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Abstract. We consider parallel, three-dimensional transonic Euler flow using the PETSc-
FUN3D application, which employs pseudo-transient Newton-Krylov methods. Solving a large,
sparse linear system at each nonlinear iteration dominates the overall simulation time for this
fully implicit strategy. This paper presents a polyalgorithmic technique for adaptively select-
ing the linear solver method to match the numeric properties of the linear systems as they
evolve during the course of the nonlinear iterations. Our approach combines more robust, but
more costly, methods when needed in particularly challenging phases of solution, with cheaper,
though less powerful, methods in other phases. We demonstrate that this adaptive, polyalgo-
rithmic approach leads to improvements in overall simulation time, is easily parallelized, and is
scalable in the context of this large-scale computational fluid dynamics application.

1. INTRODUCTION

Many time-dependent and nonlinear computational fluid dynamics (CFD) applications in-
volve the parallel solution of large-scale, sparse linear systems. Typically, application devel-
opers select a particular algorithm to solve a given linear system and keep this algorithm fixed
throughout the simulation. However, it is difficult to select a priori the most effective algo-
rithm for a given application. Moreover, for long-running applications in which the numerical
properties of the linear systems change as the simulation progresses, a single algorithm may
not be best throughout the entire simulation. This situation has motivated us to develop an
adaptive, polyalgorithmic approach for linear solvers, which this paper discusses in the con-
text of parallel, three-dimensional transonic Euler flow using PETSc-FUN3D [2]. This ap-
plication employs pseudo-transient Newton-Krylov methods for a fully implicit solution. We
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present a technique for adaptively selecting the linear solver methods to match the numeric
properties of the linearized Newton systems as they evolve during the course of the nonlinear
iterations. Our approach combines more robust, but more costly, methods when needed in par-
ticularly challenging phases of the solution, with faster, though less powerful, methods in other
phases. Our previous work focused on sequence-based adaptive heuristics in an uniprocessor
environment [4,5,9]. In this paper, we extend our research to solve a more complicated parallel
application, where we demonstrate that the adaptive polyalgorithmic approach can be easily
parallelized, is scalable, and can lead to improvements in overall simulation time.

The remainder of this paper is organized as follows. Section 2 introduces our motivating
application. Section 3 explains our approach to adaptive solvers, and Section 4 presents some
parallel experimental results. Section 5 discusses conclusions and directions of future work.

2. PARALLEL COMPRESSIBLE FLOW EXAMPLE

FUN3D is an unstructured mesh code originally developed by W. K. Anderson of the NASA
Langley Research Center [1] for solving the compressible and incompressible Navier-Stokes
equations. This code uses a finite volume discretization with a variable order Roe scheme
on a tetrahedral, vertex-centered mesh. Anderson et al. subsequently developed the parallel
variant PETSc-FUN3D [2], which incorporates MeTiS [7] for mesh partitioning and the PETSc
library [3] for the preconditioned Newton-Krylov family of implicit solution schemes.

This paper focuses on solving the unsteady compressible three-dimensional Euler equations
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Here ρ, E, and U represent the density, energy, and velocity in the direction of the outward
normal to a cell face, respectively. The pressure field p is determined by the equation of state
for a perfect gas (given above). Also the cell volume (V ) is enclosed by the cell boundary (Ω).

We solve the nonlinear system in Equation (1) with pseudo-timestepping [8] to advance to-
wards an assumed steady state. Using backward Euler time discretization, Equation (1) becomes

V

∆t`
(u` − u`−1) + f(u`) = 0, (2)

where ∆t` → ∞ as ` → ∞, u is a vector of unknowns representing the state of the system,
and f(u) is a vector-valued function of residuals of the governing equations, which satisfies
f(u) = 0 in the steady state.

This code employs Roe’s flux-difference splitting to discretize the convective terms. Initially
Equation (2) is discretized by using a first-order scheme. When the nonlinear residual sinks
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Figure 1. Mach contours on the ONERA M6 wing at freestream Mach number = 0.839.

below a given threshold, a second-order discretization is applied. The timestep is advanced
toward infinity by a power-law variation of the switched evolution/relaxation (SER) heuristic of
Mulder & Van Leer [10]. To be specific, within each of the first-order and second-order phases
of computation we adjust the timestep according to the CFL number,

N `
CFL = N0

CFL

(

‖f(u0)‖

‖f(u`−1)‖

)σ

,

where σ is normally unity but is damped to 0.75 for robustness in cases in which shocks are
expected to appear.

At each timestep we apply a single inexact Newton iteration (see, e.g., [11]) to Equation (2)
through the two-step sequence of (approximately) solving the Newton correction equation

(
V

∆t`
I + f ′(u`−1)) δu` = −f(u`−1), (3)

where I is the identity matrix, and then updating the iterate via u` = u`−1 + δu`. We employ
matrix-free Newton-Krylov methods (see, e.g., [6]), with which we compute the action of the
Jacobian on a vector v by directional differencing of the form f ′(u)v ≈ f(u+hv)−f(u)

h
, where h

is a differencing parameter. We use a first-order analytic discretization to compute the corre-
sponding preconditioning matrix.

We explore the standard aerodynamics test case of transonic flow over an ONERA M6 wing
using the frequently studied parameter combination of a freestream Mach number of 0.839 with
an angle of attack of 3.06o. The robustness of solution strategies is particularly important for
this model because of the so-called λ-shock that develops on the upper wing surface, as depicted
in Figure 1. As mentioned earlier, the PDEs are discretized by using a first-order scheme; but
once the shock position has settled down, a second-order discretization is applied. This change
in discretization affects the nature of the resulting linear systems. The time for the complete
simulation is dominated by the time to solve the linear systems generated at each nonlinear
iteration, where this phase typically requires around 77 percent of the overall time. Moreover,
changes in the numerical characteristics of the linear systems reflect the changing nature of
the simulation. For example, the use of pseudo-transient continuation generates linear systems
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that become progressively more difficult to solve as the simulation advances. This situation is
discussed further in Section 4; in particular, see the right-hand graph of Figure 2.

3. ADAPTIVE SOLVERS

Applications where the properties of the linear systems differ significantly throughout the
simulation, such as PETSc-FUN3D’s [2] modeling of compressible Euler flow, are an ideal case
for exploring adaptive solvers. Our goal is to improve overall performance by combining more
robust (but more costly) methods when needed in particularly challenging phases of solution
with faster (though less powerful) methods in other phases. Adaptive solvers are designed
with the goal of reducing overall execution time by dynamically selecting the most appropriate
method to match the needs of the current linear system.

Adaptive solvers can be defined by the heuristic employed for method selection. The effi-
ciency of an adaptive heuristic depends on how appropriately it determines switching points, or
the iterations at which to change linear solvers. Adaptive heuristics monitor changes in indi-
cators to detect switching points. We have observed that a combination of several indicators
generally leads to better results. Some common examples of indicators are linear (nonlinear)
solution time, convergence rate, change in nonlinear residual norm, etc.

In this paper we employ sequence-based adaptive heuristics, which rely on a predetermined
sequence of linear solvers and then “switch up” to a more robust but more costly method or
“switch down” to a cheaper but less powerful method as needed during the simulation. In this
class of heuristics, only three methods are compared when making a given switching point
decision – the current method and the methods directly preceding and succeeding it in the
sequence. Adaptive heuristics are nonsequence-based when all the methods in the available set
are compared. This class of adaptive methods requires more time for method selection than
does the sequence-based class but has greater flexibility. Sequence-based methods are used in
simulations where linear systems tend to become progressively difficult or easier; nonsequence-
based strategies are used in applications where a monotonic pattern is missing. As discussed in
Sections 2 and 4, the PETSc-FUN3D simulation falls in the former category.

We employed the following two indicators to construct the adaptive, polyalgorithmic solver:

• Nonlinear residual norm: The pseudo-transient continuation depends on the CFL num-
ber [8], which, as explained in Section 2 and shown in the left-hand side of Figure 2,
increases as the nonlinear residual norm decreases. As the CFL number increases, the
corresponding Newton correction equations (3) become more difficult to solve. Thus, in
this case the nonlinear residual norm is a good indicator of the level of difficulty of solv-
ing its corresponding Newton correction equation: the lower the residual norm, the more
difficult the linear system is likely to be. Based on trial runs of the application, we divided
the simulation into four sections: (a) ||f(u)|| ≥ 10−2, (b) 10−4 ≤ ||f(u)|| < 10−2, (c)
10−10 ≤ ||f(u)|| < 10−4, and (d) ||f(u)|| < 10−10. Whenever the simulation crosses
from one section to another, the adaptive method switches up or down accordingly.

• Average time per nonlinear iteration: Our second indicator provides a rough estimate of
the strength of the linear solver. The higher the value of the indicator, the more likely
the solver is to effectively solve difficult linear systems. The base solvers are arranged in
increasing order of their corresponding indicator values.
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The parallelization of the adaptive scheme was straightforward; we invoked the linear solvers
as determined by the heuristic, without redistributing the parallel data. No changes were needed
to either the compressible Euler code or the base parallel solvers in PETSc [3] to accommodate
this adaptive approach.

4. EXPERIMENTAL RESULTS

To perform numerical experiments on the compressible Euler application introduced in Sec-
tion 2, we used the Jazz cluster at Argonne National Laboratory, which has a Myrinet 2000
network and 2.4 GHz Pentium Xeon processors with 1-2 GB of RAM. Our experiments focus
on a problem instance designated as 1Grid (with 357,900 vertices and 2.4 million edges), which
generates a Jacobian matrix of rank approximately 1.8×106 with 1.3×108 nonzeros. The large
problem size makes it imperative to use a multiprocessor architecture. We ran the simulations
on 4, 8, 16, and 32 processors using various Krylov methods and various subdomain solvers
for a block Jacobi preconditioner with one block per processor. The relative linear convergence
tolerance was 10−3, and the maximum number of iterations for any linear solve was 30. The
left-hand side of Figure 2 shows how the CFL number increases as the nonlinear residual norm
decreases for the pseudo-transient Newton-Krylov algorithm; this situation was discussed in
more detail in Section 2. The right-hand side of Figure 2 shows the time per nonlinear iteration
for various solvers on four processors.
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Figure 2. Left: Convergence rate (lower plot) and CFL number (upper plot) for the base and
adaptive solvers on 4 processors. Right: Time per nonlinear iteration for the base and adaptive
solvers on 4 processors.The labeled square markers indicate when linear solvers changed in the
adaptive algorithm.

We employed four linear solvers: (1) GMRES with a block Jacobi (BJ) preconditioner that
uses SOR as a subdomain solver, designated as GMRES-SOR; (2) bi-conjugate gradient squared
(BCGS) with a BJ preconditioner that uses no-fill incomplete factorization (ILU(0)) as a subdo-
main solver, called BCGS-ILU0; (3) flexible GMRES (FGMRES) with a BJ preconditioner that
uses ILU(0) as a subdomain solver, designated as FGMRES-ILU0; and (4) FGMRES with a BJ



6 S. Bhowmick, D. Kaushik, L. McInnes, B. Norris, P. Raghavan

preconditioner that uses ILU(1) as a subdomain solver, called FGMRES-ILU1. We considered
these as traditional base methods that remain fixed throughout the nonlinear solution process,
and we also combined them in an adaptive scheme as introduced in Section 3. We ordered these
methods for use in the adaptive solver as (1), (2), (3), (4), according to the average time taken
per nonlinear iteration in the first-order discretization phase of the simulation, which can serve
as a rough estimate of the strength of the various linear solvers for this application. The graphs
in Figure 3 show the switching points among these methods in the adaptive polyalgorithmic
approach. The simulation starts with method (1), then switches to method (2) at the next iter-
ation. The switch to method (3) occurs at iteration 25. The discretization then shifts to second
order at iteration 28, and the initial linear systems become easier to solve. The adaptive method
therefore switches down to method (2). From this point onward, the linear systems become pro-
gressively more difficult to solve as the CFL number increases; the adaptive method switches up
to method (3) in iteration 66 and method (4) in iteration 79. In the right-hand graph of Figure 2,
this last change is accompanied by an increase in the time taken for the succeeding nonlinear
iteration. This increased time is devoted to setting up the new preconditioner, which in this case
changes the block Jacobi subdomain solver from ILU(0) to ILU(1) and consequently requires
more time for the factorization phase.
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Figure 3. Performance of base and adaptive methods on 4 processors. Left: Residual norm
vs. nonlinear iteration number. Right: Residual norm vs. cumulative simulation time. The
labeled square markers indicate when linear solvers changed in the adaptive algorithm. The
first solution method was GMRES-SOR, and switching occurred at iterations 1, 25, 28, 66, and
79.

The execution time of the adaptive polyalgorithmic scheme is 3% better than the fastest base
method (FGMRES-ILU0) and 20% better than the slowest one (BCGS-ILU0). We also observe
that the final nonlinear residual norm obtained by using the adaptive method is comparable to
that obtained from the best base method (O(10−14)). In addition, the number of linear iterations
required by the adaptive method for the overall simulation is smaller than that needed by any of
the base methods. The overhead for switching among base methods in the adaptive scheme is
minimal: approximately 0.02% − .06% of the total execution time.
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Figure 4. Performance of base and adaptive algorithms on 4, 8, 16, and 32 processors.

Figure 4 shows the performance of the adaptive method on 4, 8, 16, and 32 processors. As
the number of processors increases, the simulation requires less time to converge. Although the
best base method varies with the number of processors (FGMRES-ILU1 for 4, 8, and 32 proces-
sors, to GMRES-SOR for 16 processors), the adaptive method is always the one requiring the
least time. The improvement of the adaptive scheme compared to the best base method varies
from 2% to 7%. Moreover, as it is impossible to know a priori what particular linear solution
algorithm will be fastest for a long-running nonlinear simulation, the adaptive, polyalgorithmic
approach adjusts linear solvers according to the levels of difficulty encountered throughout a
given run.

We consider the speedups of the adaptive and base solvers in Figure 5. Since this large-scale
problem size requires a minimum of 4 processors, we use T1 as the best estimate of the time for
the full simulation on one processor using the fastest base method. We set T1 to four times the
time required with FGMRES-ILU1. We calculate the speedup S = T1

Tp

, where Tp is the observed
time on p processors. The results show that the speedup of the adaptive method is almost ideal
and as good as or better than any of the base methods.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented an adaptive, polyalgorithmic approach that dynamically selects a
method to solve the linearized systems that arise in the PETSc-FUN3D application’s modeling
of compressible Euler flow using a pseudo-transient Newton-Krylov method. This approach re-
duced overall execution time by using cheaper though less powerful linear solvers for relatively
easy linear systems and then switching to more robust but more costly methods for more dif-
ficult linear systems. Our results demonstrate that adaptive solvers can be implemented easily
in a multiprocessor environment and are scalable. We are now investigating adaptive solvers in
additional problem domains and considering more adaptive approaches, including a polynomial
heuristic where the trends of the indicators can be estimated by fitting a function to the known
data points. We also are combining adaptive heuristics with high-performance component in-
frastructure for performance monitoring and analysis, as described in [12, 13].
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