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1. Introduction

Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior 
interface coupling for the semi-discretized three-dimensional (3D) compressible Navier–Stokes equations. A complete semi-
discrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of 
any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) 
approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the 
inverse of the Reynolds number (Re) so that for Re → ∞ their contributions vanish and only the entropy stable inviscid 
interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and 
automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any 
diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes 
and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and 
flux reconstruction schemes.

This note relies on the formalism introduced in [1,3] and complements the new class of interior entropy stable SBP 
operators of any order for the 3D compressible Navier–Stokes equations on unstructured grids that was proposed in [1,2]. 
To keep the notation as simple as possible, a uniform Cartesian grid is considered in the derivation. However, the extension 
to generalized curvilinear coordinates and unstructured grids follows immediately if the transformation from computational 
to physical space preserves the semi-discrete geometric conservation [4].

The proposed interface coupling technique has been successfully combined with a high order entropy stable discretiza-
tion for the simulation of two-dimensional (2D) and 3D viscous subsonic and supersonic flows presented in [1,5,6].
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2. Compressible Navier–Stokes equations and entropy function

Consider a fluid in a domain � with boundary surface denoted by ∂�, without radiation and external volume forces. 
In this context, the compressible Navier–Stokes equations, equipped with suitable boundary and initial conditions, may be 
expressed in the form

∂q

∂t
+ ∂ f (I)

i

∂xi
= ∂ f (V )

i

∂xi
, x ∈ �, t ∈ [0,∞),

q|∂� = g(B)(x, t), x ∈ ∂�, t ∈ [0,∞),

q(x,0) = g(0)(x), x ∈ �, (1)

where the Cartesian coordinates, x = (x1, x2, x3)
� , and time, t , are the independent variables. Note that in (1) Einstein 

notation is used. The vectors q(x, t), f (I)
i = f (I)

i (q), and f (V )
i = f (V )

i (q, ∇q) are the conserved variables, and the inviscid 
and viscous fluxes in the i direction, respectively.1 Both boundary conditions, g(B) , and initial data, g(0) , are assumed to be 
bounded, L2 ∩ L∞ . Furthermore, g(B) is also assumed to contain linearly well-posed data. The conservative variable vector 
is q = (ρ, ρu1, ρu2, ρu3, ρE)� , where ρ denotes the density, u = (u1, u2, u3)

� is the velocity vector, and E is the specific 
total energy.

Harten [7] and Tadmor [8] showed that systems of conservation laws are symmetrizable if and only if they are equipped 
with a convex mathematical entropy function, S(q). Given a set of conservation variables q(x, t), the entropy variables which 
symmetrize the system are defined as the derivatives of the mathematical entropy function with respect to q(x, t), ∂ S/∂q. 
Hughes and co-authors [9] extended these ideas to the compressible Navier–Stokes equations (1). Therein, it is shown 
that the mathematical entropy must be an affine function of the physical (or thermodynamic) entropy function and that 
semi-discrete solutions obtained from a weighted residual formulation based on entropy variables will respect the second 
law of thermodynamics. Hence, it is again found that the entropy function and the entropy variables are critical ingredients 
in the design of numerical schemes exhibiting non-linear stability.

In the specific case of the compressible Navier–Stokes equations (1), the entropy function is defined as S = S(q) = −ρ s, 
where s is the thermodynamic entropy. In the entropy analysis that will follow, the definition of the thermodynamic entropy 
for a perfect gas is the explicit form,

s = R

γ − 1
log

(
T

T∞

)
− R log

(
ρ

ρ∞

)
, (2)

where R , γ , T , T∞ , and ρ∞ are the gas constant, the ratio of the heat capacity at constant pressure cp to heat capacity at 
constant volume cv , the temperature, and the reference temperature and density, respectively.

The scalar function S = −ρ s satisfies the following conditions (see, for instance, [1,3] and the references therein):

• The function S(q) when differentiated with respect to the conservative variables (i.e., ∂ S/∂q) simultaneously contracts 
all the inviscid spatial fluxes as follows

∂ S

∂q

∂ f (I)
i

∂xi
= ∂ S

∂q

∂ f (I)
i

∂q

∂q

∂xi
= ∂ Fi

∂q

∂q

∂xi
= ∂ Fi

∂xi
, i = 1,2,3. (3)

The components of the contracting vector, ∂ S/∂q, are the entropy variables defined as w� = ∂ S/∂q =(
h
T − s − ui ui

2T ,
u1
T ,

u2
T ,

u3
T ,− 1

T

)
, where h denotes the specific entalphy which is defined as h = cp T for a perfect gas. 

Fi(q) = −ρ ui s, i = 1, 2, 3, are the entropy fluxes in the three Cartesian directions (see, for instance, [10]).
• The new entropy variables, w , symmetrize the system of equations (1):

∂q

∂t
+ ∂ f (I)

i

∂xi
− ∂ f (V )

i

∂xi
= ∂q

∂ w

∂ w

∂t
+ ∂ f (I)

i

∂ w

∂ w

∂xi
− ∂

∂xi

(̂
ci j

∂ w

∂x j

)
= 0, i = 1,2,3 (4)

with: ∂q/∂ w = (∂q/∂ w)� , ∂ f (I)
i /∂ w = (

∂ f (I)
i /∂ w

)�
and ̂ci j = ĉ�

i j . The matrices ̂c are positive semi-definite [11].

• The function S(q) is convex, meaning that the Hessian, ∂2 S/∂q2 = ∂ w/∂q, is symmetric positive definite,

ζ T ∂2 S

∂q2
ζ > 0, ∀ζ 
= 0, (5)

and yields a one-to-one mapping from conservation variables, q, to entropy variables, w� = ∂ S/∂q. A sufficient (and 
also physical) condition to ensure the convexity of S(q) is that ρ, T > 0 [9,11].

1 The symbol ∇q denotes the gradient of the conservative variables.
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Remark 2.1. Dafermos [12] showed that if system of conservation laws is endowed with a convex entropy function, S = S(q), 
a bound on the global estimate of S = S(q) can be converted into an a priori estimate on the solution vector q (e.g., the 
solution of (1)). In fact, the convexity of the entropy function leads to the local well-posedness of the Cauchy problem in a 
Sobolev space of sufficiently high order, as well as the L2-stability of the solution even within the broader class of entropy 
solution. The latter result is repeated here for completeness. Details of the proof can be found in Chapter 5 of Dafermos’ 
book [12] and the references therein, and in the recent work of Svärd [13].

Given a C3 entropy function S(q) and sufficiently smooth initial data q(x, 0), the bound on the conservative variables at 
time t f is related to the bound of the convex entropy function S(q) in the following way∫

�

q�(x, t f )q(x, t f )dx ≤ C[
∂2 S
∂q2 (t f )

]
min

+
∫
�

q(x,0)� q(x,0)dx, (6)

where 
[

∂2 S
∂q2 (t f )

]
min

> 0 is the minimum eigenvalue of the Hessian on the domain � (the Hessian is SPD, provided that 

ρ, T > 0), and C is an a priori known and bounded constant.

Contracting the system of Eqs. (1) with the entropy variables and using the relations given in (3) and (4) results in the 
differential form of the (scalar) entropy equation:

∂ S

∂q

∂q

∂t
+ ∂ S

∂q

∂ f (I)
i

∂xi
= ∂ S

∂t
+ ∂ Fi

∂xi
= ∂ S

∂q

∂ f (V )
i

∂xi
= ∂

∂xi

(
w� f (V )

i

)
−

(
∂ w

∂xi

)�
f (V )

i

= ∂

∂xi

(
w� f (V )

i

)
−

(
∂ w

∂xi

)�
ĉi j

∂ w

∂x j
. (7)

Integrating Eq. (7) over the domain yields a global conservation statement for the entropy,

d

dt

∫
�

S dx =
[

w� f (V )
i − Fi

]
∂�

−
∫
�

(
∂ w

∂xi

)�
ĉi j

∂ w

∂x j
dx =

[
w� f (V )

i − Fi

]
∂�

− DT, (8)

where DT is the viscous dissipation term,

DT =
∫
�

(
∂ w

∂xi

)�
ĉi j

∂ w

∂x j
dx =

∫
�

(
∂ w/∂x1
∂ w/∂x2
∂ w/∂x3

)� ( ĉ11 ĉ12 ĉ13
ĉ21 ĉ22 ĉ23
ĉ31 ĉ32 ĉ33

)(
∂ w/∂x1
∂ w/∂x2
∂ w/∂x3

)
dx. (9)

The semi-discrete entropy estimate is obtained by mimicking term by term the continuous estimate given in Eq. (7). 
Herein, this is achieved by using an entropy stable discontinuous spectral collocation method of any order based on 
summation-by-parts (SBP) operators [1–3,5].

3. Summation-by-parts operators and semi-discretized system

First derivative operators that satisfy the SBP convention have the following form:

D = P−1 Q, P = P�, ζ�Pζ > 0, ζ 
= 0,

Q� = B −Q, B = diag (−1,0, . . . ,0,1) . (10)

D is the discrete first derivative operator; P may be thought of as a mass matrix in the context of Galerkin finite-elements, 
and incorporates the local grid spacing into the derivative definition. Herein, the focus is exclusively on diagonal norm P
operators. The nearly skew-symmetric matrix, Q, is an undivided differencing operator (see, for instance, [1,5]).

All SBP derivative operators, D, can be manipulated into the telescopic flux form [1,2],

df (q)

dx
= P−1Qf + T(p+1) = P−1�f + T(p+1), (11)

where T(p+1) is the truncation error of the approximation and � is a non-square operator that calculates the undivided 
difference of the two adjacent fluxes at the flux points.2 All the quantities located at flux points are denoted with an 
over-bar.

Consider a single tensor product element and an entropy stable spatially discontinuous collocation discretization with 
N = p + 1 solution points in each coordinate direction [1–3,5]; the following element-wise matrices will be used:

2 For a high-order formulation like the nodal discontinuous Galerkin method, the flux points are a set of intermediate points prescribing bounding control 
volumes about each solution point. These points are similar in nature to the control volume edges employed in the finite volume method.
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Dx1 = (DN ⊗ IN ⊗ IN ⊗ I5) , · · · Dx3 = (IN ⊗ IN ⊗DN ⊗ I5) ,

Px1 = (PN ⊗ IN ⊗ IN ⊗ I5) , · · · Px3 = (IN ⊗ IN ⊗PN ⊗ I5) ,

Px1x2 = (PN ⊗PN ⊗ IN ⊗ I5) , · · · Px2x3 = (IN ⊗PN ⊗PN ⊗ I5) ,

P = Px1x2x3 = (PN ⊗PN ⊗PN ⊗ I5) ,

Bx1 = (BN ⊗ IN ⊗ IN ⊗ I5) , · · · Bx3 = (IN ⊗ IN ⊗ BN ⊗ I5) ,

�x1 = (�N ⊗ IN ⊗ IN ⊗ I5) , · · · �x3 = (IN ⊗ IN ⊗ �N ⊗ I5) , (12)

where DN , PN , �N , and BN are the one-dimensional (1D) SBP operators [3], and IN is the identity matrix of dimension N . 
I5 denotes the identity matrix of dimension five.3 The subscripts in (12) indicate the coordinate directions to which the 
operators apply (e.g., Dx1 is the differentiation matrix in the x1 direction). The symbol ⊗ represents the Kronecker product. 
When applying these operators to the scalar entropy equation in space, a hat will be used to differentiate the scalar operator 
from the full vector operator. For example,

P̂ = (PN ⊗PN ⊗PN) . (13)

Consider two cubic tensor product elements. Without loss of generality assume that all their faces are orthogonal to the 
three coordinate directions and are not boundary faces, i.e., they are not part of the boundary surface ∂�. Using the SBP 
operators (12), system (1) is discretized locally on both elements as [3]

∂ql

∂t
+P−1

xi ,l
�xi ,l f

(I)
i,l −Dxi ,l f

(V )

i,l = P−1
xi ,l

g(In)

i,l , (14a)

∂qr

∂t
+P−1

xi ,r �xi ,r f
(I)
i,r −Dxi ,r f

(V )

i,r = P−1
xi ,r g(In)

i,r , (14b)

where the subscripts l and r denote the left and right elements. The penalty interface terms g(In)

i,l and g(In)
i,r with i = 1, 2, 3

are used to patch together neighboring elements (see Section 4). The vector of conservative variables of each element is 
ordered as

q =
(

q
(
x(1)(1)(1)

)�
,q

(
x(1)(1)(2)

)�
, . . . ,q

(
x(N)(N)(N)

)�)
=

(
q(1)

�,q(2)
�, . . . ,q(N3)

�)
, (15)

where the subscripts denote the ordering of the solution points in the coordinate directions. The derivatives appearing in 
the viscous fluxes are also computed using the operator Dxi , i = 1, 2, 3, defined in (12).

4. Provably entropy stable interior interface coupling

Using and LDG-type approach [14], expressions (14) can be conveniently re-written as [3]

∂ql

∂t
+P−1

xi ,l
�xi ,l f

(I)
i,l −Dxi ,l [ ĉi j,l]� j,l = P−1

xi ,l
g(In),q

i,l , (16a)

�i,l −Dxi wl = P−1
xi ,l

g(In),�

i,l , (16b)

∂qr

∂t
+P−1

xi ,r �xi ,r f
(I)
i,r −Dxi ,r [ ĉi j,r]� j,r = P−1

xi ,r g(In),q
i,r , (16c)

�i,r −Dxi wl = P−1
xi ,r g(In),�

i,r , (16d)

where �i,l and �i,r are the vectors of the gradient of the entropy variables on the left and right elements in the i direction, 
whereas g(In),q

i,(·) and g(In),�
i,(·) are the penalty interface terms on the conservative variable and the gradient of the entropy vari-

able, respectively [3]. The contributions of the penalty terms on the gradient of the entropy variables are non-zero only in 
the normal direction to the interface. The matrices [ ̂ci j,·] are block diagonal matrices with five-by-five blocks corresponding 
to the viscous coefficients of each solution point. Note that (16) is obtained by using f (V )

i = ĉi j
∂ w
∂x j

= ĉi j � j .

To obtain an equation for the entropy of the system, we follow the entropy stability analysis presented in [1,3]. Therefore,

multiplying the two discrete equations in the left element by w�
l P l and 

([ ĉi j,l]� j,l
)� P l , respectively, and the two discrete 

equations in the right element by w�
r Pr and 

([ ĉi j,r]� j,r
)� Pr , respectively, the expression for the time derivative of the 

entropy function S in each element is

3 The 3D compressible Navier–Stokes equations form a system of five non-linear partial differential equations.
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d

dt
1�P̂ l Sl + 2

∥∥∥√
[ ĉi j,l]� j,l

∥∥∥2

P l

+ 1� (
P̂x2x3,l B̂x1,lF1,l + P̂x1x3,l B̂x2,lF2,l + P̂x1x2,l B̂x3,lF3,l

)
= w�

l

(
Px2x3,l Bx1,l [ ĉ1 j,l]� j,l +Px1x3,l Bx2,l [ ĉ2 j,l]� j,l +Px1x2,l Bx3,l [ ĉ3 j,l]� j,l

)
+ w�

l

(
Px2x3,l g(In),q

1,l +Px1x3,l g(In),q
2,l +Px1x2,l g(In),q

3,l

)
+ ([ ĉ1 j,l]� j,l

)� Px2x3,l g(In),�

1,l + ([ ĉ2 j,l]� j,l
)� Px1x3,l g(In),�

2,l + ([ ĉ3 j,l]� j,l
)� Px1x2,l g(In),�

3,l , (17a)

d

dt
1�P̂r Sr + 2

∥∥∥√
[ ĉi j,r]� j,r

∥∥∥2

Pr
+ 1� (

P̂x2x3,r B̂x1,rF1,r + P̂x1x3,r B̂x2,rF2,r + P̂x1x2,r B̂x3,rF3,r
)

= w�
r

(
Px2x3,r Bx1,r [ ĉ1 j,r]� j,r +Px1x3,r Bx2,r [ ĉ2 j,r]� j,r +Px1x2,r Bx3,r [ ĉ3 j,r]� j,r

)
+ w�

r

(
Px2x3,r g(In),q

1,r +Px1x3,r g(In),q
2,r +Px1x2,r g(In),q

3,r

)
+ ([ ĉ1 j,r]� j,r

)� Px2x3,r g(In),�
1,r + ([ ĉ2 j,r]� j,r

)� Px1x3,r g(In),�
2,r + ([ ĉ3 j,r]� j,r

)� Px1x2,r g(In),�
3,r , (17b)

where the quantity 1 represents a vector with N elements, (i.e., 1 = (1,1, . . . ,1)�).
To simplify the notation, assume that the interface between the two tensor product cells lies at x1 = 0. We also assume 

that all the points that lie on the other faces of the two cubes are treated in an entropy stable fashion; their contribution 
can then be neglected without loss of generality. Then, for our analysis we can just focus on a pair of interface nodes 
at x1 = 0. We then introduce the operators e(−) and e(+) which “extract” from the cell-wise solution, flux, and interface 
penalty vectors only the variables associated to these two points.4 Therefore, Eqs. (17) reduce to

d

dt
1�P̂ l Sl + 1�P̂x2x3,l F1,l + 2

∥∥∥√
[ ĉ1 j,l]� j,l

∥∥∥2

P l

= w�
l Px2x3,l [ ĉ1 j,l]� j,l e(−) + w�

l Px2x3,l g(In),q
1,l e(−)

+ ([ ĉ1 j,l]� j,l
)� Px2x3,l g(In),�

1,l e(−), (18a)

d

dt
1�P̂r Sr − 1�P̂x2x3,r F1,r + 2

∥∥∥√
[ ĉi j,r]� j,r

∥∥∥2

Pr
= −w�

r Px2x3,r [ ĉ1 j,r]� j,r e(+) + w�
r Px2x3,r g(In),q

1,r e(+)

+ ([ ĉ1 j,r]� j,r
)� Px2x3,r g(In),�

1,r e(+). (18b)

The interface penalty terms are constructed as follows:

g(In),q
1,l =

[
+f

(I)(−)

1 − fssr
(

q(−)
i ,q(+)

i

)]
+

[
−1

2
(1 + α)

([
ĉ(−)

1, j

]
�

(−)
j −

[
ĉ(+)

1, j

]
�

(+)
j

)]
+

[
1

2
[L]

(
w(−) − w(+)

)]
, (19a)

g(In),�

1,l =
[
−1

2
(1 − α)

(
w(−) − w(+)

)]
, (19b)

g(In),q
1,r =

[
−f

(I)(+)

1 + fssr
(

q(−)
i ,q(+)

i

)]
+

[
+1

2
(1 − α)

([
ĉ(+)

1, j

]
�

(+)
j −

[
ĉ(−)

1, j

]
�

(−)
j

)]
+

[
1

2
[L]

(
w(+) − w(−)

)]
, (19c)

g(In),�
1,r =

[
+1

2
(1 + α)

(
w(+) − w(−)

)]
. (19d)

The LDG penalty terms involve the coefficients 1
2 (1 ± α) and act only in the normal direction to the face. The IP terms 

involve the block diagonal parameter matrix, [L], with N3 five-by-five blocks, L, which are left unspecified for the moment.5

Herein, the solution between adjoining elements is allowed to be discontinuous. An inviscid interface flux that pre-
serves the entropy consistency of the interior high-order accurate spatial operators [1] on either side of the interface 
fssr

(
q(−)

i ,q(+)
i

)
is constructed as

fssr
(

q(−)
i ,q(+)

i

)
= fsr

(
q(−)

i ,q(+)
i

)
+ 


(
w(+)

i − w(−)
i

)
, (20)

4 These two vectors are zero at all points except at the “(−), (+)” interface points.
5 N3 = (p + 1)3 is the number of solution points within a three-dimensional tensor product cell.
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where fsr
(

q(−)
i ,q(+)

i

)
is the entropy conservative inviscid interface flux of any order p [11,1–3,5], and 
 is a negative 

semi-definite interface matrix with zero or negative eigenvalues. The superscripts (−) and (+) denote the collocated values 
on the left and right side of the interface, respectively. The entropy stable flux fssr

(
q(−)

i ,q(+)
i

)
is more dissipative than the 

entropy conservative inviscid flux fsr
(

q(−)
i ,q(+)

i

)
, as can be easily verified by contracting fssr

(
q(−)

i ,q(+)
i

)
against the entropy 

variables [1]. Note that in [15] grid interfaces for entropy stable finite difference schemes are studied and interface fluxes 
similar to (20) are proposed.

Substituting expressions (19) and (20) in (18) and summing all the contributions of the two elements results in

d

dt
1�P̂ l Sl + d

dt
1�P̂r Sr + 2

[∥∥∥√
[ ĉi j,l]� j,l

∥∥∥2

P l

+
∥∥∥√

[ ĉi j,r]� j,r

∥∥∥2

Pr

]
= ϒ(I) + ϒ(V ), (21)

where ϒ(I) and ϒ(V ) are the inviscid and the viscous interface terms. At the two interface nodes, these terms are

ϒ(I) =
(

w(+) − w(−)
)�

fssr
(

q(−)
i ,q(+)

i

)
−

(
ψ(+) − ψ(−)

)
=

(
w(+) − w(−)

)�



(
w(+) − w(−)

)
, (22)

ϒ(V ) =
(

w(−)
i − w(+)

i

)
L

(
w(−)

i − w(+)
i

)
. (23)

Clearly, the interface contributions are dissipative if both the five-by-five matrices 
 and L are negative semi-definite. The 
matrix 
 can be constructed using different approaches, e.g., using an upwind operator that dissipates each characteristic 
wave based on the magnitude of its eigenvalue:

fssc
(

q(−)
i ,q(+)

i

)
= fsr

(
q(−)

i ,q(+)
i

)
+ 1/2Y |λ|Y� (

w(−)
i − w(+)

i

)
,

∂

∂q
f (q) = Y λY�,

∂q

∂ w
= YY�, (24)

where λ and Y are the diagonal matrix of the eigenvalues and the matrix of the eigenvectors, respectively. Note that the 
relation ∂q

∂ w = YY T is achieved by an appropriate scaling of the rotation eigenvectors. In [1,5], the matrix ∂q
∂ w is constructed 

using the scaled eigenvectors introduced by Merriam [16]. Such an approach allows to impose an artificial viscosity from 
the viewpoint of numerical satisfaction of the second law of thermodynamics.

We are then left with the viscous interface term, ϒ(V ) . The parameter values α = 0 and α = ±1 yield a symmetric LDG 
and a “flip-flop” narrow stencil LDG penalty, respectively. An LDG value of α = 0 produces a global discrete operator that 
has a neutrally damped spurious eigenmode. Herein, this mode is damped using the IP dissipation. For a Reynolds number 
that approaches ∞, we would like the five-by-five matrix L to go to zero so that only the inviscid entropy stable penalty 
contributions in (19) are recovered. To achieve that, the matrix L is constructed as

L = −β(In) ĉ (−)
11 + ĉ (+)

11

2
(
Px1

)
(1)(1)

, β(In) > 0, (25)

where ̂c(−)
11 and ̂c(+)

11 are the positive semi-definite viscous coefficient matrices at the left and the right side of the interface 
in the normal direction (i = j = 1). The coefficient β(In) can be used to modify the strength of the IP penalty term, although 
excessively large values of β(In) reduce the maximum stable time step. In [3,5,6], β(In) was chosen to be the maximum 
value for which the explicit stability constraint remains unaffected. The factor 

(
Px1

)
(1)(1)

in the denominator represents the 
normal local grid spacing which is incorporated in the diagonal SBP operator P .6 This term is introduced to get the correct 
dimension, and, as for the standard IP finite element approach, it increases the strength of L with increased resolution.

5. Conclusions

A provably entropy stable coupling technique which scales with the inverse of the Reynolds number has been proposed 
to patch together interior element interfaces for the three-dimensional compressible Navier–Stokes equations. This approach 
uses the well-established local discontinuous Galerkin and interior penalty techniques. Furthermore, it is remarkably easy 
to implement and compatible with any diagonal norm SBP spatial operator, including finite element, finite volume, finite 
difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin 
discretizations and flux reconstruction schemes.

6 Herein, (Pxi

)
with i = 1 appears in the definition of L because the interface between the two elements is orthogonal to the x1 direction [3].
(1)(1)
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