at time level n. These operators are
rectangular matrices of respective dimensions ms ×mq, mf ×mq,
and mh ×mq, and for which the rows contain a single unity entry
complemented by zeros. The valuesms,mf, andmh are the solution
dimensions at all solve, fringe, and hole points, respectively, and
mq � ms �mf �mh is the solution dimension at all grid points. The
projectors are used to extract solutions at grid points of a specific
type: Qn

s � InsQ
n, Qn

f � InfQ
n, and Qn

h � InhQ
n, where Qn is the

vector of solution values at all grid points andQn
s ,Q

n
f, andQ

n
h are the

vectors of solution values at solve, fringe, and hole points,
respectively. Finally, note that the projector operators can vary in
time.
The discrete form of the flow equations with a BDF1 scheme for

the time derivative at time level n can be written as

Cn
s ∘Vns ∘

Qn
s −InsQ

n−1

Δt
�Rn���InsQn−1� ∘Cn

s �β �Cn
s � ∘Rn

GCL� 0

(14)

In Eq. (14) and all discussions to follow, Rn and Rn
GCL are ms × 1

vectors that include residuals at solve points, Vn is an mq × 1 vector
of control volumes for all equations at time level n, Vns � InsV

n is a
subset of Vn corresponding to solve points, Cn

s is an ms × 1 vector
indicator of a time derivative restricted to solve points at time level n,
and �Cn

s is the complement ofCn
s . Note that a solvepoint at time leveln

may or may not be a solve point at time level n − 1.
The equations at fringe points are defined as

AnQn � 0 (15)

whereAn is themf ×mqmatrix defining the interpolation of solution
data from overset grid solutions at time level n as introduced in
Eq. (12). The equations at hole points are defined as

PnQn � 0 (16)

where Pn is the mh ×mq matrix of the pseudo Laplacian given by
Eq. (13).
The Jacobian of the implicit equations (14–16) at time level n is a

3 × 3 block matrix of the form

2
4

1
ΔtDiag�Cn

s ∘ Vns � � ∂Rn

∂Qn
s

∂Rn

∂Qn
f

∂Rn

∂Qn
h

An
s An

f An
h

Pns Pnf Pnh

3
5 (17)

where Diag�Cn
s ∘ Vns � is a diagonal ms ×ms matrix with the vector

Cn
s ∘ Vns on the main diagonal; An

f is an mf ×mf diagonal matrix
describing interpolation at fringe points;An

s andA
n
h arematrices with

respective dimensions mf ×ms and mf ×mh describing interpola-
tion from solve and hole points; and Pns , P

n
f, and P

n
h are matrices with

respective dimensions mh ×ms, mh ×mf, and mh ×mh describing
contributions of solve, fringe, and hole points to the pseudoLaplacian
defined at hole points. Note that, if the solution at hole points does not
contribute to residuals at solve and fringe points within the same time
level, then ∂Rn∕∂Qn

h � 0, An
h � 0, and the equations at hole points

decouple from the equations at solve and fringe points.

V. Grid Equations

The general grid equations can be defined in the form

Gn�X;D� � 0 (18)

where the mx × 1 vector X represents the coordinates of the
composite overset mesh (meshes at several time levels may be
involved),D is the vector of design variables, and n denotes the time
level and indicates that the grid operator may vary in time. Moreover,
different grid operatorsGn may be specified for different component
grids. The specific formulations for different grid motions are
introduced next.

‡Data available online at http://fun3d.larc.nasa.gov [retrieved 20 Decem-
ber 2011].

§Private communication with D. Hammond, NASA Langley Research
Center, 2011.
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A. Grids Undergoing Rigid Motion

For problems inwhich rigidmeshmotion is required, themotion is
generated by a 4 × 4 transform matrix, T, as outlined in [36]. This
transform matrix enables general translations and rotations of a grid
according to the relation

x � Tx0 (19)

which moves a point from an initial position x0 � �x0; y0; z0�T to its
new position x � �x; y; z�T :

2
64
x
y
z
1

3
75 �

2
64
R11 R12 R13 τx
R21 R22 R23 τy
R31 R32 R33 τz
0 0 0 1

3
75
2
64
x0

y0

z0

1

3
75 (20)

In an expanded form, x � Rx0 � τ. Here, the 3 × 3matrixR defines
a general rotation and the vector τ specifies a translation. The matrix
T is generally time dependent. One useful feature of this approach is
that multiple transformations telescope via matrix multiplication.
This formulation is particularly attractive for composite parent–child
body motion, in which the motion of one body is often specified
relative to another. The reader is referred to the discussion in [36] for
more details. For a rigid-motion formulation, the grid operator at time
level n is defined as

Gn�Xn;X0;D� ≡RnX0 � τn −Xn (21)

or in abbreviated notation,

Gn�Xn;X0;D� ≡ TnX0 −Xn (22)

Here,X0 andXn are the grid vectors at the initial time level and time
level n, respectively; Rn is an mx ×mx block-diagonal matrix with
3 × 3 blocks representing rotation, and mx being the size of vector
Xn; and τn is anmx-size translation vector. ThematrixRn and vector
τn may explicitly depend on D.

B. Deforming Grids

The simplest example of a deforming grid simulation is a static grid
undergoing deformations as a result of a shape-optimization process.
In this case, the grid is not time dependent and ismodeled as an elastic
medium that obeys the elasticity relations of solid mechanics. An
auxiliary system of linear partial differential equations (PDEs) is
solved to determine the mesh coordinates after each shape update.
Discretization of these PDEs yields a system of equations

K�X − �X� � Xbound − �Xbound (23)

whereK represents the elasticity coefficientmatrix;X is the vector of
grid coordinates being solved for; �X is the vector of coordinates
of a reference grid; and Xbound and �Xbound are the vectors of
corresponding boundary coordinates, complemented by zeros for all
interior coordinates. The coefficients of the matrix K depend on �X.
The material properties of the system given by Eq. (23) are chosen
based on either the local cell geometry or proximity to the surface and
are invariant with respect to coordinate transformations. The system
is solved using a preconditioned generalized minimal residual
algorithm. For further details on the approach, see [19,36,53].
For static grid deformation, the only grid operator used at all

times is

G�X;D� ≡ −K�X − �X� �Xbound − �Xbound (24)

whereXbound may explicitly depend on D, �X is an independent grid
obtained either from a grid generator or from the previous
optimization iteration, and �Xbound is the vector of corresponding
boundary coordinates.

When time-dependent deforming grids are required, the rigid
motion as described in the previous section is not valid. For small
relative grid deformations, the linear elasticity equations given by
Eq. (23) are solved at each time level with the matrix K � K0

computed at the initial time level and fixed throughout the time
evolution; Xn

bound includes the description of the current body
positions. The grid operator at time level n is defined as

Gn�Xn;D� ≡ −K0�Xn − �X� �Xn
bound − �Xbound (25)

C. Parent–Child Motions

Large relative motions are described through parent–child
relations, in which the collective motion of a child body is described
as the product TpTc, where Tp is the collective parent transform
matrix (which itself can be a chain of parent–child products), and Tc
is the transformmatrix describing themotion of the childwith respect
to the parent. In the current implementation, there is a one-to-one
correspondence between moving bodies and component grids.
Additional static grids may be associated with the noninertial frame.
Thus, a transformmatrix describes not only the bodymotion butmay
also describe the transformation of the corresponding grid. In
general, a parent–child chain of motions can include an arbitrary
combination of rigidly moving and deforming overset grids. If a
component grid,Xn, is designated as rigid, then all nodes of this grid
undergo the same motion described as

Gn�Xn;X0;D� ≡ −Xn � TpTcX
0 (26)

If a component grid is designated as deforming, then the initial grid,
X0, is either given,

G0�X0;D� ≡ −X0 � �X (27)

or computed from the elasticity equations; Eq. (25). The corresponding
body surface undergoes the TpTc motion, the external boundary
and the initial (reference) grid undergo the Tp motion, and the grid at
time level n,Xn, satisfies the elasticity relations

Gn�Xn;X0;D� ≡ −Kn�Xn − TpX
0� �Xn

bound − TpX
0
bound (28)

Here, the matrixKn is computed using the moved initial grid TpX
0.

Note that, because of invariance of the material properties of the
elasticity system, the following identity holds:

KnTp � TpK
0 (29)

In the current implementation, if any component grid is designated as
deforming, then the entire composite grid is designated as deforming,
and all component grids are treated as deforming, including those
component grids that are in fact rigid. In this scenario, the external
boundaries and the reference grid of a rigid component grid are moved
with the collective motion of the corresponding body, TpTc, the
boundary variations in Eq. (28) become zero, and the obtained grid,
Xn, is equivalent to the rigidly moving one; Eq. (26). If all component
grids are labeled as either rigid or static, then the composite grid is
designated rigid, and all grid points are moved according to Eq. (26).

VI. Cost Functions and Design Variables

The steady-state adjoint implementation described in [18–24]
permits multiple objective functions and explicit constraints of
the following form, each containing a summation of individual
components:

fi �
XJi
j�1

ωj�Cj − C�j �pj (30)

Here, ωj represents a user-defined weighting factor, Cj is an
aerodynamic coefficient such as the total drag or the pressure or
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viscous contributions to such quantities, the superscript � indicates a
user-defined target value of Cj, and pj is a user-defined exponent.
Targets are chosen to encourage beneficial changes in the design
parameters and are typically far enough from the baseline values to
avoid limiting potential improvements. The exponent values are
chosen so that fi is a convex functional, which is important for
convergence of gradient-based optimization. The user may specify
computational boundaries to which each component function
applies. The index i indicates a possibility of introducing several
different cost functions or constraints, which may be useful if
the user desires separate sensitivities, for example, for lift, drag,
pitching moment, etc. The implementation also supports multipoint
optimization [20].
For the unsteady formulation, similar general cost functions fni are

defined at each time level n. The accumulated cost function fi can be
defined as a discrete sum over a certain time interval �t1i ; t2i �:

fi �
XN2

i

n�N1
i

fni (31)

where time levels N1
i and N

2
i correspond to t1i and t

2
i , respectively.

The corresponding time integral is approximated as fiΔt. The
current study also introduces an additional cost function of the
following form, which is based on the time-average value of an
output:

fi �
��

1

�N2
i − N1

i � 1�
XN2

i

n�N1
i

Cni

�
− C�i

�pi
(32)

The user supplies time intervals over which the cost functions are to
be used.
There are three classes of design variables available in the current

implementation. The first is composed of global parameters unrelated
to the computational grid. These variables include parameters such as
the freestream Mach number and angle of attack. Such variables are
particularly useful in verifying the implementation of the flowfield
adjoint equations.
The second class of design variables provides general shape

control of the configuration. The implementation allows the user to
employ a geometric parameterization scheme of choice, provided the
associated surface grid linearizations are available. For the examples
in the current study, the grid parameterization approach described in
[54] is used. This approach can be used to define general shape
parameterizations of existing grids using a set of aircraft-centric
design variables such as camber, thickness, shear, twist, and
planform parameters at various locations on the geometry. The user
also has the freedom to associate design variables to define more
general parameters. In the event that multiple bodies of the same
shape are to be designed, such as a set of rotor blades, the
implementation allows for a single set of design variables to be used
to simultaneously define such bodies. In this fashion, the shape of
each body is constrained to be identical throughout the course of the
design.
Finally, the third class of design variables governs any kinematics

that may be present. The user may invoke simple translation and
rotation functions native to the solver; in this case, basic parameters
such as frequencies, amplitudes, directional vectors, and centers of
rotation are available as design variables. Alternatively, more compli-
cated kinematics and associated design variables may be supplied
through a user-defined subroutine satisfying a standard interface. This
interface is wrapped with a complex-variable perturbation scheme [12]
to numerically evaluate the Jacobian of the specified kinematic motion
which is required by the adjoint formulation to follow.

VII. Adjoint Equations

The goal of the design optimization problem for unsteady flows is
to choose the design parameters D to minimize an objective

function, fobj � fΔt, where f is posed by Eq. (31) or (32) and the
subscript i is omitted. For the sake of clarity, the formulation to be
presented here is based on a BDF1 scheme for the time derivative,
as introduced in Eq. (14). The derivation for higher-order BDF
schemes is similar and is presented in the Appendix. Following
the methodology described in [5,55], a Lagrangian function is
defined as

L�D;Q;X;Λ;Λg� � fΔt� ��Λ0
g�TG0 � �Λ0�TRin�Δt

�
XN
n�1

�
�Λng�TGn � �Λnf �T �AnQn� � �Λnh�T �PnQn�

� �Λns �T
�
Cn
s ∘ Vns ∘

Qn
s − InsQ

n−1

Δt
�Rn

� ��InsQn−1� ∘ Cn
s � β �Cn

s � ∘ Rn
GCL

��
Δt (33)

Here, Λns , Λnf, Λnh, and Λng are ms × 1, mf × 1, mh × 1, and mx × 1
vectors of Lagrange multipliers associated with the solve, fringe,
hole, and grid equations, respectively; �Λn�T � ��Λns �T; �Λnf �T; �Λnh�T �;
Λns � InsΛn, Λnf � InfΛn, and Λnh � InhΛn; and Rin � 0 represents
the initial conditions. A typical form of the initial conditions
is Rin ≡ V0 ∘ �Q∞ −Q0�, where Q∞ is the freestream solution;
other forms, such as a steady-state initial solution, are also
possible.
The Lagrangian given by Eq. (33) is differentiated with respect to

D, assuming thatVn depends onXn;Gn depends onXn,X0, andD;
Rn depends on Qn, Xn, Xn−1, and D; Rn

GCL depends on Xn, Xn−1,
andD;An depends onXn;G0 depends onX0 andD;Rin depends on
Q0,X0, andD; andPn,Cn

s , �C
n
s ,I

n
s ,I

n
f, andI

n
h are independent of grid

coordinates, solutions, and design parameters.
Regrouping terms to collect the coefficients of ∂Qn∕∂D

and equating those coefficients to zero yields the adjoint
equations:

S∶

1

Δt
Cn
s ∘Vns ∘Λns�

�
∂Rn

∂Qn
s

�
T

Λns��An
s �TΛnf��Pns �TΛnh

�−
�
∂f
∂Qn

s

�
T

−Ins �In�1s �T
�
Cn�1
s ∘

�
−

1

Δt
Vn�1s �Rn�1

GCL

�
∘Λn�1s

�

F∶ �
∂Rn

∂Qn
f

�
T

Λns��An
f �TΛnf��Pnf �TΛnh

�−
�
∂f
∂Qn

f

�
T

−Inf �In�1s �T
�
Cn�1
s ∘

�
−

1

Δt
Vn�1s �Rn�1

GCL

�
∘Λn�1s

�

H∶ �
∂Rn

∂Qn
h

�
T

Λns��An
h�TΛnf��Pnh�TΛnh

�−
�
∂f
∂Qn

h

�
T

−Inh�In�1s �T
�
Cn�1
s ∘

�
−

1

Δt
Vn�1s �Rn�1

GCL

�
∘Λn�1s

�

for1≤n≤N

�
∂Rin

∂Q0

�
T

Λ0�−
�
∂f
∂Q0

�
T

− �I1s �T
�
C1
s ∘
�
−

1

Δt
V1
s�R1

GCL

�
∘Λ1

s

�

forn�0 (34)

where ΛN�1s � 0. The preceding letters indicate the type of points at
which the equations are defined; S, F, and H correspond to solve,
fringe, and hole points, respectively. Collecting the coefficients of
∂Xn∕∂D and equating those coefficients to zero in a similar fashion
yields the grid adjoint equations:
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−
�
∂Gn

∂Xn

�
T

Λng�
��

Cn
s ∘
Qn
s−InsQn−1

Δt

�
⊙
∂Vns
∂Xn

�
T

Λns�
�
∂�AnQn�
∂Xn

�
T

Λnf

�
X1
k�0

�
∂Rn�k

∂Xn ���In�ks Qn�k−1�∘Cn�k
s �β �Cn�k

s �⊙
∂Rn�k

GCL

∂Xn

�T
Λn�ks

�
�
∂f
∂Xn

�
T

for1≤n≤N

−
�
∂G0

∂X0

�
T

Λ0
g�

XN
n�1

�
∂Gn

∂X0

�
T

Λng

�
�
∂Rin

∂X0

�
T

Λ0�
X1
k�1

�
∂Rk

∂X0
���IksQk−1�∘Ck

s�β �Ck
s�⊙

∂Rk
GCL

∂X0

�
T

Λks

�
�
∂f
∂X0

�
T

forn�0 (35)

Here, ∂f∕∂Xn is a 1 ×mx rowvector, ∂Gn∕∂Xn is anmx ×mxmatrix;
∂Vns∕∂Xn, ∂Rn∕∂Xm, and ∂Rn

GCL∕∂Xm are ms ×mx matrices;
∂�AnQn�∕∂Xn is an mf ×mx matrix; and ∂Rin∕∂X0 is an mq ×mx
matrix. The operation ⊙ is an extension of the Hadamard
multiplication to a product between an ms × 1 vector and an ms ×m
matrix, where the second matrix dimension, m, is arbitrary. The
operation indicates that the vector multiplies the columns of the matrix
in an element-by-element fashion, resulting in a new ms ×m matrix.
When considering the linearization of An, the domain-

connectivity information is assumed to be fixed. That is, the
weighting coefficients represented by this matrix are considered
functions of the mesh coordinates; however, the interpolating
elements are considered constant so that the hole-cutting and domain-
connectivity algorithms need not be linearized.
With Lagrangian multipliers satisfying Eqs. (34) and (35), the

sensitivity derivatives are calculated as follows:

∂L
∂D
� ∂f

∂D
Δt�

XN
n�1
�Λng�T

∂Gn

∂D
Δt

�
XN
n�1
�Λns �T

�
∂Rn

∂D
� ��InsQn−1� ∘ Cn

s � β �Cn
s �⊙

∂Rn
GCL

∂D

�
Δt

�
�
�Λ0
g�T

∂G0

∂D
� �Λ0�T

�
∂Rin

∂D

��
Δt (36)

where ∂L∕∂D and ∂f∕∂D are 1 ×md row vectors, ∂Gn∕∂D is an
mx ×md matrix, ∂Rn∕∂D and ∂Rn

GCL∕∂D arems ×md matrices, and
∂Rin∕∂D is an mq ×md matrix.
To facilitate the solution of Eqs. (34) and (35), the values of Xn,

∂Xn∕∂t, andQn are stored to disk at the conclusion of each physical
time step of the flow solution using a strategy designed to minimize
file-system overhead. The approach is based on a massively parallel
paradigm inwhich eachprocessorwrites to its ownunformatted direct-
access file at each time step. The data writes are buffered using an
asynchronous paradigm so that execution of floating point operations
for the subsequent time step may proceed simultaneously. This
approach is described and evaluated in [3] and has been found to scale
well to several thousand processors using a parallel file system. Rather
than recompute the domain-connectivity information during the
adjoint solution procedure, a similar I/O paradigm has been
implemented to efficiently store this information to disk, although the
size of these data is typically an order of magnitude less than the
flowfield data. During the solution of Eqs. (34) and (35), data are
loaded fromdisk using a similar paradigmbut in reverse, such that data
required for the solution at time level n − 1 are preloaded during the

computations for time level n. The sensitivity derivatives [Eq. (36)] are
collected during the backward-in-time solution of the adjoint Eqs. (34)
and (35), so no disk space is required to store the adjoint solutions.

VIII. Iterative Solution of Equations at Each
Time Level

When solving the flow equations, the value ofQn−1 is taken to be
an initial approximation for Qn. The solution of Eqs. (14)–(16) at
time level n is obtained through the following iterations, which
exploit the form of the Jacobian matrix given by Eq. (17):

F∶

An
fΔQ

n;m
f � −�An

sQ
n;m
s �An

fQ
n;m
f �An

hQ
n;m
h �

Qn;m�1
f � Qn;m

f � ΔQn;m
f (37)

S∶ �
1

Δτ
Diag�Vns ��

1

Δt
Diag�Cn

s ∘Vns ��
∂R̂n;m

∂Qn
s

�
ΔQn;m

s

�−
�
Cn
s ∘

Qn;m
s −InsQ

n−1

Δt
∘Vns�Rn;m

���InsQn−1� ∘Cn
s�β �Cn

s � ∘Rn
GCL

�

Qn;m�1
s �Qn;m

s �ΔQn;m
s (38)

H∶

PnhΔQ
n;m
h � −�PnsQn;m�1

s � PnfQ
n;m�1
f � PnhQ

n;m
h �

Qn;m�1
h � Qn;m

h � ΔQn;m
h (39)

Here, the second superscript m is the iteration count, Rn;m is the
spatial nonlinear residual computed for the most recent solution that
involvesQn;m�1

f andQn;m
s ,Δτ is a pseudo-time step, and ∂R̂n;m∕∂Qn

s

is the Jacobian of a first-order spatial discretization.
At each iteration, Eq. (37) is solved exactly because An

f is a
diagonal matrix, and the fringe solutions are updated first. An
approximate solution of the linear system of equations [Eq. (38)] is
obtained through several iterations of a multicolor Gauss–Seidel
point-iterative scheme, followed by a solution update for Qn;m�1

s .
Finally, Eq. (39) is relaxed and solutions at hole points are updated.
The convergence rate of the solution at hole points is typically the
slowest; relaxation of the pseudo-Laplacian operator is known for
poor convergence behavior. If the solution at hole points is
decoupled, then its value may be updated only once after the solution
at flow and fringe points has been converged.
The adjoint equations are solved backward in time. The solution

procedure outlined here is based on the single-grid implementation,
which has been previously verified for turbulent flows on three-
dimensional unstructured grids undergoing general dynamicmotions
[5]. The iterative solution of the adjoint equations given by Eq. (34) at
time level n is performed in precisely the reverse order as the
iterations given by Eqs. (37)–(39):

H∶

�Pnh�TΔΛ
n;m
h

�−
�
∂f
∂Qn

h

�
T

−Inh�In�1s �T
�
Cn�1
s ∘

�
−

1

Δt
Vn�1s �Rn�1

GCL

�
∘Λn�1s

�

− �Pnh�TΛ
n;m
h −

�
∂Rn

∂Qn
h

�
T

Λn;ms − �An
h�TΛ

n;m
f

Λn;m�1h �Λn;mh �ΔΛn;mh (40)
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S∶�
1

Δτ
Diag�Vns ��

1

Δt
Diag�Cn

s ∘Vns ��
∂R̂n;m

∂Qn
s

�
ΔΛn;ms

�−
�
∂f
∂Qn

s

�
T

−Ins �In�1s �T
�
Cn�1
s ∘

�
−

1

Δt
Vn�1s �Rn�1

GCL

�
∘Λn�1s

�

−
1

Δt
Cn
s ∘Vns ∘Λn;ms −

�
∂Rn

∂Qn
s

�
T

Λn;ms − �An
s �TΛn;mf − �Pns �TΛn;m�1h

Λn;m�1s �Λn;ms �ΔΛn;ms (41)

F∶

�An
f �TΔΛ

n;m
f

�−
�
∂f
∂Qn

f

�
T

−Inf �In�1s �T
�
Cn�1
s ∘

�
−

1

Δt
Vn�1s �Rn�1

GCL

�
∘Λn�1s

�

−
�
∂Rn

∂Qn
f

�
T

Λn;m�1s − �An
f�TΛ

n;m
f − �Pnf �TΛ

n;m�1
h

Λn;m�1f �Λn;mf �ΔΛn;mf (42)

Solutions for the grid adjoint equations are obtained through
relaxation of Eq. (35).

IX. Verification of Adjoint Implementation

To verify the accuracy of the implementation, comparisons are
made with results generated through an independent approach based
on the use of complex variables. This approach was originally
suggested in [12,56], and it was first applied to a Navier–Stokes
solver in [57]. Using this formulation, an expression for the derivative
of a real-valued function f�x� may be found by expanding the
function in a complex-valued Taylor series, using an imaginary
perturbation iε:

∂f
∂x
� Im�f�x� iε��

ε
�O�ε2� (43)

The primary advantage of this method is that true second-order
accuracymay be obtained by selecting step sizes without concern for
subtractive cancellation errors typically present in real-valued
Frechet derivatives. Through the use of an automated scripting
procedure outlined in [58], this capability can be immediately
recovered at any time for the baseline flow solver. For computations
using this method, the imaginary step size has been chosen to be
10−50, which highlights the robustness of the complex-variable
approach. For each verification test, all equation sets are converged to
machine precision for both the complex-variable and adjoint
approaches. Since the package described in [46] cannot directly
accommodate complex-valued grids and solutions, the integer-
valued donor and receptor information is instead transferred to the
solver, which performs the requisite complex-valued donor weight
computations and solution interpolations. This procedure has been
verified to produce identical real components as compared to the
routines internal to the package of [46].
The test case used to verify the accuracy of the implementation

is based on the rotorcraft configuration shown in Fig. 1. The
conventional rotorcraft definition for the azimuth angle ψ is also
shown in the figure. The fuselage is described by a component mesh
consisting of 88,001 nodes and 505,437 tetrahedral elements. Each of
the four rotor blades is modeled using a component grid containing
103,296 nodes and 601,459 tetrahedral elements. The entire
configuration is combined with a background grid consisting of
50,156 nodes and 285,587 tetrahedral elements to yield a composite
mesh system with 551,341 nodes and 3,196,860 tetrahedral elements.
A very general combination of forced motions is applied to the

configuration as follows. The fuselage mesh is subjected to a rigid
fixed-rate rotational and translational motion in the starboard
direction. The motion of each rotor blade is treated as a child of the
fuselage motion, and it consists of an additional rigid fixed-rate
rotation in the azimuthal direction. Each blade is also subjected to a
final child motion consisting of a forced vertical flapping that is
modeled as a 1 deg oscillatory rotation about the rotor hubwith a two-
per-revolution frequency, and it is accommodatedwith the deforming
meshmechanics. The backgroundmesh is held fixed in inertial space.
The overall motion of the configuration is shown in Fig. 2, while the
vertical extent of the blade tip motion due to flapping is shown in
Fig. 3. In summary, the composite motion is a family of four

Fig. 1 Near-field view of geometry and composite grid system used for

linearization accuracy study.

Fig. 2 Imposed motion for linearization accuracy study. Geometry

shown every 720 deg of rotor azimuth.

Fig. 3 Cross sections of deforming blade mesh showing maximum vertical displacements at blade tip during linearization accuracy study.
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generations, occurring in the following ancestral order from oldest to
youngest: inertial reference frame, fuselage motion, azimuthal blade
motion, and flapping blade motion.
For the verification of the compressible implementation, the

freestream Mach number is 0.1 and the Reynolds number is
4.2million based on the blade tip speed and chord, and fully turbulent
flow is assumed. A similarly scaled Reynolds number of 3.1 million
is used for the incompressible verification. The angle of attack is
2 deg, and the advance ratio is 0.12. The physical time step
corresponds to one deg of rotation in the azimuthal direction. All of
the computations are performed using 128 processors.
Sensitivity derivatives of the lift coefficient for the entire vehicle

after five physical time steps are computed using the discrete adjoint
and complex-variable approaches. Although the coarse spatial
resolution and brief duration of the simulation are not sufficient to
resolve the flow physics of the problem, they are adequate to evaluate
the discrete consistency of the implementation. Table 2 shows the
compressible flow sensitivity derivatives with respect to angle of
attack, variables characterizing the rigid-body motions, and
parameters describing the blade and fuselage shapes. Results are
shown for all of the temporal BDF schemes discussed in Sec. II and
the Appendix. Analogous results for the incompressible formulation
are shown in Table 3. The results from the discrete adjoint and
complex-variable approaches are in very good agreement for all
cases; nonmatching digits in the sensitivities are underlined.

X. Large-Scale Test Cases

To evaluate the proposed design methodology, aerodynamic
optimizations are performed using three large-scale test cases. The

goal is solely to demonstrate the ability of the implementation to
successfully reduce each of the stated objective functions while
satisfying any constraints present. While details pertaining to the
underlying flow physics clearly may be of interest in each case,
investigations of that nature are considered beyond the scope of the
current effort and are not explored here.
For each case to be shown, the spatial and temporal grid resolutions

have been chosen based on a suitable compromise between solution
accuracy and computational efficiency. Each optimization is
performed on an SGI ICE system using dual-socket hex-core nodes
with Intel Xeon X5670 cores in a fully dense configuration. A single
additional node is allocated for serial execution of the dynamic hole-
cutting library. The computational environment also includes a
Lustre-based parallel file system,¶ and computational statistics
include any disk I/O time required to read or write the complete
flowfield solution.
As described previously, the implementation supports very general

motions including the use of deforming bodies. However, physical
models typically responsible for such effects, such as structural
models, generally are strong functions of the aerodynamics and
require a formal coupling procedure. While the flow solver used in
the current study can accommodate such models, the adjoint
formulation does not account for such effects at this time. Therefore,
to evaluate the current methodology, all large-scale simulations
described here rely on forced motions. Development of a more
general adjoint formulation required for coupling aerodynamics with
other disciplinary models is relegated to future work.

Table 2 Values of sensitivity derivative ∂CL5∕∂D for different design variables and temporal discretizations for compressible flowa,b

Variable BDF1 BDF2 BDF2opt BDF3

Angle of attack A: 0.116458961683733 A: 0.102099965021956 A: 0.102915752531413 A: 0.103785048456802
C: 0.116458961683734 C: 0.102099965021956 C: 0.102915752531413 C: 0.103785048456802

Rotation rate: blade 1 A: 0.619149219921508 A: 0.609270815829788 A: 0.592456231940897 A: 0.575091540944799
C: 0.619149219933539 C: 0.609270815842755 C: 0.592456231953869 C: 0.575091540957581

Shape: blade 2 A: 0.056440771725301 A: 0.064382783171893 A: 0.062734653842921 A: 0.060943525618014
C: 0.056440771725196 C: 0.064382783171802 C: 0.062734653842842 C: 0.060943525617920

Flap frequency: blade 3 A: -0.414712919056299 A: -0.337250987004676 A: -0.344555513267488 A: -0.352419586848976
C: -0.414712919056270 C: -0.337250987004642 C: -0.344555513267474 C: -0.352419586848961

Rotation rate: fuselage A: 6.86680217888885 A: 7.42798143738984 A: 7.31688305983601 A: 7.20812218587293
C: 6.86680217888239 C: 7.42798143738254 C: 7.31688305982953 C: 7.20812218586623

Translation rate: fuselage A: 0.420300051382122 A: 0.400837175635065 A: 0.390973864106570 A: 0.379952931745697
C: 0.420300051369376 C: 0.400837175622066 C: 0.390973864093789 C: 0.379952931733500

Shape: fuselage A: -0.007809447236753 A: -0.009590444345683 A: -0.009613538492229 A: -0.009705401931920
C: -0.007809447236691 C: -0.009590444345727 C: -0.009613538492351 C: -0.009705401931704

aSymbols A and C denote adjoint and complex-variable results, respectively.
bDiscrepancies are shown in bold and underlined.

Table 3 Values of the sensitivity derivative ∂CL5∕∂D for different design variables and temporal discretizations for incompressible flowa,b

Variable BDF1 BDF2 BDF2opt BDF3

Angle of attack A: 0.000195945789030 A: 0.000234143173131 A: 0.000218182269639 A: 0.000191641169710
C: 0.000195945789030 C: 0.000234143173131 C: 0.000218182269639 C: 0.000191641169711

Rotation rate: blade 1 A: 0.009518073976865 A: 0.010325090376673 A: 0.010544987182945 A: 0.010757597020150
C: 0.009518073976838 C: 0.010325090376647 C: 0.010544987182921 C: 0.010757597020128

Shape: blade 2 A: 0.000535025241509 A: 0.000607314158464 A: 0.000618811948355 A: 0.000633736751875
C: 0.000535025241508 C: 0.000607314158463 C: 0.000618811948355 C: 0.000633736751875

Flap frequency: blade 3 A: -0.004866399384562 A: -0.004825188859067 A: -0.004821787992149 A: -0.004810632891273
C: -0.004866399384562 C: -0.004825188859067 C: -0.004821787992149 C: -0.004810632891273

Rotation rate: fuselage A: 0.042649260159755 A: 0.044962632318017 A: 0.044947751807594 A: 0.044876653248215
C: 0.042649260159807 C: 0.044962632318090 C: 0.044947751807680 C: 0.044876653248312

Translation rate: fuselage A: 0.010034159304733 A: 0.010404514410124 A: 0.010284602229241 A: 0.010043806857134
C: 0.010034159304771 C: 0.010404514410192 C: 0.010284602229293 C: 0.010043806857193

Shape: fuselage A: 0.000087061995334 A: 0.000079589134812 A: 0.000082271937020 A: 0.000086753178814
C: 0.000087061995336 C: 0.000079589134815 C: 0.000082271937019 C: 0.000086753178823

aSymbols A and C denote adjoint and complex-variable results, respectively.
bDiscrepancies are shown in bold and underlined.

¶Data available online at http://wiki.lustre.org/index.php/Main_Page
[retrieved 20 December 2011].
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A. National Renewable Energy Laboratory Phase VI Wind Turbine

The first test case is based on the National Renewable Energy
Laboratory phase VI wind turbine described in [59]. The geometry is
a two-blade upwind configuration with a nacelle and tower. The grid
system used here has been developed in [43]. The component grid for
each blade consists of 4,510,177 nodes and 26,574,786 tetrahedral
elements, and a separate component grid containing the nacelle
and tower geometries consists of 971,059 nodes and 5,716,227
tetrahedral elements. The background mesh consists of 4,776,082
nodes and 28,278,639 tetrahedral elements. The resulting composite
mesh system contains 14,767,495 nodes and 87,144,438 tetrahedral
elements. Views of the configuration and surface meshes are shown
in Fig. 4.
The simulation is fully turbulent and is performed using the

incompressible form of the governing equations. Standard sea-level
conditions are used with a freestream velocity of 15 m∕s and aligned
with the axis of rotation. The radius of the blades is 5.029 m, and the
system rotates at a speed of 72 rpm. The BDF2opt time-integration
scheme is used with 100 subiterations and a physical time step
corresponding to 1 deg of blade rotation. Solutions are run for
720 time steps or two complete revolutions of the blades. The torque
profile for the baseline geometry is shown as the solid line in Fig. 5.
After a series of initial transients, the solution quickly settles into a
quasi-steady state behavior. The mean value of the torque coefficient
�CQ measured over the second revolution is 0.00130. An isosurface of
the Q criterion [60] is included in Fig. 6.

The goal of the current test case is to maximize the torque acting
on the turbine by altering the blade geometry. The objective function
is based on torque values ĈQ, which do not include the non-
dimensionalization using the reference geometry, and is posed as a
discrete summation of the intermediate torque valueminus a constant
target value over the second revolution:

fobj �
X720
n�361

�ĈnQ − 2.0�2Δt (44)

The target value of 2.0 has been chosen based on the initial ĈQ
profile, which has a mean value of about 0.5. The objective function
could also be formulated in terms of nondimensional torquevalues; in
this case, the target value should be rescaled accordingly. There are a
total of 76 design variables, as shown in Fig. 7. These include seven
twist values located at various stations along the span of the blade as
well as 21 thickness and 48 camber variables distributed across the
blade planform. Thinning of the blade is not allowed.
The optimization is performed using 240 computational nodes, or

a total of 2,880 processing cores. In this environment, individual
flowfield and adjoint solutions require 6.5 and 6 h of wall-clock time,
respectively. Approximately 950 GB of disk space are required to
store a complete flowfield solution and its associated domain-
connectivity data. The package described in [61] is used to perform
the optimization.
The convergence history for the optimization is shown in Fig. 8.

The objective function has been reduced from its initial value of 69.4
to a final value of 58.7. The final profile for the torque coefficient is
included as the dashed line in Fig. 5. The mean value �CQ measured
over the second revolution is 0.00159, an increase of 22% over the
baseline value. Cross sections of the baseline and final blade
geometries are shown in Fig. 9. The optimization has increased the
thickness across much of the span while also increasing the negative
camber in the trailing-edge region.
The optimization procedure for the current test case required nine

flow solutions and eight adjoint solutions, for a total of 307,000 CPU
hours or 4.5 days of wall-clock time. Although not done for thewind-
turbine demonstration, practical constraints such as root-bending
moment or thrust constraints are straightforward to incorporate, as
shown in Sec. X.C.

B. Biologically Inspired Flapping Wing

The next test case is based on a simple wing configuration
undergoing a complex kinematic motion inspired by insects such as
the Hawkmoth manduca sexta [62]. Such concepts are receiving
considerable attention in applications to micro air vehicles [63]. The
geometry consists of a rectangular flat platewith semicircular leading

Fig. 4 Wind-turbine configuration and near-field view of surface mesh

in hub region.
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Fig. 5 Baseline and final torqueprofiles forwind-turbine configuration.

Fig. 6 Front and side views of an isosurface of the Q criterion for the

baseline wind-turbine configuration.
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and trailing edges and an aspect ratio of 3.33. The mesh system used
for this example has been generated using the approach outlined
in [64]. The component mesh containing the wing geometry consists
of 3,016,149 nodes and 17,642,078 tetrahedral elements. The
background mesh containing the plane of symmetry and outer

boundaries consists of 5,339,195 nodes and 31,446,042 tetrahedral
elements, yielding a composite mesh with 8,355,344 nodes and
49,088,120 tetrahedral elements. A near-field view of the wing
surface mesh is shown in Fig. 10.
The baseline wing is offset 1.33 chord lengths from the plane of

symmetry and is assumed to be operating in quiescent conditions.
The imposedmotion is achieved through the user-defined kinematics
interface described previously. Here, time-varying angles describing
rotations about the x, y, and z axes are specified in the following
general form:

θx � Ax�cos�ω1xt� − 1� � Bx sin�ω2xt�
θy � Ay�cos�ω1yt� − 1� � By sin�ω2yt�
θz � Az�cos�ω1zt� − 1� � Bz sin�ω2zt� (45)

where the amplitudes and frequencies are specified by the user. These
angles are used to construct a series of rotation matrices of the form
given byEq. (20). Thesematrices are thenmultiplied together to form
the final rotation matrix used to specify the current wing position.
In the current example, the baseline motion is a superposition of

two oscillatory rotations, each occurring at 26Hz. The first rotation is
a sweepingmotion that rotates thewing�60 deg about its root chord
line. The second rotation is a feathering motion that rotates the wing
�45 deg about its leading edge. The net effect of this composite
motion is a thrust force in the direction from trailing edge to leading
edge. Several snapshots of the wing undergoing a period of the
baseline motion are shown in Fig. 11.
The Reynolds number based on the wing chord and maximum tip

speed is 1280. The governing equations are the incompressible
laminar Navier–Stokes equations. The BDF2opt time integration
scheme is used with 50 subiterations and a physical time step
corresponding to 250 steps per period of the baseline motion.
Each simulation is run for 1250 time steps and is performed using
160 computational nodes or a total of 1920 processing cores.
Approximately 850 GB of disk space are required to store a complete
flowfield solution and its associated domain-connectivity data.
Individual flowfield and adjoint solutions require roughly 4 and 3 h
of wall-clock time, respectively. The baseline thrust profile exhibits
a two-per-cycle periodic behavior, as shown by the solid line in
Fig. 12. The mean value of the thrust coefficient CT measured over
the final period is 0.127.

DesignCycle
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Fig. 8 Convergence of objective function for wind-turbine case.

Station 1

Station 3

Baseline
Design

Station 4

Station 5

Station 6

Station 2

Fig. 9 Baseline and final blade section geometries for the wind-turbine

configuration. Vertical scale has been exaggerated for clarity. Fig. 10 Surface mesh for flapping-wing case.

Fig. 7 Blade planform geometry, shape variable locations, and spanwise stations for wind-turbine configuration.
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The goal of the two test cases presented here is to maximize the
thrust coefficient over the final 250 time steps by optimizing the 15
design parameters describing the kinematic motion of the wing,
namely, the frequencies, amplitudes, and coordinates of the center of
rotation for the composite motion described previously. Both of the
optimizations have been performed using the package described in
[65]. The first test case uses an objective function based on a target
thrust distribution:

fobj �
X1;250

n�1;001
�CnT − 5.0�2Δt (46)

The second test case uses an objective function that aims to match a
single target value for the time-average value of thrust:

fobj �
��

1

250

X1;250
n�1;001

CnT

�
− 5.0

�2
Δt (47)

In each case, the target value of 5.0 has been chosen based on the
initial thrust profile shown in Fig. 12. Although not shown, physical
constraints such as power constraints can also be incorporated in a
straightforward fashion.
The convergence history for the objective function based on a

target distribution is shown by the square symbols in Fig. 13. The
value has been steadily reduced from 729 to 706 over 10 design
cycles. Inspection of the final values of the design variables shown in
Table 4 reveals moderate changes to all parameters. The final thrust
profile is included as the dashed line in Fig. 12. The optimization has
not only increased the magnitude of the peaks, but it has also altered
the frequency content such that three peaks now occur within the
interval used to define the objective function. The mean value of the
thrust coefficient over the final 250 time steps is 0.207, a 63%
increase over the baseline value. For this test, the optimizer requested
22 flow solutions and 10 adjoint solutions, requiring approximately
227,000 CPU hours or five days of wall-clock time.

The results based on the time-average objective function are
included in Fig. 12 as the dashed–dotted line. As in the previous case,
the frequencyof the signal has been altered to yield three peakswithin
the objective function interval. The mean value of the thrust
coefficient over the final 250 time steps has been increased to 0.265, a
109% increase over the baseline value. The objective function history
is plotted in Fig. 13, where it can be seen that the value has been
reduced from 2.92 to 2.75 over eight design cycles. Here, the
optimizer requested 25 flow solutions and eight adjoint solutions,
requiring 238,000 CPU hours or just over five days of wall-clock
time.
It should be noted that a series of shape optimizations were also

attempted for the current test problem, but they are not presented here.
A total of 88 shape parameters describing the twist, shear, thickness,
and camber of thewingwere used. In general, any shapemodification

Fig. 11 Snapshots of baseline flapping-wing motion.
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Fig. 12 Baseline and final thrust profiles for flapping-wing case.
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Fig. 13 Convergence of objective functions for flapping-wing case.

Table 4 Values of the initial and final design variables

for the flapping-wing configuration

Variable Baseline Distribution target
function

Time-average target
function

x-CORa 0.000 0.025c 0.027c
y-COR 0.000 −0.119c −0.114c
z-COR 0.000 0.011c 0.012c
Ax 0.00 0.77 −0.11
Bx 45.00 45.13 45.25
ω1x 163.36 163.45 163.36
ω2x 163.36 177.47 192.77
Ay 0.000 0.30 −0.99
By 0.000 −1.50 −0.26
ω1y 163.36 162.76 163.15
ω2y 163.36 163.10 162.97
Az −60.00 −62.71 −62.83
Bz 0.00 0.69 −1.55
ω1z 163.36 173.59 189.57
ω2z 163.36 164.41 163.55

aCOR denotes the center of rotation.
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yielding a thrust improvement over one half of the period was seen to
be equally detrimental to performance during the opposite half,
as each wing surface alternates between pressure and suction
conditions. Other forms of shape modification such as planform
effects could prove beneficial, although such changes have not been
explored here.

C. UH-60A Blackhawk Helicopter

The final test case is based on the UH-60A Blackhawk helicopter
configuration [66]. Extensive analysis of this configuration has
previously been performed using the solver employed in the current
study [39]. The composite grid system used here consists of
four identical blade component grids and a single component grid
containing the fuselage and outer extent of the computational
domain. Each of the blade grids consists of 1,266,525 nodes and
7,476,818 tetrahedral elements, while the fuselage grid contains
4,196,841 nodes and 24,735,227 tetrahedral elements. This results
in a composite grid system consisting of 9,262,941 nodes
and 54,642,499 tetrahedral elements. The surface mesh for the
configuration is shown in Fig. 14.
The governing equations are the compressible Reynolds-averaged

Navier–Stokes equations. The simulation is based on a forward flight
condition with a blade tip Mach number equal to 0.6378 and a
Reynolds number of 7.3 million based on the blade tip chord. The
advance ratio is 0.37 and the angle of attack is 0 deg. The rotor blades
are subjected to a time-dependent pitching motion that is modeled as
a child of the azimuthal rotation and is governed by a sinusoidal
variation based on collective and cyclic control inputs:

θ � θc � θ1c cos ψ � θ1s sin ψ (48)

Here, θ is the current blade pitch setting, ψ is the current azimuth
position for the blade, θc represents the collective control input, and
θ1c and θ1s are the lateral and longitudinal cyclic control inputs,
respectively. All three control inputs are set to 0 deg at the baseline
condition; i.e., the vehicle is initially untrimmed.
The BDF2opt time integration scheme is used with 15

subiterations and a physical time step corresponding to 1 deg of

rotor rotation. The simulation is run for two rotor revolutions using
160 computational nodes or a total of 1920 processing cores. In this
environment, a single execution of the flow and adjoint solvers
requires 2 and 3 h of wall-clock time, respectively. Approximately
650 GB of disk space are required to store a complete flowfield
solution and its associated domain-connectivity data.
Figure 15 shows an isosurface of theQ criterion [60] after two rotor

revolutions. The vortices emanating from each blade tip and other
surfaces of the vehicle are clearly visible. Profiles of the baseline lift
and lateral and longitudinal moment coefficients are shown as the
solid lines in Figs. 16–18. The values quickly establish a four-per-
revolution periodic behavior after 180 deg of blade rotation. The
mean value of the lift coefficient over the second rotor revolution is
0.023. The untrimmed flight condition is clearly evident in the
nonzero mean values for the two moment coefficients.
The objective for the current test case is to maximize the lift acting

on the vehicle while satisfying explicit constraints on the lateral and
longitudinal moments such that the final result is a trimmed flight
condition. The design variables consist of 64 shape parameters
describing the rotor blades, including an 8 × 4matrix of 32 thickness
variables and 32 camber variables, as shown in Fig. 19. While the
camber is allowed to increase or decrease, no thinning of the blade is
allowed. In addition, Eq. (48) and its relationship to the blade pitch
transform matrix are also linearized, allowing the control variables
θc, θ1c, and θ1s to also be used as design variables. These control
angles are allowed to vary as much as�7 deg. Note that parameters
describing geometric changes to the fuselage could also be applied;
however, without guidance for practical constraints on such changes,
such variables are not used here.

Fig. 14 Surface mesh for UH-60 configuration.

Fig. 15 Isosurface of the Q criterion for the baseline UH-60

configuration.
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Fig. 16 Baseline and final lift coefficient profiles for the UH-60

configuration.
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Fig. 17 Baseline and final CMx
profiles for the UH-60 configuration.
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The objective function to be minimized is based on the time-
average value of the lift coefficient over the second rotor revolution:

fobj �
��

1

360

X720
n�361

CnL

�
− 2.0

�2
Δt (49)

The target value of 2.0 has been chosen based on the initial lift profile.
The explicit constraints on the two moment coefficients are also
based on time-average values over the same interval:

g1 �
1

360

X720
n�361

CnMx
Δt (50)

g2 �
1

360

X720
n�361

CnMy
Δt (51)

The constraints are considered satisfied if g1 � g2 � 0, within a
feasibility tolerance of �0.0001. The optimization is performed
using the package described in [61]. Note that the treatment of the
moment constraints requires two additional adjoint solutions to
compute the associated gradient vectors. These additional solutions
are obtained simultaneously with the adjoint computation for the lift
objective using the procedure outlined in [24] to accommodate
multiple right-hand-side vectors in Eqs. (34)–(36).

1. Design Results

Figure 20 shows the convergence of the objective function and
constraints after three design cycles. The optimization procedure
quickly locates a feasible region in the design space based on the two
moment constraints, and the value of the objective function is
successfully reduced. The final unsteady lift profile is included as the
dashed line in Fig. 16. The mean value has been substantially
increased to a value of 0.103. The final unsteady profiles for the
lateral and longitudinal moment coefficients are included as the
dashed lines in Figs. 17 and 18, respectively. Each of the new profiles
has the desired zero mean value, indicating that the final design is
trimmed for level flight within the requested tolerance.
Based on the spanwise blade stations noted in Fig. 19, cross

sections of the initial and final blade geometries are shown in Fig. 21.
The shape changes are confined to the aft sections of the outer portion
of the blade, where the camber has been increased. The final value of
the collective input θc is 6.71 deg, while the final values for the cyclic
inputs θ1c and θ1s are 2.58 and −7.00 deg, respectively. The entire
optimization procedure requiring four flow solutions and four
adjoint solutions took approximately 20 h of wall-clock time, or
38,400 CPU hours.

2. Interpretation of the Adjoint Solution

Typical qualitative features of unsteady adjoint solutions are
shown in Fig. 22 for the objective function given by Eq. (49). The
figure depicts centerline contours of the adjoint solution for the
energy equation at time level n � 420. The contours represent the
instantaneous sensitivity of the objective function to a source term

Fig. 19 Blade planform geometry, shape variable locations, and spanwise stations for UH-60 configuration.
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Fig. 20 Convergence of the objective function and constraints for the UH-60 configuration.
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Fig. 18 Baseline and final CMy
profiles for the UH-60 configuration.
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applied to the energy equation at each point in the domain. Similar to
steady-flow objective functions based on surface integrals [67–70],
the time-average value of the lift is particularly sensitive to
information propagating along the stagnation streamline and
impacting the nose of the fuselage. In addition, Fig. 22 highlights
several features emanating from the rotor blades as they pass through
the cutting plane. These features are loosely analogous to unsteady-
flow phenomena such as vortex sheets and tip vortices commonly
seen in forward solutions for rotor flows, as shown in Fig. 15.
However, unlike the forward problem, the features shown in the
adjoint solution propagate in the upstream direction as the adjoint
system is integrated in reverse physical time, indicating the
sensitivity of the objective function to disturbances upstream.
In design optimization, the adjoint solutions are combined with

the linearizations of the residual operators with respect to design
variables to yield sensitivity derivatives. Alternatively, the adjoint
solutions may be combined with local residuals to provide rigorous

error estimates or with (local estimates of) the truncation errors to
guide mesh adaptation. Although these applications are not the
focus of the current work, adjoint-based adaptation methodologies
[14] offer many compelling advantages over traditional feature-
based mesh adaptation techniques that fail to identify important
regions such as those containing the upstream features highlighted in
Fig. 22.

XI. Conclusions

A general verified methodology for adjoint-based design
optimization of unsteady turbulent flows on dynamic overset
unstructured mesh systems has been presented. The formulation is
valid for compressible and incompressible forms of the Reynolds-
averaged Navier–Stokes equations. The implementation is amenable
to massively parallel computing environments and has been verified
through the use of an independent technique based on a complex-
variable formulation. Several large-scale optimizations have been
demonstrated for complex flowfields involving a wind-turbine
configuration, a flapping wing, and a realistic helicopter geometry
subject to trimming constraints. The objective functions have been
successfully reduced in each case and all constraints present have
been satisfied.
Although the demonstrated methodology provides a practical

approach to optimization of general unsteady aerodynamic flows, a
wide range of research topics remains to be explored. Locally
optimal, reduced-order model, and checkpointing techniques offer
the potential to greatly reduce storage requirements. Multifidelity
optimization algorithms should be exploitedwhere possible to reduce
dependence on high-fidelity simulations. Convergence acceleration
techniques can clearly have a direct impact on computational cost.
Simultaneous adjoint-based error estimation and mesh adaptation
approaches are very attractive in establishing rigorous gridding
requirements and eliminating user interaction. Extension of adjoint-
based methods to multidisciplinary optimization beyond the scope of
computational fluid dynamics is essential for making significant
impacts on the current paradigm for design of aerospace vehicles and
other areas of applications. Finally, advancements in the fields of
computer science, software development, and high-performance
computingmust continue tobe leveraged to thegreatest extent possible.
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Appendix: Adjoint Equations for Higher-Order
Backward Difference Schemes

Discrete conservation laws employing high-order temporal BDF
schemes as introduced in Eq. (6) are defined as

Fig. 22 Snapshot of adjoint solution for the energy equation using an

objective function based on a time-average lift coefficient. Highlighted

features originate on blade surfaces and propagate upstream.
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Design

Station 4

Station 5

Station 6

Fig. 21 Baseline and final blade section geometries for the UH-60

configuration. Vertical scale has been exaggerated for clarity.
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s ∘
�
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s − InsQ
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∘ Vns � c
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Δt
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Δt
∘ InsVn−3

�

�Rn � ��InsQn−1� ∘ Cn
s � β �Cn

s � ∘ Rn
GCL � 0 (A1)

Proceeding as before, the Lagrangian can be written as

L�D;Q;X;Λ;Λg� � fΔt�
XN
n�1
�Λng�TGnΔt

�
XN
n�1

�
�Cn

s ∘ Λns �T
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g�TG0 � �Λ0�TRin�Δt (A2)

On time levels 1 and 2, the time derivatives are assumed to be
discretized with the BDF1 and BDF2 schemes, respectively. Taking
into account the dependencies on data at time levels n − 2 and n − 3,
the adjoint equations are obtained as follows:
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The corresponding grid adjoint equations are obtained as follows:
Assuming ΛN�1 � ΛN�2 � ΛN�3 � 0:
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The sensitivity derivative for the higher-order BDF schemes is
evaluated using Eq. (36).
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