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Abstract

The main limitations in performing uncertainty analysis of CFD models using con-
ventional methods are associated with cost and effort. For these reasons, there is
a need for the development and implementation of efficient stochastic CFD tools
for performing uncertainty analysis. One of the main contributions of this research
is the development and implementation of Intrusive and Non-Intrusive methods us-
ing polynomial chaos for uncertainty representation and propagation. In addition, a
methodology was developed to address and quantify turbulence model uncertainty. In
this methodology, a complex perturbation is applied to the incoming turbulence and
closure coefficients of a turbulence model to obtain the sensitivity derivatives, which
are used in concert with the polynomial chaos method for uncertainty propagation of
the turbulence model outputs.
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Chapter 1

Introduction

1.1 Error and Uncertainty in CFD Models

The common practice in CFD analysis and design is to compute a deterministic or

single solution on a fixed grid. This practice will be unacceptable in the near future

for several reasons. First, it is impossible to infer a level of accuracy or uncertainty

from deterministic CFD models that contain errors and uncertainties. Second, all

practical CFD models and parameters are known only to a certain level of accuracy

or uncertainty. Thirdly, the reliability of CFD analysis and design is reduced when

uncertainties and errors are neglected in the CFD models. For these reasons, it is

important to develop methods that perform error and uncertainty analysis in CFD

models.

A widely known method for performing basic uncertainty analysis for determinis-

tic systems is the standard Monte Carlo(MC) method. The procedure is: (1) sample

input random variable from its assumed probability density function(PDF), (2) com-

pute deterministic output for each sampled input value, and (3) determine statistics

of the output distribution such as the mean and the variance. However, the main

limitations of the MC method is associated with cost and effort. For example, the
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MC method typically requires a large number of model runs that would be beyond the

reach of current computational power. To date, performing model runs for realistic

aerodynamics problems that require the solution of complex flow fields is prohibitively

expensive. In fact, this is one of the motivations for the development of alternative

methods.

1.2 Sources of Error and Uncertainty

It is important to distinguish between errors and uncertainties associated with the

modeling and simulation process. These terms are commonly used interchangeably

in the scientific literature, and can be defined in many forms depending on the ap-

plication. For CFD simulations, the definition given by Oberkampf and Blotter[59] is

adopted.

They defined uncertainty as,

A potential deficiency in any phase or activity of modeling and simulation

process that is due to a lack of knowledge

And error is defined as,

A recognizable deficiency in any phase or activity of modeling and simu-

lation that is not due to a lack of knowledge

They also group sources of error and uncertainty in four general categories:

1. Physical modeling

2. Discretization and solution errors

3. Computer round-off error.

4. Programming errors
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The physical modeling process is classified as a source of uncertainty according

to the definition given by Oberkampf and Blotter[59]. Physical modeling uncertain-

ties arise from mathematical model form assumptions, boundary conditions, initial

conditions, and data input to a code. In general, data inputs, initial and boundary

conditions to a code (e.g., geometry data, free-stream conditions) are rarely or if at

all exactly known.

The discretization and solution process are classified as sources of error that can

be quantified and reduced using available methods in the literature. Discretization

error arises from the replacement of the partial differential equations(PDEs) of the

physical models, auxiliary models, and boundary conditions by numerical algebraic

equations. In Roache[66], discretization error is defined as the difference between the

exact solution to the discrete equations and analytical solution to the PDEs.

Computer round-off and programming(or user) processes are also sources of error

that can be minimized or reduced. Computer round-off error arise from finite precision

floating-point numbers which can only represent discrete points on the real number

line. In Roache[66], computer round-off error is defined as the difference between

the exact solution to the discrete equations and computer solution. Table 1.1 shows

many examples of sources of uncertainty and error in CFD models.

1.3 Objective of the Thesis

The primary objective of this thesis is to develop and implement methods that perform

uncertainty analysis of CFD simulations in order to reduce the associated cost and

computational effort required with conventional methods such as the MC method.

The second objective of this thesis is to quantify the turbulence model uncer-

tainty in the Spalart-Allmaras model. It is generally believed that turbulence model

uncertainty is one of the largest sources of uncertainty in modern Reynolds-Averaged
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Table 1.1: Source of Uncertainty and Error in CFD Simulations - summarized from
Oberkampf and Blotter, Ref. [80]

Source Examples

Physical Modeling Incompressible Flow
Inviscid Flow

Potential Flow
Viscous Flow

Chemically Reacting Flow
Transitional/Turbulent Flow

Auxiliary Physical Models Equation of State
Thermodynamics properties

Transport properties
Chemical models, reaction, and rates

Turbulence model
Initial & Boundary Conditions Wall roughness

Far-field
Free Surface

Free-stream Condition
Geometry Representation

Discretization & Solution Truncation error - spatial and temporal
Iterative convergence - steady state

Iterative convergence - time dependent
Round-Off Error Finite - precision arithmetic

Programming & User Error
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Navier-Stokes(RANS) simulations, and is a large contributor of the scatter observed

between experimental and CFD data [2].

1.4 Outline of the Thesis

Chapter 1 presented a brief introduction to the concepts of error, uncertainty, and

its origins in the context of CFD models. It has also discussed the importance of

uncertainty analysis of CFD models and the associated limitations with current con-

ventional methods. This chapter summarizes the objectives and outline of this thesis

depicted in Figure 1.1.

Chapter 2 presents a thorough review to the types of errors, uncertainties, and its

origins in the context of CFD models. It also addresses the main approaches for the

representation and propagation of uncertainty associated with the model input and

model formulation of CFD models.

Chapter 3 presents the development and implementation of the so called Intrusive

method. This chapter addresses the uncertainty in the CFD input parameters that are

modeled by replacing all dependent variables and random parameters in the governing

equations with their Polynomial Chaos(PC) expansions. It also presents a supersonic

wedge flow and expansion corner case study that illustrates the application of the

Intrusive method.

Chapter 4 presents the development and implementation of the so called Non-

Intrusive methods. This chapter addresses the need to develop Non-Intrusive methods

for the purpose of overcoming some of the difficulties associated with the Intrusive

method. It also presents the Onera-M6-Wing case study that illustrates an application

of Non-Intrusive methods.

Chapter 5 presents the uncertainties that arise in the physical modeling process
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for various CFD turbulence models. It describes the methodology for computing tur-

bulence model uncertainty. This chapter uses the Non-Intrusive method to quantify

the effect of uncertainties in the closure coefficients of the Spalart-Allmaras turbu-

lence model and wall functions on the aerodynamic coefficients. It also presents the

Onera-M6-Wing case study that illustrates the methodology.

Chapter 6 presents the conclusions and discussions of this thesis. This is followed

by the bibliography.

Appendix A.1 presents the definition of the operator form. Appendix B.1 presents

the full flux Jacobian matrix in deterministic form. Appendix B.2 presents the full

flux Jacobian matrix in standard PC form. Appendix B.3 presents the full flux

Jacobian matrix in operator form. Appendix C.1 presents the Van Leer split flux

vector(VLSFV) in deterministic form. Appendix C.2 presents the VLSFV in standard

PC form. Appendix C.3 presents the VLSFV in PC Compact form. Appendix C.4

presents VLSFV Jacobian matrix in deterministic form. Appendix C.5 presents the

VLSFV Jacobian matrix in PC compact form.
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Figure 1.1: Schematic depiction of outline this thesis. The highlighted area indicate
the contribution of this thesis



Chapter 2

Background Review

2.1 Types and Origins of Uncertainty

Uncertainty in CFD models can be categorized into aleatoric (or inherent uncer-

tainty) and epistemic (or model form and parameter) uncertainty (see [80]). They

are described below.

2.1.1 Inherent Uncertainty

Inherent uncertainty applies to processes or quantities in CFD models that are ac-

cepted to be intrinsically variable. Furthermore, processes or quantities that are inher-

ently stochastic arise from the unavoidable unpredictability. For example, chemically

reacting gas and transitional turbulent flow are inherently stochastic in nature.

2.1.2 Model Form Uncertainty

In the modeling process, assumptions and simplifications are often required, due to a

lack of knowledge. Furthermore, the modeling process leads to mathematical models

that are often simplified representations of a phenomena under study. The assump-

tions and simplifications in these mathematical models often give rise to uncertainty,

8
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and are a key source of uncertainty. It would be possible to treat the mathematical

model formulation as an error that can be corrected or reduced. However, the exact

mathematical model formulation representing a physical phenomena is rarely known,

and must be treated according to the definition of uncertainty.

The selection of spatial and temporal resolution (e.g., numerical grid cell size)

in the application of numerical models may also give rise to model uncertainty. For

example, Hosder [41] shows the strong interaction between spatial resolution and

turbulence model uncertainties. Furthermore, he shows that a finer grid resolution

does not necessarily result in a more accurate prediction and reduced turbulence

model uncertainty. This is also evident in the First AIAA CFD Drag Prediction

Workshop [2] where the participants identified the mesh resolution to be inadequate

for the CFD predictions. Furthermore, the lack of grid convergence in the CFD

predictions led to large variations between the CFD results running similar cases.

The selection of model boundaries may also be a type of simplification that give

rise to model uncertainty. For example, any model may have limited boundaries

in terms of time, space, number of chemical species, and so on. Other overlooked

phenomenon such as rough walls, far-field boundary, free surface, and geometry rep-

resentation may also play a role in model uncertainty.

2.1.3 Parameter Uncertainty

The true value of model parameters can never be known exactly, and must be treated

according to the definition of uncertainty. Uncertainty in model parameters originate

from significant uncertainties associated with their estimates. For example, uncer-

tainties of parameter measurement involve (1) sampling variability, and (2) systematic

bias due to imprecise calibration. Another potential source of parameter uncertainty

is the significant large error associated with a small sample size.
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2.2 Review of Uncertainty Analysis

The two main approaches for the representation of uncertainties are non-probabilistic

(or deterministic) and probabilistic methods.

2.2.1 Non-Probabilistic Methods

In a non-probabilistic approach, uncertainties are often represented by the widest

error bounds of model parameters and inputs. The maximum error bounds of model

outputs must then be necessarily computed since the probability structure of the

model inputs or parameters are not taken into account (see [81]). Furthermore, prop-

agating error using deterministic approaches is based on the assumption that each

model input interval contains its entire uncertainty. This assumption may not always

be the case. For example, an estimate of the standard deviation of available exper-

imental data may be less (or possibly much less) than the width of the uncertainty

model input interval. Two deterministic uncertainty analysis methods (1) Interval

Mathematics and (2) propagation of error using sensitivity derivatives are discussed

below.

Interval Mathematics

Interval mathematics is used for uncertainty estimation for cases where information

about the type of uncertainty in the model parameters is not available. Furthermore,

unknown or indeterminate probabilities of model parameters is very often a result

of imprecise measurements, and the existence of alternative methods to estimate

model parameters. For such cases, interval mathematics uses error bounds to estimate

uncertainty. Note that this method does not require information about the type of

uncertainty in the parameters (see G. Alefeld and J. Herzberger [4]).

The basic idea in interval mathematics is to compute error bounds on various
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model outputs based on the error bounds of the model inputs and parameters. In

interval mathematics, every uncertain parameter and uncertain model input are de-

scribed by an interval that contains an upper and lower limit without a probability

structure. Consequently, interval mathematics represent the maximum error bounds

(i.e., worst case result). The interval representation of a model parameter, x, de-

fined in terms of the interval midpoint value, x, and uncertainty, ε > 0, is given by

x = x[1 − ε, 1 + ε]. Note that the lower limit is given by x(1 − ε) and the upper

limit is given by x(1 + ε). Functions of intervals (e.g., intervals of model outputs) are

computed using special arithmetic procedures. In order to demonstrate arithmetic

operations of interval mathematics, let a and b be given by [al, au] and [bl, bu], where

al ≤ au and bl ≤ bu. Then, arithmetic operations of interval mathematics are given

by:

a+ b = [al + bl, au + bu],

a− b = [al − bl, au − bu], (2.1)

a · b = [min(albl, albu, aubl, aubu),max(albl, albu, aubl, aubu)],

a/b = [al, au] ·
[

1

bu
,

1

bl

]
; 0 6∈ [bl, bu].

An application of interval analysis in the literature includes the treatment of un-

certainty in the chemical time scale, τ , for the scalar wave equation with a source

term performed by Walters [81]. For this example, he illustrates that different interval

results can be obtained for mathematically equivalent pointwise input for different

model structural formulation. Further, he shows that this observation is not related

to the precision of the computations. He also illustrates that iteration loops required

by the numerical algorithms for this case resulted in large error growth without some

modification. The fact that (1) probabilistic methods provide more information than

interval analysis, (2) many CFD numerical models rely on iteration loops, and (3)
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available information about the input probability structure is ignored in interval anal-

ysis, detracts from the use of this approach and hence is not recommended in general.

Propagation of Error using Sensitivity Analysis

Propagation of error using sensitivity analysis has been in use for many years in the

literature (see e.g. [22], [31], [32], [39], [57], [63], [76]). The objective of sensitivity

analysis is to estimate the rate of change in model outputs with respect to changes

in model inputs. Furthermore, it can also be used to assess the relative contributions

of the model inputs and parameters uncertainty to the model outputs uncertainty.

There are a number of sensitivity analysis methods in the literature (see Isuka-

palli [47]). The desired method of choice depends upon (a) the type of sensitivity

measured, (b) user-defined accuracy, and (c) computational cost. In the CFD com-

munity, the desired choice for sensitivity analysis is the local gradient approximation

(see Walters [81]). The estimate of the model sensitivity is given by gradients or par-

tial derivatives at a local point in the temporal and spatial domain. If k is a set of m

parameters (k1, k2, · · · , km), and u is a vector of n output variables (u1, u2, · · · , un),

then the sensitivity, S, is given by,

Sij =
∂ui
∂kj

. (2.2)

If δkj is the error associated with parameter kj , then a deterministic approximation

to the output error, δui, is given by,

δui =

[
n∑
j=1

(Sij)
2 δkj

]1/2

, (2.3)

where i = 1, 2, · · · , n and j = 1, 2, · · · ,m.

There are a number of methods for computing sensitivity derivatives. The de-

sired method of choice depends upon the difficulty of implementation and accuracy

of the results. The main approaches for computing sensitivity derivatives are (1)
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Finite Difference, (2) Complex Variable Formulation, (3) Automatic Differentiation,

(4) Discrete Adjoint Method, and (5) the Sensitivity Equation Method (SEM). These

methods are discussed below.

Finite Difference

In this approach, the CFD model is treated as a ”black box” and sensitivity derivatives

are computed by finite differencing perturbed solutions. For example, if f is an output

variable of a CFD model with a given perturbation parameter or input value, δx, then

the sensitivity of f with respect to a parameter or input variable, x, is given by,

df

dx
≈ f(x+ δx)− f(x− δx)

2 δx
. (2.4)

Note that the implementation of this central difference scheme is straightforward,

and it’s theoretically second-order accurate. However, its accuracy depends on the

perturbation size. For example, Nielsen [58] shows subtractive cancellation errors

arise in finite difference schemes due to finite precision arithmetic regardless of the

theoretical order of the scheme. In effect, this limits the step size, δx, that can be

used. Note that the limit or optimal step size is not known a priori, and may vary

from one design variable to the next. Further, Equation 2.4 requires the function

evaluation of two well-converged solutions which in the case of realistic aerodynamic

problems may be prohibitively expensive.

Complex Variable Formulation

In this approach, an output CFD function f assumed to be analytic, is expanded in

a Taylor series using a complex perturbation parameter or input value, h, as

f(x+ ih) = f(x) + ih
df

dx
− h2

2

d2f

dx2
− ih3

6

d3f

dx3
+
h4

24

d4f

dx4
+ · · · . (2.5)

Solving this equation for the imaginary part of the function yields,

df

dx
≈ Im[f(x+ ih)]

h
+O(h2). (2.6)
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The implementation of this method is straightforward. That is, by declaring all

variables of a function as complex and applying complex perturbation to the design

variable of interest, the sensitivity derivative of a design variable can be obtained by

evaluating the imaginary part of a function. Furthermore, Nielsen [58] showed that

Equation 2.6 allows true second order accuracy to be achieved, since no subtraction of

terms is involved. Moreover, two additional digits of accuracy can be obtained when

the step size, h, is reduced by an order of magnitude. However, the drawbacks to this

method are associated with the additional cost of performing complex arithmetic,

which can be on the order of three times the cost of the original solver.

Automatic Differentiation of Source Code

In this approach, automatic differentiation is applied to a given original source code

to generate a corresponding derivative calculating code (see [12], [13], [33], [47] for

examples in Fortran). Given the source code, and the definition of the dependent

and independent generic variables of interest, automatic differentiation generates a

derivative code that is used to estimate the sensitivity and uncertainty of model

outputs with respect to model inputs. Note that this method does not require in-

formation about the model equation, and the derivative code can be calculated with

the accuracy of the machine precision. Although automatic differentiation can be ap-

ply to non-smooth functions, the computational cost for real world applications may

be prohibitive. Another drawback to this approach, which employs a discretize-then-

differentiate scheme, is that mesh derivatives are still not well understood, particularly

in cases where meshes are prescribed adaptively (see [77]).

SEM

In this approach, the model equations are differentiated with respect to any generic

variable of interest. The subsequent linear sensitivity equations are then discretized
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and solved separately from the original model equations. Note that this approach

is also termed as the direct approach, and is often applied to cases involving many

objectives or constraints with relatively few design variable (see [47], [58]). In [31],

Godfrey and Cliff used the SEM for turbulent-flow computations that incorporates

an eddy-viscosity model. Further, they showed the solutions to the linear sensitivity

equations required approximately 1% of the computational time required to solve the

non-linear flow problem. In [14], Borggaard also shows that using the SEM could

reduce CPU times by 50 percent or more. However, the drawback to this method is

that it requires the modification of the original model equations, and may involve the

reformulation of the auxiliary equations. These requirements may be impractical or

impossible in terms of the prohibitive amounts of resources that could be required.

Discrete Adjoint Method

In this approach, a user-defined cost function, F , is minimized using the Discrete

Adjoint (DA) equations described in Nielsen [57]. The CFD flow equation residuals,

R, and the cost function, F , are first linearized with respect to the flow solution,

Q, and the design variable of interest, D. After this linearization, a set of linear

equations are then solved to find the Lagrange multipliers, λ, given by:

(
∂R

∂Q

)T
λ = −

(
∂F

∂Q

)T
, (2.7)

where λ is defined as the effect of the flow residual on the cost function:

λ ≡ ∂F

∂R
. (2.8)

Once the vector of Lagrange multipliers is known, an iterative scheme for the sensitiv-

ity derivatives ∂Q/∂D is derived with Lagrange multipliers operating on the discrete

version of the governing flow equations (for details see [58]). This iterative scheme can

then be solved efficiently using standard methods. Note the DA method is commonly
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used in aerodynamic optimization design problems, and the basic implementation

precludes the need to compute the sensitivity derivatives directly (see [81]). How-

ever, the direct approach (e.g., SEM or Complex Variable Formulation) may be more

appropriate for sensitivity/uncertainty analysis, since the solution of each design vari-

able yields sensitivity information for all of the dependent variables in the flow field

(see [58]).

2.2.2 Probabilistic Methods

In the probabilistic approach, uncertainty is represented by the probability of the ran-

dom event. The probability of a random event occurring can be interpreted in terms

of frequency of occurrence of that event, and is determined by the ratio of the number

of favorable outcomes to the total number of outcomes. Furthermore, probability is

mathematically expressed as a decimal range from a low of 0 (no chance) to a high

of 1.0 (certainty). An assessment of these underlying events can be obtained when

probability analysis is applied to a collection of data or model parameters and inputs.

Furthermore, probabilistic analysis is the prevalent choice for uncertainty analysis of

physical systems when estimates of the probability distribution of uncertain model

inputs or parameters are available.

There are number of statistical text books that describe the theory of probability.

For example, Hafner [35], Papoulis [61], and Tsokos [78] explain the concepts and

applications of probabilistic analysis in detail. Uncertainties associated with model

inputs and parameters can be quantified by probability distributions, and an estimate

of the model output probability distribution can be obtained. Note that this process is

comprised of two stages. The first stage involves the determination of the probabilistic

distribution of the model inputs and parameters, and model formulation. The second

stage involves the propagation of uncertainty through models. These two stages are

described below.
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Probability distribution of inputs

Probability distributions of model inputs and parameters are estimated via statistical

techniques that use available data or a representative number of samples. These

techniques can be found in statistical textbooks (see [61]). In cases of limited data,

estimates of probability distributions would require expert judgment. For example, a

uniform distribution would be chosen for a range of possible values, where all values

have an equal likelihood of occurring. Similarly, a normal distribution would be

chosen to describe a data set with negligible random and systematic errors. Table 2.1

illustrates some of the probability distributions used for uncertainty analysis.

Propagation of uncertainty through models

The main objective of uncertainty propagation is to compute the probability distri-

bution of model outputs. The output probability distribution can then be used to

estimate statistical parameters of interest (e.g., mean and variance of model outputs).

The main techniques for propagating uncertainty through models are (1) Sampling

Based Methods, and (2) Spectral Methods. These techniques are discussed in the

next section.

2.2.3 Sampling Based Methods

Sampling based methods involved running a model at a set of sampled points, and

using the model results at the sampling points in order to relate the model inputs and

outputs. The advantage of these methods is that the model equation(s) or existing

code is treated as a blackbox(i.e., no modification of the model equation(s) or existing

code is required). Widely used sampling based methods are: (1) MC, and (2) Latin

Hypercube Sampling. These methods are discussed below.



18

Table 2.1: PDF for representing uncertainties in model inputs:

Distribution Parameters &
Conditions

PDF Moments

Uniform a,b 1
b−a Mean = a+b

2

Var = (b−a)2

12

Normal µ,σ, σ > 0 1
σ
√

2π
e
−(x−µ)2

2σ2 Mean = µ
Var= σ2

Mode = µ

Lognormal µ,σ, σ > 0 1
xσ
√

2π
e
−(log(x)−µ)2

2σ2 Mean = e(µ+σ2/2)

Var= (eσ
2 − 1)e(2µ+σ2)

Mode = e(µ−σ2)

Gamma a, b,
a > 0, b > 0

1
Γ(a)ba

xa−1e−
x
b

x > 0
Mean = ab
Var = ab2

Mode = (a− 1)b

Exponential λ, λ > 0 λe−λx, x > 0 Mean = 1
λ

Var = 1
λ2

Mode = 0

Weibull a axa−1e−x
a

(x ≥ 0) Mean = Γ(1 + 1
a
)

Var = Γ(1+ 2
a
)−Γ(1+ 1

a
)

Mode = (1− 1
a
)

1
a , a ≥ 1

Extreme Value e−x−e
−x

Mean = 0
Var = 1
Mode = 0
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MC Methods

There are a number of MC methods described in the literature ([19],[38], [50], [70]).

They are the most widely used means for uncertainty analysis, and have been applied

to fields ranging from chemical engineering [47] to aerospace engineering [82]. They

can also be used to solve deterministic problems such as finding the area under a

curve [18]. The main advantage of the MC methods is that the model equation(s) or

existing code is treated as a blackbox.

The simplest of all MC methods [81], referred to as crude (or basic) MC, involves

the sampling of input random variables from their known or assumed PDF, and com-

puting deterministic model output for each of the sample input values. The statistics

of the model output distribution can then be determined from the deterministic out-

puts. The statistics of a distribution can be computed from the definition of the

expected value of a function of a random variable, ξ, of g(ξ), namely

E[g(ξ)] =

∫
g(ξ)p(ξ)dξ, (2.9)

where p(ξ) is the PDF of the distribution that describes some event or process. Note

the integration domain is supported by the PDF. The mean of the probability distri-

bution is given by

ξ = E[ξ] =

∫
ξp(ξ)dξ. (2.10)

The rth moment about the mean is given by

E[(ξ − ξ)r] =

∫
(ξ − ξ)rp(ξ)dξ. (2.11)

The coefficients of variance, skewness, and kurtosis are related to the 2nd, 3rd, and 4th

moments about the mean, respectively. One of the drawbacks of the MC method is

that the convergence of the standard error estimate is relatively slow. For example,

the convergence of the MC method [50] to the exact stochastic solution as the number
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of samples, n→∞, is given by

σMC =
σ√
n
. (2.12)

Since this method requires a large number of sample or model runs, its not suitable for

computationally intensive problems. The time and resources required by this method

may be prohibitively expensive for realistic aerodynamics problems.

Latin Hypercube Sampling (LHS)

Substantial computational efficiency over the basic MC method is accomplished by

the use of the Modified MC method. The number of necessary solutions is reduced

in the Modified MC method compared to the basic MC method by efficient sampling

from the input probability distribution. One such widely used Modified MC method

is the LHS developed by McKay [54]. In this method, the range for each input

uncertain parameter of a model is divided into non-overlapping intervals on the basis

of equal probability. Thus, only one value from each interval is selected at random

with respect to the PDF in the interval. Note that the LHS method has a smaller

variance σ2 than the MC method [54], hence, the convergence of LHS method is much

faster than the MC method. Since the whole parameter space, consisting of all the

uncertain parameters, is partitioned into cells of equal probability, random samples

are generated from all the ranges of possible values. Consequently, this feature gives

insight about the extremes of the probability distributions of the outputs. Note that

this feature is not contained in the basic MC method, where there may be cases that

does not include the extremes of the random sampling. However, the drawback of the

LHS method is that the number of samples or model runs for realistic aerodynamic

problems could still be too large and expensive.
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Moment Methods

Uncertainty analysis in CFD simulation using moment methods have appeared in

the literature (see [43], [44], [45], [76]). Moment methods involves using the trun-

cated Taylor series expanded about the expected value of the inputs. For example, if

u = u(ξ1, ξ2) is expanded about mean values (ξ1, ξ2), the first-order moment approx-

imation of the Taylor series is,

u(ξ1, ξ2) = u(ξ1, ξ2) +
∂u

∂ξ1

(ξ1 − ξ1) +
∂u

∂ξ2

(ξ2 − ξ2).

Using Equations 2.9 and 2.11, the expected value and variance are approximately

given by,

EFO[u(ξ1, ξ2)] = u(ξ1, ξ2),

V arFO[u(ξ1, ξ2)] =

(
∂u

∂ξ1

∣∣∣∣
ξ

)2

σ2
ξ1

+

(
∂u

∂ξ2

∣∣∣∣
ξ

)2

σ2
ξ2

+2

(
∂u

∂ξ1

∣∣∣∣
ξ

)(
∂u

∂ξ2

∣∣∣∣
ξ

)
Covar(ξ1, ξ2),

where the covariance between the random variables ξ1 and ξ2 can be defined in terms

of expected values as,

Covar(ξ1, ξ2) = E[ξ1ξ2 − E(ξ1)E(ξ2)].

Note that first-order first moment (FOFM) approximation is the deterministic value

evaluated at the mean of the inputs, ξ1 and ξ2. The first-order second moment

(FOSM) method requires the computation of sensitivity derivatives (see, for exam-

ple [63]). For cases involving relatively large variations in the input random variables,

increased accuracy of the model output statistics is obtained using higher order mo-

ment formulas. This requires the estimation of higher order derivatives which may

be impractical in terms of the accuracy and implementation of the method, and the

computational resources required. For example, computing higher order derivatives

in CFD codes is not well understood and further detracts from the use of this method

for uncertainty analysis.
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2.2.4 Spectral Methods

Spectral methods have been used to model and propagate uncertainty in stochas-

tic computational simulations by several researchers. Ghanem and Spanos (see [26],

[27], [28], [29]) who pioneered spectral representation of uncertainty otherwise known

as polynomial chaos expansions, applied this technique to several problems of inter-

est in the structures community. Zang et al. [52] used the PC technique to study

uncertainty propagation for a turbulent, compressible nozzle flow. Xiu and Karni-

adakis [93] analyzed the flow past a circular cylinder and incompressible channel flow

by the spectral method, and extended the method beyond the original formulation

of Wiener [88] to include a variety of basis functions [94]. In 2003, Walters [82] ap-

plied the PC method to a two-dimensional steady-state heat conduction problem for

representing geometric uncertainty.

An important concept of spectral representation of uncertainty is that one may

decompose a random function (or variable) into separable deterministic and stochastic

components. For example, for any generic variable, α∗, with random fluctuations, we

can write,

α∗(x, y, z, t; ~ξ) =
P∑
i=0

αi(x, y, z, t)Hi(~ξ), (2.13)

where αi(x, y, z, t) is the deterministic component and Hi(~ξ) is the random basis func-

tion corresponding to the ith mode. Effectively, αi(x, y, z, t) is the amplitude of the

ith fluctuation. Here, α∗ is assumed to be a function of deterministic independent

variables x, y, z, t, and the n-dimensional random variable vector ~ξ = (ξ1, ξ2, · · · , ξn)

which has a specific probability distribution. The discrete sum is taken over the

number of output modes, P ≡ (n+p)!
n!p!
− 1, which is a function of the order of PC, p,

and the number of random dimensions, n. For the basis function, multi-dimensional

Hermite polynomials are used to span the n-dimensional random space, which was

first used by Wiener [88] in his original work known as the homogenous chaos. Many
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Table 2.2: Hermite polynomials of single variable ξ up to 10 orders.
k Hk(ξ)

0 1
1 ξ
2 −1 + ξ2

3 −3ξ + ξ3

4 3− 6ξ2 + ξ4

5 15ξ − 10ξ3 + ξ5

6 −15 + 45ξ2 − 15ξ4 + ξ6

7 −105ξ + 105ξ3 − 21ξ5 + ξ7

8 105− 420ξ2 + 210ξ4 − 28ξ6 + ξ8

9 945− 1260ξ3 + 378ξ5 − 36ξ7 + ξ9

10 −945 + 4725ξ2 − 3150ξ4 + 630ξ6 − 45ξ8 + ξ10

other choices are possible for basis functions depending on the type of probability dis-

tribution selected for the input uncertainty. For example, Xiu and Karniadakis [93]

described other spectral expansions such as Laguerre polynomials with the Exponen-

tial distribution, Jacobi polynomials with the Beta distribution, etc. A convenient

form of the Hermite polynomials is given by

Hk(~ξ) = e
1
2
~ξT ~ξ(−1)k

∂k

∂ξi1 · · · ∂ξik
(
e−

1
2
~ξT ~ξ
)
, (2.14)

where k = 0, 1, · · · , p and i = 0, 1, · · · , n. Note that p is the order of chaos, n is

the number of dimensions, and the row vector ~ξ = (ξi1 , · · · , ξik)T . Table 2.2 gives

the Hermite polynomials of one-dimensional random variable(e.g., n = 1) up to 10

orders(i.e., ~ξ = ξ1 = ξ). The inner product of two functions f(~ξ) and g(~ξ) is defined

by

〈f(~ξ), g(~ξ)〉 =

∫ ∞
−∞

f(~ξ)g(~ξ)pN(~ξ)d~ξ, (2.15)

where the weight function pN(~ξ) is an n-dimensional Gaussian distribution with unit

variance,

pN(~ξ) =
1√

(2π)n
e−

1
2
~ξT ~ξ. (2.16)
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The Hermite polynomials form a complete orthogonal set of basis functions in the

random space, therefore the inner product of the basis functions is zero with respect

to each other,

〈Hi(~ξ), Hj(~ξ)〉 = 〈Hi(~ξ), Hi(~ξ)〉δij , (2.17)

where δij is the Kronecker delta function.

The statistics of the distribution for a flow variable at a spatial location can be

calculated after the PC coefficients αk(x, y, z, t) in Equation 2.13 are determined. The

mean of the random solution is given by

EPC

[
α∗(x, y, z, t; ~ξ)

]
= 〈α∗(x, y, z, t; ~ξ), H0(~ξ)〉

=

∫ ∞
−∞

α∗(x, y, z, t; ~ξ)H0(~ξ)pN(~ξ)d~ξ

= α0(x, y, z, t), (2.18)

which indicates that the zeroth mode of the expansions corresponds to the expected

value or the mean of α∗(x, y, z, t; ~ξ). Similarly, the variance of the distribution can be

obtained as,

V arPC

[
α∗(x, y, z, t; ~ξ)

]
= 〈[α∗(x, y, z, t; ~ξ)− α0(x, y, z, t)]2, Hk(~ξ)〉

=

∫ ∞
−∞

[α∗(x, y, z, t; ~ξ)− α0(x, y, z, t)]2Hk(~ξ)pN(~ξ)d~ξ

=
P∑
i=1

[
α2
i (x, y, z, t)〈Hi(~ξ), Hi(~ξ)〉

]
. (2.19)

Note the Gaussian estimates of the variance are provided by k = 1, 2, ..., n modes.

All higher modes provide non-Gaussian interactions.



Chapter 3

Intrusive Approach: Development

and Implementation

3.1 Introduction

The first section of this chapter presents the development and implementation of

the Intrusive method. It describes in detail the derivation of the PC formulation of

the Euler equations in the presence of uncertainty. A standard formulation is given

for the Full Flux vector and Van Leer split flux vector in local coordinates and their

Jacobian matrices. A short-hand compact PC formulation, developed by Walters [85],

results in a simplified but equivalent form of the governing equations that are easy to

understand and implement.

The second section of this chapter illustrate applications of the Intrusive method.

Results have been obtained using stochastic explicit and implicit time integration

schemes for the two-dimensional Euler equations of gas dynamics applied to the 2-D

unit problems: (1) flow over a wedge at supersonic speed, (2) flow over an expansion

corner at supersonic speed, and (3) flow over a cosine airfoil at supersonic speed.

Comparisons of first-order PC results show good agreement with the MC simulations

25
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in which 10, 000 realizations were obtained. In addition, several convergence and

solution contour graphs are shown for the three cases.

3.2 Development and Implementation

In the Intrusive approach, uncertainty in the output variables of CFD models due to

uncertainty in model inputs or parameters is represented and propagated by the PC

expansions given by Equation 2.13. All dependent variables and random parameters

(such as viscosity, thermal conductivity, etc.) or random model inputs (such as free-

stream Mach number, geometry, etc.) in the governing equations of the CFD model

are replaced with their PC expansions. Projecting each equation onto kth basis,

yields P + 1 (see Equation 2.13) times the number of deterministic equations. These

resultant stochastic linear equations can be solved by the same numerical methods

applied to the original deterministic system.

3.2.1 Standard PC Euler Equations

Due to its generality, we work with the integral form of the governing equations

∂

∂t

∫

V

QdV +

∮

S

F · n̂ds = 0 (3.1)

, where the first term is integrated over the volume, V , and the second term is

integrated over the closed surface, S.

For the special case of the 2-D Euler equations, F = f̂ı+ ĝ and

Q =




ρ

ρu

ρv

ρeo



, f =




ρu

ρu2 + p

ρuv

ρuho



, g =




ρv

ρuv

ρv2 + p

ρvho



.

Here, the density is ρ, the velocity components are u and v, the pressure is p, and

the total internal energy and total enthalpy are given by e0 and h0, respectively. The
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components of outward pointing unit normal vector n̂ are denoted by nx and ny. The

cell face surface area is denoted by ds.

The Euler Equations are solved deterministically by discretizing the integral form

of the governing equation using a cell-centered finite-volume approach. The integral of

the flux on each face of an element is evaluated with the mid-point rule. The spatial

accuracy is dictated by interpolating the primitive variable vector q(Q) from the

cell-centers to the cell-faces, where q = [ρ, u, v, p]T . A standard {φ, κ} formulation

that allows first-order upwind interpolation and a family of second-order interpolation

formulas is used. Discretizing each element in the domain yields,

V
4Q

4t +

Nf∑
i=1

Fi = 0 (3.2)

where,

V = element volume

Nf = number of faces per element

4t = time step

F = F · n̂4s
In order to obtain the PC equations for the deterministic components, (i.e., the

modes of Q), one simply projects Equation 3.2 onto the rth basis function Ψr(~ξ) (for

all r). This yields

V
4Qr〈Ψr(~ξ),Ψr(~ξ)〉

4t +

Nf∑
i=1

Fi,r = 0 . (3.3)

On the ith face of any element, we denote the projected flux components by

[F1,r F2,r F3,r F4,r]
T

where, for example

F1,r ≡ 〈F1, Ψr(~ξ)〉 =

∫ ∞
−∞
F1Ψr(~ξ)pN(~ξ)d~ξ (3.4)

and pN(~ξ) is the input probability distribution function.
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3.2.2 Compact PC Formulation

An alternate formulation utilizing operator notation that would be simple to code yet

mathematically equivalent to the original formulation was developed and applied to

the Euler Equations for explicit time integration by Walters [85]. The definition of the

operator will be described by the following simple example. Consider two stochastic

scalar variables, a∗ and b∗,

a∗ =
Na∑
i=0

aiΨi = a0Ψ0 + a1Ψ1 + · · ·+ aNaΨNa , (3.5)

b∗ =

Nb∑
j=0

bjΨj = b0Ψ0 + b1Ψ1 + · · ·+ bNbΨNb . (3.6)

Note that this can also be written as

a∗ = aT · ~ΨNa b∗ = bT · ~ΨNb , (3.7)

where a and b are column vectors containing the deterministic components of a∗ and

b∗. Likewise, ~ΨNa and ~ΨNb are column vectors containing the Hermite polynomials

(e.g. Ψ0, Ψ1, . . .).

Suppose one wants to compute the product of two stochastic variables, and then

project the product onto a basis function. Let

c∗ = a∗b∗. (3.8)

Substitute Equations 3.5 and 3.6 into Equation 3.8 to obtain

c∗ =

(
Na∑
i=0

aiΨi

)(
Nb∑
j=0

bjΨj

)

=
Na∑
i=0

Nb∑
j=0

aibjΨiΨj.

(3.9)
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Given the special case of Na = 2 and Nb = 1, c∗ has the expansion

c∗ =

a0b0Ψ0Ψ0 + a0b1Ψ0Ψ1

+ a1b0Ψ1Ψ0 + a1b1Ψ1Ψ1

+ a2b0Ψ2Ψ0 + a2b1Ψ2Ψ1.

(3.10)

Now consider the simpler term,

c =
Na∑
i=0

Nb∑
j=0

aibj.

For demonstration purposes, again let Na = 2 and Nb = 1 to expand the above

expression to yield,

c = a0b0 + a0b1

+ a1b0 + a1b1

+ a2b0 + a2b1. (3.11)

Note that the operation

c = a · bT =



a0

a1

a2


 ·
[
b0 b1

]
=



a0b0 a0b1

a1b0 a1b1

a2b0 a2b1


 (3.12)

generates all of the terms required to compute the product of two sums. It turns out

that a useful PC operation is to simply convert this matrix to a column vector by, in

effect, flattening it out. Thus, we define the operator ⊗ to be

a⊗ b ≡ Flatten
[
a · bT ] = Flatten



a0b0 a0b1

a1b0 a1b1

a2b0 a2b1


 =




a0b0

a0b1

a1b0

a1b1

a2b0

a2b1




. (3.13)
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The original problem can now be written using the definition of this operator as

c∗ =
Na∑
i=0

Nb∑
j=0

aibjΨiΨj

= (a⊗ b)T · (~ΨNa ⊗ ~ΨNb). (3.14)

Equation 3.14 is useful for a PC formulation since the deterministic and random

components have been separated, and the operator ⊗ is trivial to code. In the

MATHEMATICA c© language, it can be defined by

a ⊗ b := Flatten[Transpose[{a}] · {b}], (3.15)

where a and b are input lists containing the amplitudes of the modes. Note that when

projected onto a basis function, the deterministic component can be taken outside of

the integral.

Returning to the example with Na = 2 and Nb = 1, the product of two sums

expressed in operator form yields,

c∗ = (a⊗ b)T · (~ΨNa ⊗ ~ΨNb)

=
(
a0b0 a0b1 a1b0 a1b1 a2b0 a2b1

)
·




Ψ0Ψ0

Ψ0Ψ1

Ψ1Ψ0

Ψ1Ψ1

Ψ2Ψ0

Ψ2Ψ1




=

a0b0Ψ0Ψ0 + a0b1Ψ0Ψ1

+ a1b0Ψ1Ψ0 + a1b1Ψ1Ψ1

+ a2b0Ψ2Ψ0 + a2b1Ψ2Ψ1.

(3.16)

Observe that Equation 3.16 is equivalent to Equation 3.10. Projecting c∗ onto the rth

basis function yields,
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〈c∗,Ψr〉 = cr〈Ψr,Ψr〉

=
Na∑
i=0

Nb∑
j=0

aibj〈ΨiΨj,Ψr〉

= (a⊗ b)T ·
∫ ∞
−∞

(~ΨNa ⊗ ~ΨNb)ΨrpN(ξ)dξ (3.17)

= (a⊗ b)T · 〈~ΨNa ⊗ ~ΨNb ,Ψr〉. (3.18)

The last expression (Equation 3.18) is particularly useful when implementing the

Intrusive method in operator form. Note that the term 〈~ΨNa ⊗ ~ΨNb ,Ψr〉 is a column

vector containing the inner product of user-defined PC combinations as its elements

defined by equating Equations 3.18 and 3.17. This vector can be easily computed

once the number of user-defined input, internal and output modes are known prior to

beginning the iteration process. The notation in Equation 3.18 for the inner product

is simplified by introducing

〈~ΨNa,Nb,r〉 ≡ 〈~ΨNa ⊗ ~ΨNb ,Ψr〉.

In the next section, the deterministic full flux vector, the standard PC formulation

of this numerical flux, and the compact formulation are presented using this notation

〈~ΨNa,Nb,r〉 from this point forward.

3.2.3 Compact Notation

In order to demonstrate the compact PC formulation for the Euler equations, the full

flux vector is first written in deterministic form, standard PC form, and compact PC

form. The full flux Jacobian matrix is presented in deterministic form, standard PC

form, and compact PC form in Appendix B. Appendix C presents the Van Leer split

flux vector and Jacobian matrix in all three forms.
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PC Full Flux

CFD models use a variety of functions for representing the numerical flux, F . One

of the most common is the full flux vector in local coordinates. Its components are

given by:

F =




ρu

ρuu+ nxp

ρuv + nyp

ρuho



4s (3.19)

where

u = nxu+ nyv. (3.20)

Substituting the PC expansions (Equation 2.13) into the vector F (Equation 3.19),

and projecting onto the rth basis function yields the PC expansion components for

the full flux vector written in the standard form,

F1,r =

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

ρkuij〈ΨiΨjΨk,Ψr〉

F2,r =

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

Nq∑

l=0

ρkuijul〈ΨiΨjΨkΨl,Ψr〉+

Ng1∑
i=0

Nq∑
j=0

pj(nx4s)i〈ΨiΨjΨr〉

F3,r =

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

Nq∑

l=0

ρkuijvl〈ΨiΨjΨkΨl,Ψr〉+

Ng1∑
i=0

Nq∑
j=0

pj(ny4s)i〈ΨiΨjΨr〉

F4,r =
γ

γ − 1

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

uijpk〈ΨiΨjΨk,Ψr〉

+
1

2

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

Nq∑

l=0

Nq∑
m=0

ρkuijq
2
lm〈ΨiΨjΨkΨlΨm,Ψr〉

(3.21)

with

q2
lm = ulum + vlvm
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uij = (nx4s)iuj + (ny4s)ivj.

Note that 4s has been folded into the definition of ū for convenience. Utilizing the

compact notation described in the previous section, the stochastic flux vector given

by Equation 3.21 can be written in the compact form:

F1,r = [ρ ⊗ ũ]T · 〈~ΨNq ,Ng1,Nq ,r〉
F2,r = [(ρ ⊗ ũ) ⊗ u]T · 〈~ΨNq ,Ng1,Nq ,Nq ,r〉+ (nx4s ⊗ p) · 〈~ΨNg1,Nq ,r〉
F3,r = [(ρ ⊗ ũ) ⊗ v]T · 〈~ΨNq ,Ng1,Nq ,Nq ,r〉+ (ny4s ⊗ p) · 〈~ΨNg1,Nq ,r〉
F4,r =

γ

γ − 1
[p ⊗ ũ]T · 〈~ΨNq ,Ng1,Nq ,r〉+

1

2
[(ρ ⊗ ũ) ⊗ q2

m]T · 〈~ΨNq ,Ng1,Nq ,Nq ,Nq ,r〉
(3.22)

where

ũ = (nx4s)⊗ u+ (ny4s)⊗ v,

q2
m = u⊗ u+ v ⊗ v,

Nint, user-define internal modes,

Ng1, user-define input geometric modes,

Nq =
(n+ p)!

n!p!
− 1,

r = 0, 1, · · · , Nq.

Note the similarity between the deterministic full flux vector, Equation 3.19, and

the stochastic full flux vector, Equation 3.22. Note the multiplication in Equation 3.19

is replaced by the operation ⊗ in Equation 3.22, and scalar inputs become vector

arrays. With a little practice, it becomes easy to directly write the compact PC form

of the governing equations including the proper definition of the weights (i.e., the

inner product vector). Equation 3.22 is written in a much more visually appealing
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form by using the operator, ⊕, defined in Appendix A.1. The PC compact full flux

vector given in Equation 3.22 can be written in operator form, ⊕, as




{ρ⊗ ˜̄u , 0}
{(ρ⊗ ˜̄u)⊗ u , nx∆s⊗ p}
{(ρ⊗ ˜̄u)⊗ v , ny∆s⊗ p}
{ γ
γ−1

(p⊗ ˜̄u) , 1
2
(ρ⊗ ˜̄u)⊗ q2

m}



⊕




{〈ΨNq ,Ng1,Nq ,r〉 , 0}
{〈ΨNq ,Ng1,Nq ,Nq ,r〉 , 〈ΨNg1,Nq ,r〉}
{〈ΨNq ,Ng1,Nq ,Nq ,r〉 , 〈ΨNg1,Nq ,r〉}

{〈ΨNq ,Ng1,Nq ,r〉 , 〈ΨNq ,Ng1,Nq ,Nq ,Nq ,r〉}




(3.23)

where

ũ = (nx4s)⊗ u+ (ny4s)⊗ v

q2
m = u⊗ u+ v ⊗ v.

Conversion to Primitive Variables

In the 2-D Euler formulation, the PC expansions of the primitive vector, q = q(Q)

yields,

q∗ ≡
Nq∑
i=0

qi(x, y)Ψi(ξ) =

Nq∑
i=0




ρi(x, y)Ψi(ξ)

ui(x, y)Ψi(ξ)

vi(x, y)Ψi(ξ)

pi(x, y)Ψi(ξ)



. (3.24)

Note that Equation 3.3 is used to compute the rth component of the conservative

vector, 4Qr, and the rth component of the primitive vector, qr, is used to update the

rth component of the conservative variable, Qr. In order to implement this approach,

4Qr is first converted to4qr, and then the update step is perform by qr = qr+4qr.
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This is achieved by the following relation,

4ρr = 4ρr
4ur〈Ψ2

r〉 = ρ−1 ⊗4ρu · 〈ΨNint,Nq ,r〉 − ρ−1 ⊗ u⊗4ρ · 〈ΨNint,Nq ,Nq ,r〉
4vr〈Ψ2

r〉 = ρ−1 ⊗4ρv · 〈ΨNint,Nq ,r〉 − ρ−1 ⊗ v ⊗4ρ · 〈ΨNint,Nq ,Nq ,r〉
4pr〈Ψ2

r〉 =
γ − 1

2
q2
m ⊗4ρ · 〈ΨNq ,Nq ,Nq ,r〉

−(γ − 1)u⊗4ρu · 〈ΨNq ,Nq ,r〉
−(γ − 1)v ⊗4ρv · 〈ΨNq ,Nq ,r〉
+(γ − 1)4ρe0〈Ψ2

r〉.

3.2.4 Implicit PC Formulation

One of the main mathematical contributions to the present work by the author is the

derivation of the stochastic Jacobian matrices necessary for implicit time integration.

In order to derive the Euler Implicit formulation, the face fluxes in Equation 3.2 are

treated as unknowns at a future time step, n+ 1, which yields,

V
4Q

4t + Rn+1 = 0, (3.25)

where,

Rn+1 ≡



Nf∑
i=1

Fi



n+1

.

A Newton linearization of Rn+1 at Rn yields,

Rn+1 = Rn +

(
∂R

∂q

)n
4q.

Substituting this result into Equation 3.25 yields,

V
(4Q)n

4t +

(
∂R

∂q

)n
4q = −Rn. (3.26)
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Using the fact that the conservative variable Q is a function of the primitive variable

q or Q = Q(q) yields,

4Qn =
∂Q

∂q
4qn

= Mn4qn, (3.27)

where,

Mn =




1 0 0 0

u ρ 0 0

v 0 ρ 0

q2/2 ρu ρv 1
γ−1



.

Substituting Equation 3.27 into Equation 3.26, a system of linear equations is ob-

tained, [
V

4tM
n +

(
∂R

∂q

)n]
4qn = −Rn, (3.28)

where 4qn is the unknown and the update step is perform by qn+1 = qn +4qn.

In order to obtain the PC equations from the deterministic implicit formulation

given by Equation 3.28, one simply projects Equation 3.28 onto the rth basis function

for all r. This yields a system of stochastic linear equations,

[
V

4t
〈
M4q,Ψ2

r

〉
+
∂Rr

∂qr
4qr

〈
Ψ2
r

〉]n
= (−Rr)

n
〈
Ψ2
r

〉
. (3.29)

Furthermore, in the limit as ∆t→∞ in Equation 3.29, Newton’s method is obtained

as, [
∂Rr

∂qr
4qr

〈
Ψ2
r

〉]n
= (−Rr)

n
〈
Ψ2
r

〉
, (3.30)

where n denotes the time step, the update is given by qn+1
r = qnr +4qr

n and

qr =




q1,r

q2,r

q3,r

q4,r



, Rr =




R1,r

R2,r

R3,r

R4,r



.
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Moreover, the term
(
∂Rr

∂qr

)
in Equation 3.30 which is an Nq ×Nq (see Equation 3.24)

block matrix is given by,



∂R0

∂q0

∂R0

∂q1
· · · ∂R0

∂qNq

∂R1

∂q0

∂R1

∂q1
· · · ∂R1

∂qNq
...

...
. . .

...
∂RNq

∂q0

∂RNq

∂q1
· · · ∂RNq

∂qNq




, (3.31)

where each element is itself a 4× 4 sub matrix.

For the element
(
∂R0

∂q0

)
we have,




∂R1,0

∂q1,0

∂R1,0

∂q2,0

∂R1,0

∂q3,0

∂R1,0

∂q4,0

∂R2,0

∂q1,0

∂R2,0

∂q2,0

∂R2,0

∂q3,0

∂R2,0

∂q4,0

∂R3,0

∂q1,0

∂R3,0

∂q2,0

∂R3,0

∂q3,0

∂R3,0

∂q4,0

∂R4,0

∂q1,0

∂R4,0

∂q2,0

∂R4,0

∂q3,0

∂R4,0

∂q4,0




. (3.32)

The residual contains linear combinations of the numerical flux vectors. Hence,

the linearization of the residual contains the Jacobian matrices of the fluxes. For

example, for the Van Leer split flux scheme, the Jacobian matrix for the r = 0 mode

contains the following elements,



∂F±1,0
∂ρ0

∂F±1,0
∂u0

∂F±1,0
∂v0

∂F±1,0
∂p0

∂F±2,0
∂ρ0

∂F±2,0
∂u0

∂F±2,0
∂v0

∂F±2,0
∂p0

∂F±3,0
∂ρ0

∂F±3,0
∂u0

∂F±3,0
∂v0

∂F±3,0
∂p0

∂F±4,0
∂ρ0

∂F±4,0
∂v0

∂F±4,0
∂v0

∂F±4,0
∂p0




. (3.33)
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Note, that once the element of Equation (3.31) is computed (i.e., ∂R0

∂q0
), the other

elements can be computed in a similar fashion.

3.3 The Application of the PC Euler Equations

The problems presented here are an inviscid, steady, two-dimensional supersonic flow

of a calorically perfect gas over a wedge and an expansion corner. In these applica-

tions, the focus is on the Hermite PC, and its use in propagating uncertainty in the

two-dimensional Euler equations. The uncertainty considered herein arises due to un-

certainty in a surface definition. The geometric uncertainty was introduced through

an angle θ described by a Gaussian PDF. The mean Wedge and Expansion angle is

10◦, and the coefficient of variation is 10% (i.e., θ(ξ) = θ+σξ, where θ = 10o, σ = 1,

ξ = Normal(0, 1)). In order to represent geometric uncertainty, the PC expansions

are substituted into the geometric variables nx4s and ny4s which yields,

(
nx4s
ny4s

)∗
=

Ng∑
i=0

(
(nx4s)iΨi(ξ)

(ny4s)iΨi(ξ)

)
(3.34)

where i = 0, 1, . . . Ng modes. Typical coarse grids used for these applications are

shown in Figure 3.1. The inflow conditions were prescribed by setting the Mach-

number, M∞ = 3, and specifying a zero angle-of-attack(AoA). The top and outflow

surfaces were extrapolated to first-order, and a tangency boundary condition was

prescribed along the bottom surface. These boundary conditions are the same for

both the wedge and expansion grids. Note the PC Van Leer split fluxes have been

formulated and implemented in the 2-D Euler equations. Since the simulations shown

here involve supersonic flow, both the PC Full Flux and the PC Van Leer split fluxes

are used.
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Figure 3.1: 11× 21 Compression and Expansion Grids

3.3.1 Implicit PC Boundary Conditions

In order to close the equation set, the appropriate boundary conditions need to be

applied. A tangency boundary condition has been implemented on the bottom surface

that was defined in terms of values of q at the first cell-center above the surface. Note

the bottom surface is denoted by subscript 1, and the cell-center above by subscript

2. Although many possible choices exist for a tangency boundary condition, the

following simple set is imposed,

ρ1 = ρ2,

p1 = p2,

~V · n̂ = ū1 = 0,

h01 = h02 .
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The compact PC version of this boundary condition projected onto the rth basis

function is

(ρr)1 = (ρr)2,

(pr)1 = (pr)2,

(ur)1〈Ψ2
r〉 = (ny ⊗ v̄1) · 〈ΨNg2,Nint,r〉,

(vr)1〈Ψ2
r〉 = −(nx ⊗ v̄1) · 〈ΨNg2,Nint,r〉,

where v̄1 = (u⊗ u+ v ⊗ v)
1/2
2 . Note that Ng2 is the user-define boundary conditions

geometric modes, and r = 0, 1, · · · , Nq. The PC version of this boundary condition

is extended to an implicit PC formulation which yields,

∆ρr1 ·
−→
δ Nq ,l = ∆ρr2 ·

−→
δ Nq ,l,

∆pr1 ·
−→
δ r,l = ∆pr2 ·

−→
δ r,l,

∆ur1〈Ψ2
r〉 =

[
ny1 ⊗

(
∂−→q
∂u

∆u+
∂−→q
∂v

∆v

)

2

]
· 〈−→ΨNg2,Nint,r〉,

∆vr1〈Ψ2
r〉 = −

[
nx1 ⊗

(
∂−→q
∂u

∆u+
∂−→q
∂v

∆v

)

2

]
· 〈−→ΨNg2,Nint,r〉, (3.35)

where q2 = [u⊗ u+ v ⊗ v] and l = 0, 1, · · · , Nq. Computing the terms (d
−→q
du

) and

(d
−→q
dv

) in Equation 3.35 involves solving a linear problem of the form

[q∗] =
{

(q2)∗
}1/2

,




Ψ0(ξ0) Ψ1(ξ0) · · · ΨNint(ξ0)

Ψ0(ξ1) Ψ1(ξ1) · · · ΨNint(ξ1)
...

...
. . .

...

Ψ0(ξNint) Ψ1(ξNint) · · · ΨNint(ξNint)







q0

q1

...

qNint




=




r0

r1

...

rNint



, (3.36)

Ψ−→q = −→r ,
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where,




r0

r1

...

rNint




=




(
q2

0Ψ0(ξ0) + q2
1Ψ1(ξ0) + · · ·+ q2

Nq
ΨNq(ξ0)

)1/2

(
q2

0Ψ0(ξ1) + q2
1Ψ1(ξ1) + · · ·+ q2

Nq
ΨNq(ξ1)

)1/2

...(
q2

0Ψ0(ξNint) + q2
1Ψ1(ξNint) + · · ·+ q2

Nq
ΨNq(ξNint)

)1/2




.

The modes of −→q can be easily found by solving the linear system of equation given

by Equation (3.36) for −→q which yields,

−→q = Ψ−1−→r . (3.37)

Differentiating Equation (3.37) with respect to u and v, one obtains,

∂−→q
∂u

= Ψ−1∂
−→r
∂u

,

∂−→q
∂v

= Ψ−1∂
−→r
∂v

.

3.3.2 Deterministic Oblique Shock Wave Results

Results have been obtained from the implicit time integration scheme applied to the

stochastic Euler Equations. The stochastic 2D Euler code space marching option

was ran deterministically to steady state by setting the input and output modes to

one. The convergence history of the deterministic solution is shown in Figure 3.2.

Note that for each i-dim grid points(i.e., grid points normal to the free-stream along

the grid), the residual converges quadratically. This was an expected result for a

deterministic run that uses Newton’s method.
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Figure 3.2: Residual of the deterministic solution on the [11× 21] Wedge Grid

3.3.3 Stochastic Oblique Shock Wave Results

Geometric uncertainty was introduced through the wedge angle θ.The mean angle

was specified to 10◦, and the coefficient of variation was 10% (i.e., θ(ξ) = θ + σξ,

where θ = 10o, σ = 1, ξ = Normal(0, 1)). For the MC results, 10,000 samples were

drawn from a Gaussian PDF. For each of these samples, the deterministic Euler code

was executed, and the results were stored. The spectral results shown here are from

a first-order PC simulation. The convergence history of the first-order PC is shown

in Figure 3.3. Convergence was measured in terms of the L2 norm of the individual

modes and the L2 norm over all modes. Note that quadratic convergence was obtained

for each i-dim grid points for all modes and individual modes as shown in Figure 3.3.

Figure 3.4 shows contours of the mean and standard deviation of density from the

PC and MC results. Comparisons of first-order PC results show good agreement

with the MC simulations. Furthermore, the implicit PC scheme required roughly two

orders-of-magnitude less CPU time than the MC method to achieve its result.
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Figure 3.3: First-order PC Residuals on the [11× 21] Wedge Grid

3.3.4 Deterministic Expansion Wave Results

The flow over an Expansion corner was also ran deterministically to steady state by

setting the input and output modes to one in the stochastic PC Euler code. For

this case, the implicit time marching option is used. The convergence history of the

deterministic solution is shown in Figures 3.5. Note that quadratic convergence was

obtained globally for the time marching scheme. This was an expected result for a

deterministic run that uses Newton’s method.

3.3.5 Stochastic Expansion Wave Results

Geometric uncertainty was introduced through the expansion angle θ. The mean angle

was specified to 10◦, and the coefficient of variation was 10% (i.e., θ(ξ) = θ + σξ,

where θ = 10o, σ = 1, ξ = Normal(0, 1)). For the MC results, 10, 000 samples

were drawn from a Gaussian PDF. For each of these samples, the deterministic Euler
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Figure 3.4: Mean Density and Standard Deviation contours from the first-order PC
simulations and 10, 000 MC on the [11× 21] Wedge Grid
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Figure 3.5: Residual of the deterministic solution on the [11× 21] Expansion Grid

code was executed, and the results were stored. The spectral results shown here are

from the first-order PC simulations. The convergence history of the first-order PC

is shown in Figure 3.6. Convergence was measured in terms of the L2 norm of the

individual modes and the L2 norm over all modes. Note that quadratic convergence

was obtained globally. This was an expected result for the stochastic code. Figure 3.7

shows contours of the mean and standard deviation of density from the first-order

PC and MC results. Comparisons of the first-order PC results show good agreement

with the MC simulations. Furthermore, the implicit PC scheme required roughly two

orders-of-magnitude less CPU time than the MC method to achieve its result.
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Figure 3.6: First-Order PC Residuals on the [11× 21] Expansion Grid

3.3.6 Cosine Shaped Airfoil

The problem presented here is an inviscid, steady, two-dimensional supersonic flow of

a calorically perfect gas over a cosine shaped airfoil. In this application, the focus is on

the Hermite PC, and its use in propagating uncertainty in the two-dimensional Euler

equations. The uncertainty considered herein arises due to uncertainty in surface

definition. The geometric uncertainty was introduced through the thickness to chord

ratio (t/c) described by a Gaussian PDF. The mean ratio t/c was 10% and the

coefficient of variation was 1% (i.e., t/c(ξ) = t/c + σ ξ, where t/c = 0.1, σ = 0.001,

ξ = Normal(0, 1)). The PC geometric variables (nx4s)∗ and (ny4s)∗, given by

Equation 3.34, is used to represent geometric uncertainty. The grid used in this case

is shown in Figure 3.8. The inflow conditions were prescribed by setting the Mach-

number, M∞ = 3, at zero AoA. The top and outflow surfaces were extrapolated to

first-order. A symmetry boundary condition was prescribed along the surface of the

airfoil. Note the PC implicit boundary condition, formulated in section 3.3.1, is also
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Figure 3.7: Mean Density and Standard Deviation contours from the first-order PC
simulations and 10, 000 MC on the [11× 21] Expansion Grid
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Figure 3.8: The Cosine Shaped Airfoil [65× 65] Grid

implemented in this application. Since the simulations shown here involves supersonic

flow, both the PC Full Flux and the PC Van Leer split fluxes are used.

3.3.7 Deterministic Results

The stochastic 2D Euler code implicit space marching option was ran deterministi-

cally by setting the input and output modes to one. The convergence history of the

deterministic solution is shown in Figure 3.9. Note that for each i-dim grid points

along the grid, the residual converges quadratically.

3.3.8 Stochastic Results

Geometric uncertainty was introduced through t/c. The mean ratio t/c was specified

to be 10%, and the coefficient of variation was 1%. The spectral results shown here

are from the first-order PC simulations. Figure 3.10 shows contours of the mean

and standard deviation of pressure from the first-order PC results. The convergence
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Figure 3.9: The Deterministic Residual on the Cosine Shaped Airfoil [65× 65] Grid
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Figure 3.10: The First-Order PC Simulations on the Cosine Shaped Airfoil [65× 65]
Grid

history of the first-order PC simulations is shown in Figure 3.11. Convergence was

measured in terms of the L2-norm of the individual modes, and the L2-norm over

all modes. Note that quadratic convergence was obtained for each i-dim grid points

for all modes and individual modes. Figure 3.12 illustrates the pressure coefficient

along with the 95% confidence interval(CI) from the first-order PC results and exact

solution obtained from compressible flow theory. Note the exact pressure coefficient

is not in close agreement with the mean pressure coefficient. This discrepancy is due

to lack of grid points near the leading edge.
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Figure 3.11: The First-Order PC Residuals on the Cosine Shaped Airfoil [65 × 65]
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[65× 65] Grid



Chapter 4

Non-Intrusive Approach:

Development and Implementation

4.1 Introduction

In chapter 3, the Intrusive approach was applied directly to the Euler Equations, and

it required modifications in the solver algorithm. In this approach, all dependent

variables and random parameters in the Euler equations were replaced with the PC

expansions. The resulting equations were then projected onto the kth basis by using

the definition of the inner product given by Equation 2.15. These projected equations

resulted in P + 1 (see Equation 2.13) additional deterministic equations, which were

solved by the same conventional numerical technique applied to the original deter-

ministic system. Although straightforward in theory, it was relatively difficult, and

time consuming to implement. Hence, it is easily seen that formulating a stochastic

CFD code (using the Intrusive approach) capable of handling 3-D, viscous, turbulent

flow, around realistic aerospace vehicles would require an enormous modification of an

existing CFD deterministic code. However, in the so called Non-Intrusive approach,
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no modification to a deterministic code is required. In this new approach, the de-

terministic code is called as a black box, and uncertainty is modeled and propagated

solely by the PC expansions. In fact, the motivation in developing Non-Intrusive

PC(NIPC) methods stems from the need to approximate the PC coefficients of the

CFD solution without making any modification to the deterministic code.

4.2 Development and Implementation

The NIPC approach was used by Walters [82] to approximate the PC coefficients

of the metric terms of a stochastic heat transfer problem with input geometric un-

certainty. These input metric PC coefficients were required as an input to the In-

trusive PC method. Moreover, Walters [83] used the same approach to determine

optimum lift-to-drag ratio for a cosine-shaped airfoil as function of AoA. Similarly,

Isukapalli [47] developed a Non-Intrusive method known as the Stochastic Response

Surface Method(SRSM) for uncertainty propagation. In the NIPC approach, only

the solution, α∗(x, y, z, t; ~ξ), is expanded using the appropriate PC basis functions.

In this chapter, the focus is on the development and implementation of three NIPC

methods based on (1) the Galerkin method, (2) the Collocation method, and (3) the

Collocation method coupled with sensitivity analysis. These methods are discussed

below.

4.2.1 The Galerkin method

In this method, the solution α∗(x, y, z, t; ~ξ) is projected onto the kth basis by using the

definition of the inner product(see Equation 2.15) and the property of orthogonality

given by,

αk(x, y, z, t) =

〈
α∗(x, y, z, t; ~ξ),Ψk(~ξ)

〉
〈

Ψ2
k(
~ξ)
〉 . (4.1)



54

In Equation 4.1, the denominator of the PC coefficients is independent of the response

α∗, and can therefore be pre-computed. The integral of the inner product in the

numerator can be estimated using Gauss quadrature by,

αk(x, y, z, t) ≈
m∑

m1=1

· · ·
m∑

mn=1

α∗(x, y, z, t;xm1 , · · · , xmn)
Ψk(xm1 , · · · , xmn)

〈Ψ2
k〉

n∏
i=1

wmi ,

(4.2)

where (xmi , wmi) are the integration points and weights along each stochastic direc-

tion, and m is the total number of integration points used in a single dimension. The

quadrature in Equation 4.2 is exact when the integrand is a polynomial of degree of

(2m − 1) or less. Thus, the PC coefficients can be exactly estimated if the solution

is expanded by a PC of degree less than or equal to (2m − 1)/2. Note the solution

α∗(x, y, z, t; ~ξ) assumes the functional form of the PC expansions. However, the degree

of departure of the PC expansions depends on the accuracy of the PC coefficients.

Although Gauss quadrature is a very efficient method for numerical integration, for

practical purposes, it is limited to cases with a few number of random variables. For

example, a problem with n number of random variables, the total number of deter-

ministic solutions Nd required for an exact estimation is Nd ≥ (2p − 1)n, where p is

the order of the chaos.

4.2.2 The Collocation Method

The first step in the formulation of this method is to write down the PC expansions

of the solution given by,

α∗(x, y, z, t; ~ξ) =
P∑
i=0

αi(x, y, z, t)Ψ(~ξ)

where P = (n+p)!
n!p!
− 1, n is the number of random variables, and p the order of the

chaos. The second step is to select P+1 collocation points of the random variables and

evaluate the code for each of these sample values. The deterministic modal response
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αi(x, y, z, t) is then solved using the computed sample solutions α∗(x, y, z, t; ~ξi) for

each of the pre-selected collocation points ~ξi by,




Ψ0(~ξ0) Ψ1(~ξ0) · · · ΨP (~ξ0)

Ψ0(~ξ1) Ψ1(~ξ1) · · · ΨP (~ξ1)
...

...
. . .

...

Ψ0(~ξP ) Ψ1(~ξP ) · · · ΨP (~ξP )







α0(x, y, z, t)

α1(x, y, z, t)
...

αP (x, y, z, t)




=




α∗(x, y, z, t; ~ξ0)

α∗(x, y, z, t; ~ξ1)
...

α∗(x, y, z, t; ~ξP )




(4.3)

αi = [ΨP ]−1 α∗(~ξi). (4.4)

The collocation points are selected based on the Orthogonal Collocation Method(OCM)

suggested by Villadsen and Michelsen [79]. The orthogonal collocation points corre-

spond to the roots of the polynomial of one degree higher than the order of the PC

expansion. For the special case of one-dimensional random variable problem, OCM

gives the same result as the Galerkin method [79], and is regarded as the optimal

selection. For multi-dimensional random variable problems, the collocation points

are selected such that the overall distribution is symmetric with respect to the origin,

and takes on values of zero or one of the roots of the higher order polynomial. Al-

though this method is not unique for the solution of PC coefficients of multi-random

variables, the behavior of the PC coefficients is captured reasonably well in regions

of high probability. For example, the exclusion of the origin as a collocation point

could potentially lead to a poor estimation when the origin corresponds to the region

of highest probability. Furthermore, singularities can be avoided in Equation 4.3, as

the collocation points are selected at the roots of the higher order polynomials.
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4.2.3 The Collocation Method coupled with Sensitivity Anal-

ysis

The first step in the formulation of this method is to write down the PC expansions

of the solution given by,

α∗(x, y, z, t; ~ξ) =
P∑
i=0

αi(x, y, z, t)Ψ(~ξ). (4.5)

The second step is to differentiate Equation 4.5 with respect to Zi(ξi) using the chain

rule which yields,

{
∂α∗(x, y, z, t; ~ξ)

∂Zi(ξi)

}{
∂Zi(ξi)

∂ξi

}
=

P∑
i=0

αi(x, y, z, t)
∂Ψi(~ξ)

∂ξi
, (4.6)

where Zi(ξi) are input random variables to a CFD model. Consider two input random

variables to a CFD model given by,

Z1(ξ1) = µ1 + σ1ξ1

Z2(ξ2) = µ2 + σ2ξ2

where ξ1 and ξ2 are two independent identically distributed normal random variables.

The terms ∂Zi(ξi)
∂ξi

are then easily computed as,

∂Z1(ξ1)

∂ξ1

= σ1

∂Z2(ξ2)

∂ξ2

= σ2.

The third step is to select collocation points of the random variables and eval-

uate the code for each of these sample values. The deterministic modal response

αi(x, y, z, t) is then solved using the computed sample solutions α∗(x, y, z, t; ~ξj) and



57

∂α∗(x,y,z,t;~ξ)
∂Zi(ξi)

for each of the pre-selected collocation points by,




Ψ0(~ξ0) Ψ1(~ξ0) · · · ΨP (~ξ0)
∂Ψ0(~ξ0)
∂ξ1

∂Ψ1(~ξ0)
∂ξ1

· · · ∂ΨP (~ξ0)
∂ξ1

...
...

. . .
...

∂Ψ0(~ξ0)
∂ξn

∂Ψ1(~ξ0)
∂ξn

· · · ∂ΨP (~ξ0)
∂ξn

Ψ0(~ξ1) Ψ1(~ξ1) · · · ΨP (~ξ1)
∂Ψ0(~ξ1)
∂ξ1

∂Ψ1(~ξ1)
∂ξ1

· · · ∂ΨP (~ξ1)
∂ξ1

...
...

. . .
...

∂Ψ0(~ξ1)
∂ξn

∂Ψ1(~ξ1)
∂ξn

· · · ∂ΨP (~ξ1)
∂ξn

...
...

. . .
...

...
...

. . .
...

Ψ0(~ξN) Ψ1(~ξN) · · · ΨP (~ξN)
∂Ψ0(~ξN )
∂ξ1

∂Ψ1(~ξN )
∂ξ1

· · · ∂ΨP (~ξN )
∂ξ1

...
...

. . .
...

∂Ψ0(~ξN )
∂ξn

∂Ψ1(~ξN )
∂ξn

· · · ∂ΨP (~ξN )
∂ξn







α0

α1

α2

...

...

...

...

...

...

...

...

...

...

αP




=




α∗(~ξ0)
∂α∗(~ξ0)
∂Z1

∂Z1

∂ξ1
...

∂α∗(~ξ0)
∂Zn

∂Zn
∂ξn

α∗(~ξ1)
∂α∗(~ξ1)
∂Z1

∂Z1

∂ξ1
...

∂α∗(~ξ1)
∂Zn

∂Zn
∂ξn

...

...

α∗(~ξN)
∂α∗(~ξN )
∂Z1

∂Z1

∂ξ1
...

∂α∗(~ξN )
∂Zn

∂Zn
∂ξn




(4.7)

αi(x, y, z, t) =
[
ΨP (~ξ)

]−1

α∗(x, y, z, t; ~ξ)

where N = P+1
n+1

. Note that P+1
n+1

is chosen such that N is always an integer value.

Furthermore,
[
ΨP (~ξ)

]
is a squared matrix when the number of deterministic solution

Nd is equal to N . This method reduces the deterministic black-box evaluations by

a factor of (n + 1). In addition, the collocation points are selected based on the

OCM method described in Section 4.2.2. Note the stochastic linear system given by

Equations 4.7 is inherently unstable due to the presence of sensitivity derivatives.

When Nd > N , regression analysis is applied to Equation 4.7 because it provides a

robust means of estimating the PC coefficients. This is because the influence of each

collocation point is moderated by all other collocation points.
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4.3 The Application of NIPC methods to a Super-

sonic Wedge and Expansion Corner

To test the performance of the NIPC methods, the two classical fluid dynamic prob-

lems presented in Chapter 3 are repeated. The problems presented here are an invis-

cid, steady, two-dimensional supersonic flow of a calorically perfect gas over a wedge

and an expansion corner. The uncertainty considered herein arises due to uncer-

tainty in free-stream AoA. The free-stream AoA uncertainty was introduced through

an angle, α, described by a Gaussian PDF.

In these two test cases, the focus is on the Hermite PC, and its use in propa-

gating uncertainty using the Collocation Method coupled with sensitivity derivatives

denoted as the gradient-based NIPC(GBNIPC) method. The term ∂α∗(x,y,z,t;~ξ)
∂zi

(e.g.,

see Equation 4.7) used in the GBNIPC method is computed by the complex FUN3D

flow solver at NASA Langley Research Center. The complex FUN3D code is a tetra-

hedral node-centered upwind solver which has the capability of computing flow field

variables sensitivity derivatives in the computational domain by using the Complex

Variable formulation described in Section 2.2.1. Note the output sensitivity deriva-

tives of the flow field variables are second order accurate.

In these two test cases, the GBNIPC method is compared to the statistics ob-

tained with MC simulations described in Walters[46]. These MC simulations enable

an assessment of the accuracy of the GBNIPC method for the selected problems.

Note that performing a large number of MC simulations would be beyond the reach

of current computational power, even with high performance computers, for many

realistic aerodynamic problems that required the solution of complex flow fields.
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Figure 4.1: An unstructured grid with 3265 nodes. The wedge angle is 10o. The
Wedge L.E. is 0.05 units

4.3.1 Stochastic Oblique Shock Wave Results

Uncertainty was introduced through the free-stream AoA by,

AoA(ξ) = AoA+ ξ

where the mean AoA is 0o, and ξ is a normally distributed random variable(ξ =

N [0, 1]). The effect of free-stream uncertainty AoA is modeled and propagated using

the GBNIPC and the MC methods. The deterministic complex FUN3D code is

called as a black box by the GBNIPC and MC methods.

The deterministic problem was solved numerically using the complex FUN3D

code. The computations were performed for an inviscid, compressible flow on a

unstructured wedge grid shown in Figure 4.1. Note the inviscid fluxes on the node

cell-faces were calculated using Roe flux difference splitting. The boundary conditions

for this problem were set as follows: all flow variables were kept fixed at their free-

stream values at the inflow boundary. The free-stream Mach number was chosen
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as M∞ = 3.0. For the far-field (top) and outflow surfaces, all flow variables were

determined by a first-order extrapolation from the interior cells. An inviscid boundary

condition was prescribed along the bottom surface.

In the MC method, 103 simulations were generated using 103 samples from the

AoA(ξ) PDF. For this case, it takes approximately 8.8 hours(i.e., 32 seconds per MC

run to drive the residual to machine zero) to compute 1, 000 MC solutions, and was

sufficient enough to capture the statistics of the output distribution. In the GBNIPC

method, a 5th-order PC expansion was chosen to model the uncertainty in the free-

stream AoA. The input random variable, AoA(ξ), was sampled from a normal PDF

at points {−3.32,−1.88,−0.616, 0.616, 1.88, 3.32}. These sample points corresponds

to the roots of a 6th-order Hermite polynomial. Recall that for the GBNIPC method,

the number of sample points are reduced by a factor of (n + 1) or 2 for this case.

Thus, the collocation points ξCP = {−0.616, 0, 0.616} were selected, and deterministic

solutions were obtained at these points. Note the selected collocation points includes

zero although the roots of a 6th-order Hermite polynomial does not contain this root.

This is because the OCM method requires the selection of the zero collocation point

as described in Section 4.2.2.

Contours of the mean and standard deviation of pressure (P/Pref) obtained

via the GBNIPC and MC methods are illustrated in Figure 4.2. Both methods are

in excellent agreement. This observation confirms the convergence of the GBNIPC

method for a 5th-order PC expansion. To quantify the convergence of the mean and

standard deviation of the GBNIPC method, one point was chosen at the exit plane on

the wall (x = 1.0, z = 0.296394) downstream of the shock depicted in Figure 4.2. At

this point, the GBNIPC and the MC estimation of the mean and standard deviation

and their associated confidence intervals are presented in Table 4.1. As shown, the

GBNIPC estimation of the mean and standard deviation fall within the 95% CI.

Although not shown here, a first-order was sufficient to estimate the statistics at the



61

(a) 5th order PC

x

y

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

2.096
2.059
2.021
1.983
1.945
1.907
1.870
1.832
1.794
1.756
1.718
1.681
1.643
1.605
1.567
1.529
1.491
1.454
1.416
1.378
1.340
1.302
1.265
1.227
1.189
1.151
1.113
1.076
1.038
1.000

(c) 5th order PC

x

y

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.142
0.137
0.132
0.127
0.122
0.117
0.112
0.107
0.103
0.098
0.093
0.088
0.083
0.078
0.073
0.068
0.064
0.059
0.054
0.049
0.044
0.039
0.034
0.029
0.024
0.020
0.015
0.010
0.005
0.000

(b) 1000 MC

x

y

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

2.096
2.059
2.021
1.983
1.945
1.907
1.870
1.832
1.794
1.756
1.718
1.681
1.643
1.605
1.567
1.529
1.491
1.454
1.416
1.378
1.340
1.302
1.265
1.227
1.189
1.151
1.113
1.076
1.038
1.000

(d) 1000 MC

x

y

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.142
0.137
0.132
0.127
0.122
0.117
0.112
0.107
0.103
0.098
0.093
0.088
0.083
0.078
0.073
0.068
0.064
0.059
0.054
0.049
0.044
0.039
0.034
0.029
0.024
0.020
0.015
0.010
0.005
0.000

Figure 4.2: Comparison of the mean and standard deviation of (P/Pref) between
GBNIPC and MC Methods. (a)Mean P/Pref obtained via GBNIPC method. (b)
Mean P/Pref obtained via MC method. (c) Standard Deviation of (P/Pref) obtained
via GBNIPC method. (d) Standard Deviation of (P/Pref) obtained via MC method.
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Table 4.1: The mean and standard deviation of (P/Pref ) obtained with GBNIPC
and MC methods at location (x = 1.0, z = 0.296394) for the wedge problem. The
95% confidence intervals for the standard deviations(StD) are calculated from the
MC simulations using the Bootstrap method.

GBNIPC(1storder) 1000 MC 95% CI

Mean 2.05249 2.05599 [2.04764, 2.0644]
StD 0.135977 0.135514 [0.12982, 0.14108]

exit point. Note the 95% CI was constructed via the bootstrap method using the

1000 MC simulations. Here, 500 bootstrap samples were run for this case.

4.3.2 Stochastic Expansion Wave Results

As in the stochastic oblique shock problem, uncertainty was introduced through the

free-stream AoA described by,

AoA(ξ) = AoA+ ξ

where the mean AoA is 0o, and ξ is a normally distributed random variable(ξ =

N [0, 1]). The effect of free-stream uncertainty AoA(ξ) is modeled and propagated

using the GBNIPC and the MC methods. The deterministic complex FUN3D code

is called as a black box by the GBNIPC and MC methods.

The deterministic problem was solved numerically using the complex FUN3D

code. The computations were performed for an inviscid, compressible flow on a

unstructured expansion grid shown in Figure 4.3. Note the inviscid fluxes on the node

cell-faces were calculated using Roe flux difference splitting. The same boundary

conditions described for the stochastic oblique shock problem are use in this case

to find the steady-state solutions. The free-stream Mach number was chosen as

M∞ = 3.0.
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Expansion L.E. is 0.05 units

In the MC method, 103 solutions were generated using 103 samples from the

AoA(ξ) PDF. For this case, it takes approximately 9.4 hours(i.e., 34 seconds per

MC run to drive the residual to machine zero) to compute 1, 000 MC solutions, and

was sufficient enough to capture the statistics of the output distribution. In the

GBNIPC method, a 5th-order PC expansion was chosen to model the uncertainty

in the free-stream AoA. The input random variable, AoA(ξ), was sampled from a

Gaussian PDF, and deterministic solutions were obtained at the collocation points

ξCP = {−0.616, 0, 0.616}.
Contours of the mean and standard deviation of pressure (P/Pref) between GB-

NIPC and MC methods are illustrated in Figure 4.4. Both methods are in excellent

agreement. This observation confirms the convergence of the GBNIPC method for a

5th-order PC. Across the expansion wave, all cases show a smooth pressure drop. As

in the oblique shock problem, one location (x = 1.0, z = 0.244897) is chosen in the
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Figure 4.4: Comparison of the mean and standard deviation of (P/Pref) between
GBNIPC and MC Methods. (a)Mean P/Pref obtained via GBNIPC method. (b)
Mean P/Pref obtained via MC method. (c) Standard Deviation of (P/Pref) obtained
via GBNIPC method. (d) Standard Deviation of (P/Pref) obtained via MC method.
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Table 4.2: The mean and standard deviation of (P/Pref ) obtained with GBNIPC
and MC methods at location (x = 1.0, z = 0.244897) for the expansion case. The
95% confidence intervals for the standard deviations(StD) are calculated from the
MC simulations using the Bootstrap method.

GBNIPC(5thorder) 1000 MC 95% CI

Mean 0.742916 0.742865 [0.74054, 0.74529]
StD 0.0344393 0.0342788 [0.03263, 0.03570]

flow field to compare the statistics of the GBNIPC and MC methods quantitatively.

This location is a point on the wall exit downstream of the expansion fan depicted in

Figure 4.4. At this point, the GBNIPC and the MC estimation of the mean and stan-

dard deviation and their associated confidence intervals are presented in Table 4.2.

As shown, the GBNIPC estimation of the mean and standard deviation fall within

the 95% CI. Although not shown here, the GBNIPC estimates do not fall within the

95% CI for an order-chaos lower than 4th-order. This observation is an indication of

the additional errors introduced in the GBNIPC method due to the presence of the

expansion wave. As a consequence, the expansion region required a high order-chaos

to resolve the PC coefficients within the convergence range. Note the 95% CI was

constructed via the bootstrap method using the 1000 MC simulations. Here, 500

bootstrap samples were run for this case.

4.4 The Application of NIPC methods to the Onera-

M6-Wing Case

The benchmark problem of interest is a compressible, transonic, invisicid flow around

the Onera-M6-Wing. The computational domain is bounded by a rectangular box

defined by −6.5 ≤ x ≤ 6.5 m, 0 ≤ y ≤ 4 m, and −6.5 ≤ z ≤ 6.5 m, in aerodynamic
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coordinates relative to a semi-span length of 1 m. A typical surface and symmetry

plane mesh are shown in Figure 4.5.

The uncertainty considered herein arises due to uncertainty in the free-stream

AoA, and the free-stream Mach number. The focus is on the Hermite PC, and its use

in propagating uncertainty using (1) the Gauss-Hermite method, (2) the Collocation

method, and (3) the GBNIPC method described in Sections 4.2.1, 4.2.2, and 4.2.3,

respectively.

The output statistics of the NIPC methods are compare to experimental mea-

surements performed by Schmitt and Charpin [72]. In their technical report, they

conducted measurements of pressure distributions at several span-wise sections and

aerodynamic coefficients of the Onera-M6-Wing for several test conditions. These

measurements were obtained in the Onera S2MA wind tunnel at Mach numbers 0.7,

0.84, 0.88, and 0.92 for angles-of-attack from 0o to 6o degrees and a Reynolds number

of about 12 million. The level of uncertainty of the pressure coefficient measurements

for Mach= 0.84 was reported to be ∆Cp = ±0.02.

4.4.1 Grid Convergence Studies for the Onera-M6-Wing Case

Since the level of uncertainty in numerical simulations is dependent upon grid quality,

it is essential to verify grid convergence. Furthermore, a lack of grid convergence in a

numerical solution contains large discretization errors in the discrete domain of space

and time in the governing flow equations and other physical models. In the CFD

community, grid convergence is achieved when the numerical solution becomes less

sensitive to the grid spacing as the grid is refined.

However, the current practices in grid convergence studies in the field of external

aerodynamics are flawed. This observation is evident in the drag prediction work-

shops(DPWs, [2]). For example, the results of the DPWs participants revealed an
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Figure 4.5: A Typical Onera-M6-Wing mesh

apparent lack of grid convergence, which resulted in larger than desired scatter in to-

tal drag. The necessary condition to properly establish grid convergence for regular-

structured grids was first introduced by Salas [71], and is extended to unstructured

grids in this chapter. This necessary condition requires that the aspect grid ratio,χ,

be constant over subsequent grid level refinement. Mathematically, this is expressed

as

χ =
hy,k
hx,k

=
hz,k
hx,k

, for k = 1, 2, 3, .., (4.8)

where h is the grid size, k is the mesh sequence level, and x, y, z are the directional

coordinates. In the DPWs, the convergence rate, p, is computed for all cases by

p =
ln
(
ε23

ε12

)

ln(r12)
(4.9)
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where,

ε12 = f1 − f2

ε23 = f2 − f3

r12 =

(
N1

N2

)(1/D)

and,

f1, CFD solution at the fine level

f2, CFD solution at the medium level

f3, CFD solution at the coarse level

N1, number of nodes at the fine level

N2, number of nodes at the medium level

D, dimensionality of the problem.

Note that Equation 4.9 is valid for a constant grid aspect ratio. The equation to

find the convergence rate p for a grid aspect ratio that is not constant is given by,

(rp12 − 1) (rp23 − 1) ε12 + (rp23 − 1)ε12 − (rp12 − 1)ε23 = 0 (4.10)

and can be solved for p by implementing Newton’s method. Note that Equation 4.10

reduces to Equation 4.9 for a constant grid aspect ratio(r12 = r23).

4.4.2 Deterministic Onera-M6-Wing Results

The deterministic problem was solved numerically using the complex FUN3D code.

The boundary conditions for this problem were set as follows: all flow variables were

kept fixed at their upstream values at the inflow boundary. The upstream Mach

number and AoA were set to Mach = 0.84 and α = 3.06o. For the far-field (top)

and outflow surfaces, the flow variables were obtained by the 1-d Riemann invariants.

An inviscid boundary condition was prescribed along the surface of the wing. Note
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Table 4.3: Grid Level Size

Level Number
of Nodes

Number
of Cells

Coarse 34,406 198,367
Medium 110,521 647,447
Fine 235,458 1,390,199
Super-Fine 710,958 4,229,826

the inviscid fluxes on the node cell-faces were calculated using Roe flux difference

splitting.

The grids used in the simulations are shown in Table 4.3 and Figure 4.6. These

grids were generated using the tetrahedral mesh generation package V GRID. Note

the grids were sequenced uniformly from coarse to fine using the Element Scaling

Software of NASA LaRC.

Figure 4.7 shows the discretization and iterative errors of the total lift and drag

coefficients. Note the convergence rate for the CD is slow to converge, but nevertheless

the solutions are monotonic and in the asymptotic region. Using Equation 4.10, the

convergence rate is found to be p = 1.7 for the lift coefficient, and p = 0.34 for the

drag coefficient. Note the refinement ratio in Figure 4.7 is define as,

(h/h0)2 = (N0/N)2/3 (4.11)

where N is the number of nodes at a given level, and N0 is the number of nodes to

normalize h. In all deterministic cases, N0 = 235, 458. The deterministic pressure

contours are shown in Figure 4.8.
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4.4.3 Stochastic Onera-M6-Wing Results

The stochastic Onera-M6-Wing problem was formulated by introducing uncertainty

through the AoA and the Mach number(M) given by,

AoA(ξ1) = AoA+ σ1ξ1

M(ξ2) = M + σ2ξ2

where ξ1 and ξ2 are two normally distributed independent random variables(ξ1 =

N [0, 1], ξ2 = N [0, 1]). The mean AoA was 3.06o, and the coefficient of variation was

1% (i.e., σ1 = 0.0306). The mean Mach number M was 0.84, and the coefficient

of variation was 0.5% (i.e., σ2 = 0.0042). In this application, the focus is on the

Hermite PC, and its use in propagating uncertainty using the NIPC methods. The

deterministic complex FUN3D code is called as a black-box by the NIPC methods.

All deterministic runs use the fine grid shown in Figure 4.6, where the CPU time for

each deterministic run is approximately 1.5 hours.

Figures 4.9 and 4.10 illustrate the modes of the pressure coefficient for a 4th-

order PC at sections y/b = 0.2 and y/b = 0.65, respectively. For the Gauss-Hermite

method, seven integration points were used along each stochastic direction, which

required (2p−1)n = 49 deterministic runs for an exact estimation. For the Collocation

method, a 4th-order chaos with two random dimensions required P + 1 = (n+p)!
n!p!

= 15

deterministic runs. For the GBNIPC method, the required number of deterministic

runs was reduced to 2(P+1)
n+1

= 10.

The Collocation and GBNIPC methods slightly over-predict the second and third-

order modes at the shock location compared to the Gauss-Hermite method at sections

y/b = 0.2 and y/b = 0.65. However, the zeroth and first-order modes obtained from

the NIPC methods are in good agreement as shown in Figures 4.9 and 4.10. These

observations are an indication of the additional errors introduced in the GBNIPC and

the Collocation methods at the shock location downstream of the leading edge. Note
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the level of accuracy of the PC coefficients can be increased by running higher order-

chaos for the NIPC methods. However, this is not necessary for this case. This is

because the modes of the pressure coefficients in regions of high probability(i.e., lower-

order-modes) are sufficiently accurate to compute the mean and standard deviation.

Note that these statistical parameters(i.e., the mean and standard deviation) are of

paramount interest to the aerodynamicist.

Figures 4.11 and 4.12 illustrate the mean pressure coefficient in concert with its

95% CI compared with experimental data at span-wise sections y/b = 0.2 and y/b =

0.65. Note the 95% confidence intervals were constructed via the bootstrap method

using the PC coefficients obtained via the GBNIPC method. Here, 500 bootstrap

samples were run. At sections y/b = 0.2 and y/b = 0.65, the uncertainty band

of the pressure coefficient is too narrow to account for the observed discrepancy

between prediction and experiment. This indicates that the level of uncertainty in

the two input random variables AoA(ξ) and Mach(ξ) do not account for the observed

discrepancies between prediction and experiment. Furthermore, the mean pressure

coefficient over-predicts the experimental data at the shock locations of the wing as

shown in Figures 4.11 and 4.12. The failure of the CFD model to capture the shock

locations accurately, also indicates that the observed discrepancies are likely due to

the CFD model uncertainty.
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Figure 4.9: The PC modes of the Pressure Coefficient(Cp) at Station y/b = 0.2, for
input random variables, AoA = 3.06, CoV = 1% and M = 0.84, CoV = 0.5%
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Chapter 5

Turbulence Model Uncertainty

Analysis

5.1 Introduction and Background

The uncertainty of turbulence modeling is manifested in the large variety of available

models in the literature. These range from Prandtl’s zero-equation mixing length

model [40] to more complex detailed turbulence models. Uncertainty in the appli-

cation of turbulence models arises not only due to uncertainty in model inputs or

parameters, but also due to uncertainty in model formulation. As discussed in Chap-

ter 1, uncertainty in model formulation arises for several reasons: (1) Alternative sets

of scientific assumptions of a phenomena under study exits, (2) the representation of

a phenomena under study is simplified for purposes of mathematical tractability, (3)

the inappropriate selection of spatial and temporal resolution in the application of

numerical methods, and (4) the inappropriate selection of model boundaries in the

application of numerical methods. Examples of sources of model uncertainty in CFD

models are presented in Table 1.1.
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The limits of applicability of turbulence models can readily be accessed by per-

forming uncertainty analysis. This information not only gives an assessment to the

importance and contribution of each source of uncertainty, but also an indication to

where the available computational resources should be focused. Moreover, performing

uncertainty analysis identifies the robustness of the model assumptions, formulation,

and its parameters.

A widely known approach for performing turbulence model uncertainty analysis

is to run a number of simulations with a variety of turbulence models, and assess

how the modeling effects the results. The procedure described in Isukapalli [47] is

typically followed: (1) Evaluate available alternative models ranging from simplified

models to more complex detailed models, (2) If the results of low detailed models agree

closely with the those of high detailed models, the low detailed models are preferable

because they generally required fewer computational resources, and (3) construct un-

certainty bounds based on results from different model formulation. There has also

been some work perform on turbulence model uncertainty. For example, Boggaard[48]

and Godfrey[31] used the SEM to rank the relative contributions of the closure coef-

ficients of turbulence models to the output for a variety of applications.

However, the main drawback of these methods is that the uncertainty in model

formulation of one specific model is still not estimated. Furthermore, this approach

cannot quantify or identify the sources of model uncertainty that are causing the CFD

simulation to differ from their true or exact value. Because of these main limitations,

the development of alternative methods is presented in this chapter.

The relevant background information on turbulence modeling is presented. This

is followed by a description of the one-equation Spalart-Allmaras(S-A) turbulence

model [74]. A methodology for quantifying model uncertainty for the S-A turbulence

model is developed, and demonstrated on the Onera-M6-Wing case.
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5.2 Background Review on Turbulence Modeling

In practice, most flows of engineering interest are turbulent. For example, flow past

rockets, airplanes, automobiles, and internal combustion engines occur well above

the critical Reynolds number at which laminar flow exists. Moreover, high Reynolds

number turbulent flow involved a wide range of fluctuating velocity scales or eddies

that must be resolved. These scales range from the smallest eddies to the largest

eddies which are also known as the microstructure and macrostructure scales(see

Wilcox [90]), respectively. Since the microstructure scales are much larger than the

molecular dimensions, turbulence is a continuum phenomenon. On the other extreme,

the macrostructure scales have the largest dimensions, and are comparable to the solid

body about which the flow is being computed. Note that the turbulence phenomenon

can be thought as a spectrum of eddies of all sizes in between the two extremes.

Furthermore, this spectrum increases rapidly as the Reynolds number increases.

To compute an accurate simulation of a turbulent flow, the entire spectrum of

active scales must be captured. Since turbulence is a continuum, consequently, the

Navier-Stokes, energy and mass-conservation equations captures all of the physics of

turbulent fluid motion. However, computing the Navier-Stokes equations directly,

exact to the smallest scales, requires too much computational efforts even with cur-

rent state-of-art computing power. Since the computational demands for solving

the exact turbulent-flow equations are so intensive, the Reynolds-Average-Navier-

Stokes(RANS) equations are typically implemented in order to reduce computational

efforts. Note that the RANS equations introduces additional terms that need to be

modeled in order to achieve a closure for the unknowns. Information in the small-

scale turbulent fluctuation(i.e., Kolmogorov -scales,see Wilcox [91]) is lost due to the

averaging procedure in concert with the closure problem implemented in the RANS

equations. The RANS equations are closed by making choices for empirical constants,
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and incorporating dimensional analysis of the exact behavior of the turbulence quan-

tities as the solid wall of a rigid body is approached(see Hinze [40]).

In the RANS modeling approach, time or mass averaging is implemented in the

mass-conservation, momentum, and energy equations to account for turbulent fluctu-

ations. The dependent variables of these equations are split into a mean and a fluctu-

ating component known as the Reynolds decomposition. For example, the Reynolds

decomposition for the components of velocity is:

ui(x, y, z, t) = ui(x, y, z) + u
′
i(x, y, z, t) with i = 1, 2, 3

For other quantities like density, pressure, and energy, the Reynolds decomposition

is:

φ(x, y, z, t) = φ(x, y, z) + φ
′
(x, y, z, t).

Upon substituting the Reynolds decomposition in the continuity, momentum, and

energy equations and using the summation convention, the resulting RANS equations

are written as follows:

∂ρ
∂t

+ ∂
∂xi

(ρũi) = 0

∂ρeui
∂t

+ ∂
∂xj

(ρũiũj + p δij) = ∂
∂xj

(τ̃ij) + ∂
∂xj

(
−ρũ′′i u′′j

)

∂ρee0
∂t

+ ∂
∂xi

(
ρẽ0ũi + pui + ρẽ

′′
0u
′′
i

)
= ∂

∂xi
(τijuj)− ∂qi

∂xi

(5.1)

where

ẽ0 = CvT̃ + 1/2 ũi ũi + 1/2 ũ
′′
i u
′′
i

p = ρRT̃

δij is the delta function, the bar(·) denotes time average, and the tilde(̃·) denotes mass

or Favre[55] average. The additional terms that appears in Equation 5.1(i.e., −ρũ′′i u′′j )
are called the Reynolds stresses and represent the effects of turbulent fluctuations.

Furthermore, these stresses must be modeled in order to close the RANS equations.
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The closure model employs the Boussinesq hypothesis[40] for all turbulence models

to relate the Reynolds stresses to the mean velocity gradients given by,

−ρũ′′i u′′j = µt

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3
δij
∂ũk
∂xk

)
(5.2)

where µt is the turbulent eddy viscosity. According to the Boussinesq hypothesis,

the Reynolds stresses are assumed to behave in analogy to the laminar viscous dif-

fusion terms, and the turbulent eddy viscosity is assumed to be an isotropic scalar

quantity(i.e., the eddy viscosity is invariant with respect to direction).

These assumptions, however, are not strictly true, and consequently give rise to

turbulence model uncertainty. Uncertainty in turbulence model formulation, which

assumes the Boussinesq hypothesis, are addressed in the context of the S-A turbulence

model. This is the only one-equation turbulence model that will be treated, and is

discussed in the next section.

5.2.1 S-A Turbulence Model

The S-A turbulence model [74] is based on a postulated transport equation comprised

of terms modeling convection, diffusion, production, and dissipation of turbulence

eddy viscosity. It is a relatively simple model that has been optimized for aerodynamic

applications, most notably for flow past a wing. One of the main advantage of the S-

A model is the simplicity in imposing the free-stream and wall boundary conditions.

In a near wall-region, this model depends on the distance to the closest wall d to

reproduce the viscous effects in the laminar-sublayer. Far from the wall, the viscous

effects becomes negligible. The transport equation for the modified turbulent viscosity

ν̃ can be written using the summation convention as follows,

D(ρeν)
Dt

= ρCb1S̃ν̃︸ ︷︷ ︸ +
∂

∂xj

[
(µ+ ρν̃)

σ

∂ν̃

∂xj

]

︸ ︷︷ ︸
+
ρCb2
σ

(
∂ν̃

∂xj

)2

− ρCw1fw

(
ν̃

d

)2

︸ ︷︷ ︸
Production Diffusion Dissipation

(5.3)
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Table 5.1: Constants for the S-A model
Cv1 7.1
Cb1 0.1355
Cb2 0.622
Cw1 Cb1/κ

2 + (1 + Cb2) /σ
Cw2 0.3
Cw3 2.0
σ 0.66667
κ 0.41

where,

S̃ ≡ S + eν
κ2d2fv2, fv2 = 1− χ

1+χfv1
, fv1 = χ3

χ3+C3
v1
, χ = eν

ν

S =
√

2ΩijΩij, Ωij = 1
2

(
∂ui
∂xj
− ∂uj

∂xi

)

fw = g
[

1+C6
w3

g6+C6
w3

]1/6

, g = r + Cw2 (r6 − r) , r ≡ eν
eSκ2d2

and the turbulent eddy viscosity is µt = ρν̃fv1. The term on the left hand side of

Equation 5.3 represents the rate of increase and convection of turbulent viscosity.

The first term on the right hand side of Equation 5.3 represents the production of

turbulent viscosity. The diffusion term represents the transport of both molecular and

turbulent viscosity. The last term represents the dissipation of turbulent viscosity in

a near-wall-region due to wall blocking and viscous damping. Far from the wall the

dissipation term becomes negligible. The closure-coefficients for the S-A turbulence

model are given in Table 5.1.

The S-A turbulence model is coupled with a wall-function that resolves the inner

portion of the turbulent boundary layer. In this approach, the numerical solution of

the S-A model in the outer region is matched with a wall-function solution of the

inner region. The selected wall-function is a law-of-the-wall expression [86] derived
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by Spalding in 1961. With a single function, it models the laminar sublayer, a buffer-

layer, and the logarithmetic layer of the turbulent boundary layer:

n+ = u+ + e−κB
[
eκu

+ − 1− κu+ − (κu+)2

2
− (κu+)3

6

]
(5.4)

where κ = 0.41 and B = 5.5 for smooth walls. The dimensionless distance to the wall

n+ and dimensionless tangential velocity u+ are given by,

n+ =
ρw d u∗
µw

u+ =
|−→Vd|
u∗

Here ρw, µw are the fluid density and laminar viscosity on the surface, respectively,

|−→Vd| is the velocity magnitude at an adjacent point located a normal distance d to the

wall, and u∗ is the friction velocity.

The S-A turbulence model is derived using (1) selective molecular viscosity de-

pendence, (2) dimensional-analysis, (3) empiricism, and (4) Galilean-invariance of

the turbulence viscosity[74]. Even for this high level of turbulence modeling, a po-

tential deficiency in the modeling process or uncertainty in the S-A model still exists.

Furthermore, the level of accuracy or uncertainty in the model predictions is highly

dependent on the type of application. As a consequence, the S-A turbulence model

is validated by numerous comparisons with measurements for carefully documented

flows.

The level of accuracy in the predictions of any turbulence model can be improved

by (1) model reformulations, and (2) model calibration. Model reformulation involves

the discovery and development of a new mathematical formulation that models phys-

ical processes or parameter information that was missing in the prior model. For

example, Dacles-Mariani[16] proposed a modification of the S-A model which also ac-

counts for the effect of mean strain rate on turbulence production. The modification
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is prescribed to the term S in the S-A model given by Equation 5.3 as;

S ≡ |Ωij|+ Cprod min (0, |Sij| − |Ωij|)

where

Cprod = 2.0

|Ωij| ≡
√

ΩijΩij

|Sij| ≡
√
SijSij

Ωij ≡ 1

2

(
∂uj
∂xi
− ∂ui
∂xj

)

Sij ≡ 1

2

(
∂uj
∂xi

+
∂ui
∂xj

)

Model calibration involves the adjustment of the original model’s closure coef-

ficients to new applications. For example, as shown by Wilcox [90], the measured

spreading rate and velocity profile can be closely matched by assuming the mixing

length lm = αδ, where α is a closure coefficient and δ is shear-layer thickness. The

value of the closure coefficient α are adjusted according to the type of flow as,

α =





0.180, Far wake

0.071, Mixing layer

0.098, Plane Jet

0.080, Round Jet

In this example, the uncertainty in the closure coefficient α contributes to model

uncertainty. This is manifested in the range of values α can assume(e.g., 0.071−0.180)

according to the type of application.

5.2.2 Model Uncertainty Analysis

Model uncertainty analysis is accomplished by performing sensitivity analysis coupled

with the Collocation method on the incoming turbulence and closure coefficients of
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the S-A turbulence model. As discussed in Chapter 2, sensitivity analysis is performed

by the complex FUN3D flow solver using a complex variable formulation. In this

approach, an output CFD variable, f , is expanded in a Taylor series using a complex

perturbation parameter h as:

f(x+ ih) = f(x) + ih
df

dx
− h2

2

d2f

dx2
− ih3

6

d3f

dx3
+
h4

24

d4f

dx4
+ · · · (5.5)

Solving this equation for the imaginary part of the function yields

df

dx
≈ Im[f(x+ ih)]

h
+O(h2) (5.6)

The implementation of this method is straightforward. That is, by declaring all

variables of a function as complex and applying complex perturbation to the design

variable of interest, the sensitivity derivative of a design variable can be obtained by

evaluating the imaginary part of a function. Thus, for example, applying complex

perturbations to the incoming turbulence, and evaluating the imaginary part of lift

CL and drag CD coefficients yields:

SCL ≡
∂CL
∂ν̃∞

=
Im [CL(ν̃∞ + i∆)]

∆

SCD ≡
∂CD
∂ν̃∞

=
Im [CD(ν̃∞ + i∆)]

∆

where the complex perturbation used in FUN3D is ∆ = 10−50. Similar sensitivity

results can be obtained for other closure coefficients. Note that the complex FUN3D

code was modified to account for input complex perturbations of the incoming turbu-

lence and the closure coefficients. The Collocation method, discussed in Chapter 4,

is then used to propagate the model uncertainty in the incoming turbulence and the

closure coefficients. Only the parameters with the strongest influence are included in

the analysis which are provided by the sensitivity analysis.
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5.3 The Onera-M6-Wing Case

The benchmark problem of interest is a compressible, transonic, fully turbulent flow

around the Onera-M6-Wing. On the wing surface at the midchord, n+ was set equal

to 2. The free-stream flow conditions (i.e., the mach number, Reynolds number,

angle-of-attack) were set to M∞ = 0.8447, Rec = 11.7 × 106, and α = 5.06o. The

computational domain is bounded by a rectangular box defined by −6.5 ≤ x ≤ 6.5m,

0 ≤ y ≤ 4m, and −6.5 ≤ z ≤ 6.5m, in aerodynamic coordinates relative to a semi-

span length of 1m. The viscous surface and symmetry plane mesh was generated

from the inviscid fine mesh in Chapter 4 using the package V GRID. This viscous

mesh is shown in Figure 5.1. On the Onera-M6-Wing, no-slip surface, the turbulence

variable ν̃ is set to zero. For the far-field (top) and outflow surfaces, boundary

conditions are imposed by applying the 1-d Riemann invariants to the turbulence

variable ν̃ and the flow-field variables. At the inflow boundary, the Mach number was

set to M∞ = 0.8447. Note that the free-stream eddy viscosity value used for the S-A

model is µt,∞ = 0.009. This value can be obtained by setting the turbulence variable

to ν̃∞ = 1.341946 at the free-stream. For example, the eddy viscosity for the S-A

turbulence model is computed at the free-stream by,

µt,∞ = ρ∞ν̃∞fv1 (5.7)

=
ν̃4
∞

ν̃3∞ + C3
v1

' 0.009

The S-A model uncertainty considered herein arises due to uncertainty in the in-

coming turbulence ν̃∞, and the closure coefficients Cb1, Cb2, Cw2, Cw3, σ, κ. The

focus is on the Hermite PC, and its use in propagating uncertainty into the lift and

drag coefficients. The output statistics of the Collocation method are compared to

experimental measurements performed by Schmitt and Charpin [72]. In their techni-

cal report, they conducted measurements of pressure distributions at several spanwise
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Figure 5.1: Onera-M6-Wing viscous mesh (409, 135 nodes)

Table 5.2: Scaled sensitivity of the lift coefficient SCL and the drag coefficient SCD
×105 Cv1 Cb1 Cb2 Cw2 Cw3 σ κ ν̃∞
scaled-SCL +177 606 15.0 23.7 +62.0 74.6 −484 −8.49

scaled-SCD −16.7 301 3.93 32.2 −4.97 112 +315 +3.79

stations and aerodynamic coefficients of the Onera-M6-Wing for several test condi-

tions. These measurements were obtained in the Onera S2MA wind tunnel at Mach

numbers 0.7, 0.84, 0.88, and 0.92 for angles-of-attack from 0o to 6o and a Reynolds

number of about 12 million.. The level of uncertainty of the aerodynamic coeffi-

cient measurements for Mach= 0.8447 and an angle-of-attack of 5.06 was reported as

CL,exp ≈ 0.436± 5 drag-counts and CD,exp ≈ 0.05± 1.5 drag-counts.
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Figure 5.2: Scaled sensitivities of the lift coefficient SCL
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Figure 5.3: Scaled sensitivities of the drag coefficient SCD
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5.3.1 The Onera-M6-Wing Sensitivity results

Figure 5.2 illustrates the scaled sensitivities of the lift coefficient SCL due to the

incoming turbulence ν̃∞ and the closure-coefficients of the S-A turbulence model. For

comparison purposes, the scaled sensitivity method, described in Borggaard[14], is

implemented. That is, the resulting sensitivities are multiply by the nominal values

given in Table 5.1. Note the computation was carried out all the way to 2200 iterations

in order to minimize the iterative convergence error. As shown in Figure 5.2, all

scaled sensitivities are stabilized after 500 iterations. As presented in Table 5.2,

the scaled sensitivities indicate that parameter Cb1, which corresponds to the term

that models the production of turbulent viscosity, exerts the strongest influence on

the lift coefficient in absolute value. Parameters κ and Cv1, which correspond to

the wall function and eddy viscosity terms, also exert a strong influence on the lift

coefficient. In contrast, the parameters Cb2, Cw2, Cw3, and σ, which correspond to the

diffusion and dissipation terms exert a relatively weak influence on the lift coefficient.

Furthermore, the incoming turbulence ν̃∞ has the least influence on the lift coefficient

in absolute value.

Figure 5.3 illustrates the scaled sensitivities of the drag coefficient SCD due to

the incoming turbulence ν̃∞ and the closure coefficients of the S-A turbulence model.

As presented in Table 5.2, the scaled sensitivities indicate that parameter κ, which

corresponds to the wall function given by Equation 5.4, exerts the strongest influence

on the drag coefficient in absolute value. Parameters Cv1, Cb2, Cw2, Cw3, and σ, which

correspond to the eddy viscosity, diffusion and dissipation terms, exert a relatively

weak influence on the drag coefficient. Furthermore, ν̃∞ has the least influence on

the drag coefficient in absolute value.
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5.3.2 Stochastic Onera-M6-Wing Results

The stochastic Onera-M6-Wing problem was formulated by introducing uncertainty

in the S-A turbulence model through the incoming turbulence and closure coefficients.

In this application, the focus is on the Hermite PC, and its use in propagating model

uncertainty using the Collocation method. In this method, the solution of the lift

and drag coefficients are expanded to a 3rd-order Hermite chaos. Although the total

number of parameters in the S-A turbulence model is eight for this application, un-

certainty is only introduced to the parameters with the strongest influence on the lift

and drag coefficient, namely, Cv1, Cb1, σ, and κ.

Model uncertainty is introduced through uniformly distributed closure coefficients

Cv1[1 ± ε], Cb1[1 ± ε], σ[1 ± ε], and κ[1 ± ε]. Since Hermite polynomials represent

normal random variables, the direct transformation of a uniform[a, b] random variable

as function of a normal(0, 1) random variable ξ is required. This is given by:

Z(ξ) = a+ (b− a)

{
1

2
+

1

2
Erf (ξ/

√
2)

}

Note that representations of random variables as functions of other random variables

are available in the literature [47]. Using the relation above, the direct transformation

of the closure coefficients are given by:

Cv1(ξ1) = Cv1

[
1 + ε

{
Erf (ξ1/

√
2)
}]

Cb1(ξ2) = Cb1

[
1 + ε

{
Erf (ξ2/

√
2)
}]

σ(ξ3) = σ
[
1 + ε

{
Erf (ξ3/

√
2)
}]

κ(ξ4) = κ
[
1 + ε

{
Erf (ξ4/

√
2)
}]

where ξ1 through ξ4 are normally distributed independent random variables, and the

mean of these parameters(i.e., Cv1, Cb1, σ, and κ) are given in Table 5.1. As a first
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approximation, the error ε in the uncertainty interval of each random variable is set

to 5%.

Figures 5.4 and 5.5 illustrate the mean lift and drag coefficient, respectively, in

concert with their 95% confidence intervals compare to experimental data. The 95%

confidence intervals were constructed via the bootstrap method using the PC coeffi-

cients. Here, 500 bootstrap samples were ran. A 3rd order chaos with four random

dimensions required 35 deterministic runs for both cases. The deterministic complex

FUN3D code is called as a black-box, where the CPU time for each deterministic

run is approximately 2.0 hours. The uncertainty band of the lift of coefficient is too

narrow to account for the observed discrepancy between prediction and experiment.

Moreover, the level of uncertainty in the closure coefficients do not account for the

observed discrepancies between the lift coefficient of prediction and experiment. As

shown in Figure 5.5, the uncertainty band in drag coefficient is wider than the lift

coefficient. Furthermore, the level of uncertainty in the closure coefficients seems to

have some effect on the drag coefficient. However, the uncertainty band in the drag

coefficient does not overlap the experimental uncertainty band.
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Figure 5.4: Comparison of the lift coefficient CL between prediction and experiment
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Figure 5.5: Comparison of the drag coefficient CD between prediction and experiment



Chapter 6

Conclusions and Discussions

The application of CFD models involves significant uncertainties that may have im-

plications on the reliability of its predictions. For example, input parameters in

CFD simulations such as geometry, free-stream flow conditions, and angle-of-attack

are mostly uncertain, and the variability associated with them can have substantial

impact on the final result. Hence, it is important to address these uncertainties. How-

ever, the main limitations in performing uncertainty analysis of CFD models using

conventional methods are associated with cost and effort. For these reasons, there is

a need for the development and implementation of efficient stochastic CFD tools for

performing uncertainty analysis.

6.1 Development and Implementation of the In-

trusive Method

One of the main contributions of this research is the development and implementation

of an implicit formulation for the Euler equations using PC for uncertainty represen-

tation and propagation(Chapter 3). In this approach, all dependent variables and

random parameters in the Euler equations were replaced with the PC expansions.

94
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The resulting equations were then projected onto the kth basis by using the definition

of the inner product. These projected equations resulted in (P + 1) additional deter-

ministic equations, which were solved by the same conventional numerical technique

applied to the original deterministic system. Details were presented for the full flux

vector and the Van Leer split flux vector as well as their associated Jacobian matrices

in a compact PC form.

The Intrusive method has been applied to the two-dimensional Euler equations

of gas dynamics for the unit problems: (1) flow over a wedge at supersonic speed,

(2) flow over an expansion corner at supersonic speed, and (3) flow over a cosine

airfoil at supersonic speed. Comparisons of first-order PC results show good agree-

ment with the MC simulations in which 10, 000 realizations were obtained. Although

straightforward in theory, an intrusive formulation for complex problems such as the

Navier-Stokes simulation of 3-D, viscous, turbulent flows around realistic aerospace

vehicles, can be relatively difficult, expensive, and time consuming to implement.

6.2 Development and Implementation of the NIPC

Methods

To overcome the drawbacks associated with the intrusive approach, NIPC methods

have been developed for uncertainty representation and propagation(Chapter 4). In

this new approach, no modification to a deterministic code is required. The deter-

ministic code is called as a black box, and uncertainty is modeled and propagated

solely by the PC expansions. This was accomplished by developing and implementing

three NIPC methods based on (1) the Galerkin method, (2) the Collocation method,

and (3) the GBNIPC method.

In the Galerkin method, the CFD solution is projected onto the PC kth basis

by using the definition of the inner product and the property of orthogonality. The
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resultant integral of the inner product can be estimated using the Gauss quadrature

method. For a problem with n number of random variables, the total number of

deterministic solutions required for an exact estimation is Nd ≥ (2p− 1)n, where p is

the order of the chaos.

In the collocation method, the CFD model random inputs and outputs are ap-

proximated by the PC expansions. These expansions contain unknown coefficients of

the outputs which are calculated by solving a linear system of equations that uses a

selected number of collocation points. The collocation points are selected based on

the OCM [79]. For a problem with n number of random variables, the total number

of deterministic solutions required is Nd ≥ (n+p)!
n!p!

, where p is the order of the chaos.

In the GBNIPC method, the collocation method is coupled with the Complex

Variable sensitivity analysis method in order to improve the computational efficiency.

The Complex Variable technique is straightforward to apply and produces accurate

sensitivity derivatives without suffering from step size related numerical problems(e.g.,

see [58]). By declaring all variables of a function as complex and applying complex

perturbation to the design variable of interest, the sensitivity derivative of a design

variable can be obtained by evaluating the imaginary part of a function. For a prob-

lem with n number of random variables, the total number of deterministic solutions

required is Nd ≥ K
(n+1)

, where K is the number of PC coefficients. For this method,

the number of deterministic solutions should always be greater than required in order

to achieve robustness.

The performance of the NIPC methods have been tested on three stochastic fluid

dynamic problems: (1) a compressible, supersonic, inviscid flow over a wedge corner

with uncertainty in angle-of-attack, (2) a compressible, supersonic, inviscid flow over

an expansion corner with uncertainty in angle-of-attack, and (3) a compressible, tran-

sonic, inviscid flow around the Onera-M6-Wing with uncertainty in angle-of-attack

and Mach-number.
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In the oblique shock case, the statistics (i.e., the mean and standard deviation of

pressure) obtained with the GBNIPC method were in good agreement with the results

of the MC simulations. For example, a first order chaos was sufficient to estimate

the statistics at the exit point. This observation implies that the distribution at

this point is Gaussian. In the expansion case, a fifth order polynomial expansion is

needed to approximate statistics at the exit point. This observation implies that the

distribution at this point is Non-Gaussian. For both cases(i.e., shock and expansion

cases), the values of the statistics fall within the 95% CI. However, the GBNIPC

method required significantly fewer deterministic runs compared to the MC method.

For example, the number of deterministic runs used for the shock and expansion cases

is Nd = 2 and Nd = 6, respectively, compared to 1000 MC runs.

In the Onera-M6-Wing case, the necessary condition to properly establish grid

convergence is extended to unstructured meshes. This necessary condition, first in-

troduce by Salas[71] for regular-structured grids, requires that the aspect grid ratio

χ be constant over subsequent grid level refinement. The modes of the pressure

coefficient for a 4th-order chaos was calculated using the NIPC methods. For the

Gauss-Hermite method, seven integration points were used along each stochastic di-

rection, which required (2p − 1)n = 49 deterministic runs for an exact estimation.

For the Collocation method, a 4th order chaos with two random dimensions required

(n+p)!
n!p!

= 15 deterministic runs. For the GBNIPC method, the required number of

deterministic runs was reduced to 2K
n+1

= 10. The CPU time for each deterministic

run is approximately 1.5 hours.

The Collocation and GBNIPC methods slightly over-predict the second and third

modes at the shock location at various stations compared to the Gauss-Hermite

method. This observation suggests that the sensitivity derivatives are introducing

small errors in the PC coefficients. The mean pressure coefficient in concert with its
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95% CI obtained via the GBNIPC method is compared to experimental results at var-

ious stations. Note the 95% confidence intervals were constructed via the bootstrap

method using the PC coefficients. The uncertainty band of the pressure coefficient is

too narrow to account for the observed discrepancy between prediction and experi-

ment. Moreover, the level of uncertainty in the angle-of-attack and Mach-number do

not account for the observed discrepancies between the predictions and experiments.

This observation indicates that the observed discrepancies are likely due to the CFD

model uncertainty.

6.3 Turbulence Model Uncertainty Analysis

In addition to the uncertainties associated with CFD model inputs, there are often

uncertainties associated with turbulence modeling. The uncertainty of turbulence

modeling is manifested in the large variety of available models in the literature.

Hence, it is important to address turbulence model uncertainty. This information

not only gives an assessment to the importance and contribution of each source of

uncertainty, but also an indication to where the available computational resources

should be focused.

The one-equation S-A turbulence model[74], which assumes the Boussinesq hy-

pothesis, is address in Chapter 5. It is a relatively simple model that has been opti-

mized for aerodynamic applications, most notably for flow past a wing. This model

is based on a postulated transport equation comprised of terms modeling convection,

diffusion, production, and dissipation of turbulence eddy viscosity. One of the main

advantage of the S-A model is the simplicity in imposing the free-stream and wall

boundary conditions.

Turbulence model uncertainty analysis is performed on a compressible, transonic,
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viscous, fully turbulent flow around the Onera-M6-Wing. This analysis is accom-

plished by performing Complex Variable sensitivity analysis coupled with the Colloca-

tion method on the incoming turbulence and closure coefficients of the S-A turbulence

model.

Sensitivity results indicate that the lift and drag coefficients are not highly sen-

sitive to the macrostructure scale of the turbulent flow(i.e., the large, energy rich

eddies). As expected, the lift and drag coefficients are also not highly sensitive to the

incoming turbulence at the inlet, since the turbulence model is optimized for aerody-

namic applications. However, the lift and drag coefficients are highly sensitive to the

microstructure scale(i.e., the wall function and the production of turbulence). Lastly,

the lift coefficient is highly sensitive to the coefficient of the eddy viscosity Cv1 in

contrast to the drag coefficient. The above observations suggest focusing resources in

the refinement of the S-A turbulence model in the microstructure scale.

Although the total number of parameters in the S-A turbulence model is eight for

this application, uncertainty is only introduced to the parameters with the strongest

influence on the lift and drag coefficient, namely, Cv1, Cb1, σ, and κ. These param-

eters, which correspond to the coefficient and the production of turbulence viscosity

and wall function, depend among other factors for which no information is available.

The turbulence model uncertainty caused by missing variables is introduced by as-

signing uniform distributions to these parameters. These are reasonable distributions

to choose when other distributions are unknown for the problem at hand. In addi-

tion, the entire uncertainty interval is contained in a uniform random variable(e.g.,

the maximum bound).

The mean lift and drag coefficients in concert with their 95% confidence intervals

obtained via the Collocation method is compared to experimental results. Note the

95% confidence intervals were constructed via the bootstrap method using the PC

coefficients. A 3rd order chaos with four random dimensions required 35 deterministic
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runs for both cases. The uncertainty band of the lift of coefficient is too narrow to ac-

count for the observed discrepancy between prediction and experiment. Furthermore,

the level of uncertainty in the closure coefficients seems to have some effect on the

drag coefficient. However, the uncertainty band in both the lift and drag coefficients

does not overlap the experimental uncertainty band.

These observations are believed to be due to the differences in computing the

uncertainty band between the experiment and prediction. For example, uncertainty

band of the experimental measurement is an estimate of the difference between the

true and predicted solution in contrast to the CI. In addition, the uncertainty of the

closure coefficients does not have a large effect on the lift and drag coefficient since

the S-A turbulence model is optimized for this aerodynamic application.

6.4 Future Work

The NIPC methods developed and implemented in this thesis addressed only random

variables, i.e., random quantities that do not vary with time or space. Random

quantities that vary with time or space can be regarded as an infinite(or finite) set of

random variables or random processes. From the perspective of the uncertainties that

occur in CFD models, the random variables in CFD parameters may vary with time

or space. For problems involving random processes(i.e., many random variables),

NIPC methods generally required a large number of deterministic runs which may

be prohibitively expensive. For this reason, research should refocus on the NIPC

method for problems involving random processes. This may include the investigation

of adaptive sampling techniques for efficient calculation of PC coefficients that are

important to the response of interest.

Lastly, since the level of uncertainty in numerical simulations is dependent upon

grid quality, it is essential to perform comprehensive grid convergence studies. More
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specifically, further research should focus on the effect of nonuniform grid refinement

to the convergence rate for unstructured meshes.
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Appendix A

A.1 The Definition of the Operator Form, ⊕
Consider two block matrices defined as,

An,m,l ≡




{−→a 111,
−→a 112, · · · ,−→a 11l} {−→a 121,

−→a 122, · · · ,−→a 12l} · · · {−→a 1m1,
−→a 1m2, · · · ,−→a 1ml}

{−→a 211,
−→a 212, · · · ,−→a 21l} {−→a 221,

−→a 222, · · · ,−→a 22l} · · · {−→a 2m1,
−→a 2m2, · · · ,−→a 2ml}

...
...

. . .
...

{−→a n11,
−→a n12, · · · ,−→a n1l} {−→a n21,

−→a n22, · · · ,−→a n2l} · · · {−→a nm1,
−→a nm2, · · · ,−→a nml}




Bn,m,l ≡




{−→b 111,
−→
b 112, · · · ,−→b 11l} {−→b 121,

−→
b 122, · · · ,−→b 12l} · · · {−→b 1m1,

−→
b 1m2, · · · ,−→b 1ml}

{−→b 211,
−→
b 212, · · · ,−→b 21l} {−→b 221,

−→
b 222, · · · ,−→b 22l} · · · {−→b 2m1,

−→
b 2m2, · · · ,−→b 2ml}

...
...

. . .
...

{−→b n11,
−→
b n12, · · · ,−→b n1l} {−→b n21,

−→
b n22, · · · ,−→b n2l} · · · {−→b nm1,

−→
b nm2, · · · ,−→b nml}




where the elements of each block matrix above, denoted by the curly brackets, are

a list of vector arrays or scalars or a combination of both (i.e., −→a ijk can be a vector

array or a scalar or a combination of both, where i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

k = 1, 2, · · · , l). Note that n,m, and l are integer numbers. Hence, the operator, ⊕,

is defined as,

An,m,l ⊕Bn,m,l ≡




c11l c12l · · · c1ml

c21l c22l · · · c2ml

...
...

. . .
...

cn11 cn2l · · · cnml
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where,

c11l = −→a 111 · −→b 111 +−→a 112 · −→b 112 + · · ·+−→a 11l · −→b 11l

c12l = −→a 121 · −→b 121 +−→a 122 · −→b 122 + · · ·+−→a 12l · −→b 12l

...

c1ml = −→a 1m1 · −→b 1m1 +−→a 1m2 · −→b 1m2 + · · ·+−→a 1ml · −→b 1ml

c21l = −→a 211 · −→b 211 +−→a 212 · −→b 212 + · · ·+−→a 21l · −→b 21l

c22l = −→a 221 · −→b 221 +−→a 222 · −→b 222 + · · ·+−→a 22l · −→b 22l

...

c2ml = −→a 2m1 · −→b 2m1 +−→a 2m2 · −→b 2m2 + · · ·+−→a 2ml · −→b 2ml

cn1l = −→a n11 · −→b n11 +−→a n12 · −→b n12 + · · ·+−→a n1l · −→b n1l

cn2l = −→a n21 · −→b n21 +−→a n22 · −→b n22 + · · ·+−→a n2l · −→b n2l

...

cnml = −→a nm1 · −→b nm1 +−→a nm2 · −→b nm2 + · · ·+−→a nml · −→b nml

For demonstration purposes, let n = 4, m = 1, l = 2,and write the two matrices as,

A4,1,2 =




{−→a 111,
−→a 112}

{−→a 211,
−→a 212}

{−→a 311,
−→a 312}

{−→a 411,
−→a 412}




B4,1,2 =




{−→b 111,
−→
b 112}

{−→b 211,
−→
b 212}

{−→b 311,
−→
b 312}

{−→b 411,
−→
b 412}




and use the definition of the operator, ⊕, to write A4,1,2 ⊕ B4,1,2 as,



{−→a 111,
−→a 112}

{−→a 211,
−→a 212}

{−→a 311,
−→a 312}

{−→a 411,
−→a 412}



⊕




{−→b 111,
−→
b 112}

{−→b 211,
−→
b 212}

{−→b 311,
−→
b 312}

{−→b 411,
−→
b 412}




=




−→a 111 · −→b 111 +−→a 112 · −→b 112

−→a 211 · −→b 211 +−→a 212 · −→b 212

−→a 311 · −→b 311 +−→a 312 · −→b 312

−→a 411 · −→b 411 +−→a 412 · −→b 412






Appendix B

B.1 Full Flux Jacobian Matrix in Deterministic

Form

The deterministic Jacobian matrix of the full flux vector in local coordiantes is given

by,

∂F
∂q

=




u nxρ nyρ 0

uu ρ(u+ unx) ρuny nx

uv ρvnx ρ(u+ vny) ny

uq2/2 ρ(nxh0 + uu) ρ(nyh0 + uv) γu
γ−1



4s (B.1)

B.2 Full Flux Jacobian Matrix in Standard PC

Form

Deriving the full flux Jacobian Matrix in the Standard PC form is straightforward. We

start with Eqn. (3.21) and form the Jacobian by taking the appropriate derivatives,
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which yields

∂f1,r

∂ρl
=

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

δlkuij〈ΨiΨjΨkΨr〉

∂f1,r

∂ul
=

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

(nx∆s)iδlj〈ΨiΨjΨkΨr〉

∂f1,r

∂ul
=

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

(ny∆s)iδlj〈ΨiΨjΨkΨr〉

∂f1,r

∂pl
= 0

∂f2,r

∂ρl
=

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

Nq∑
m=0

δkluijum〈ΨiΨjΨkΨmΨr〉

∂f2,r

∂ul
=

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

Nq∑
m=0

ρk [uijδlm + (nx∆s)iumδjl] 〈ΨiΨjΨkΨmΨr〉

∂f2,r

∂vl
=

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

Nq∑
m=0

ρk(ny∆s)iumδjl〈ΨiΨjΨkΨmΨr〉

∂f2,r

∂pl
=

Ng1∑
i=0

Nq∑
j=0

(nx∆s)iδjl〈ΨiΨjΨr〉

∂f3,r

∂ρl
=

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

Nq∑
m=0

δkluijvm〈ΨiΨjΨkΨmΨr〉

∂f3,r

∂ul
=

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

Nq∑
m=0

ρk(nx∆s)iδjlvm〈ΨiΨjΨkΨmΨr〉

∂f3,r

∂vl
=

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

Nq∑
m=0

ρk [uijδlm + (ny∆s)iumδjl] 〈ΨiΨjΨkΨmΨr〉

∂f3,r

∂pl
=

Ng1∑
i=0

Nq∑
j=0

(ny∆s)iδjl〈ΨiΨjΨr〉

∂f4,r

∂ρl
=

1

2

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

Nq∑
n=0

Nq∑
m=0

δkluijq
2
nm〈ΨiΨjΨkΨnΨmΨr〉

(B.2)
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∂f4,r

∂ul
=

γ

γ − 1

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

(nx∆s)iδjlpk〈ΨiΨjΨkΨr〉

+
1

2

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

Nq∑
n=0

Nq∑
m=0

ρk
[
(nx∆s)i{q2

nmδjl + unujδlm + ujumδln}
] 〈ΨiΨjΨkΨlΨmΨr〉

+
1

2

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

Nq∑
n=0

Nq∑
m=0

(ny∆)ivj(unδmn + umδln)〈ΨiΨjΨkΨlΨmΨr〉

∂f4,r

∂vl
=

γ

γ − 1

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

(ny∆s)iδjlpk〈ΨiΨjΨkΨr〉

+
1

2

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

Nq∑
n=0

Nq∑
m=0

ρk
[
(ny∆s)i{q2

nmδjl + vnvjδlm + vjvmδln}
] 〈ΨiΨjΨkΨlΨmΨr〉

+
1

2

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

Nq∑
n=0

Nq∑
m=0

(nx∆)iuj(vnδmn + uvδln)〈ΨiΨjΨkΨlΨmΨr〉

∂f4,r

∂pl
=

γ

γ − 1

Ng1∑
i=0

Nq∑
j=0

Nq∑

k=0

δkluij〈ΨiΨjΨkΨr〉 (B.3)
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Appendix C

C.1 Van Leer Split Flux Vector(VLSFV) in Deter-

ministic Form

Characteristic based, upwind schemes give rise to additional numerical flux functions,

e.g., Van Leer’s Flux Vector Splitting, Roe’s Flux Difference Split scheme, and other.

The components of the Van Leer split fluxes (times the surface area, 4s) in local

coordinates are given by

F±1 =
±ρa(M ± 1)2

4
4s

F±2 = F±1
[
nx(−u± 2a)

γ
+ u

]

F±3 = F±1
[
ny(−u± 2a)

γ
+ v

]

F±4 = F±1
[−(γ − 1)u2 ± 2(γ − 1)ua+ 2a2)

γ2 − 1
+
u2 + v2

2

]
(C.1)

where M = u
a

is the Mach number.

C.2 VLSFV in Standard PC Form

The PC expansion for the components of the Van Leer split fluxes require more

effort. First of all, and in contrast to the components of the full flux vector, the

quantities nx, ny and 4s appear individually (i.e. not just in the products nx4s and
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ny4s). Thus separate expansions are required for these three variables. We represent

them in the form of Eqn. 4.5 with i = 0, 1, . . . , Ng2 input modes (user-defined). In

addition, all internal (or intermediate) quantities (e.g. sound speed, Mach number,

...) that are functions of q and/or the input variables are also represented in the

form of Eqn. 4.5 with i = 0, 1, . . . , Nint internal modes (user-defined). Obtaining

the expansion coefficients of any intermediate variable is relatively straightforward

and typically involves solving a small linear problem. Going through the algebra

of substituting PC expansions for the input, output and internal variables into Van

Leer’s deterministic flux vector splitting given by Eqn. C.1, one obtains the following
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components of the Van Leer PC split flux,

F±1,r = ±1

4

Nq∑
i=0

Nint∑
j=0

Nint∑

k=0

Ng2∑

l=0

ρiaj(M ± 1)2
k4sl〈ΨiΨjΨkΨlΨr〉

F±2,r =

Nq∑
i=0

Ng2∑
j=0

Ng2∑

k=0

Nq∑

l=0

(F±1 )inxj

(−ukl
γ

)
〈ΨiΨjΨkΨlΨr〉

+

Nq∑
i=0

Ng2∑
j=0

Nint∑

k=0

(F±1 )inxj

(±2ak
γ

)
〈ΨiΨjΨkΨr〉

+

Nq∑
i=0

Nq∑
j=0

(F±1 )iuj〈ΨiΨjΨr〉

F±3,r =

Nq∑
i=0

Ng2∑
j=0

Ng2∑

k=0

Nq∑

l=0

(F±1 )inyj

(−ukl
γ

)
〈ΨiΨjΨkΨlΨr〉

+

Nq∑
i=0

Ng2∑
j=0

Nint∑

k=0

(F±1 )inyj

(±2ak
γ

)
〈ΨiΨjΨkΨr〉

+

Nq∑
i=0

Nq∑
j=0

(F±1 )ivj〈ΨiΨjΨr〉

F±4,r =

{
Nq∑
i=0

Ng2∑
j=0

Nq∑

k=0

Ng2∑

l=0

Nq∑
m=0

(F±1 )i

[
− γ − 1

γ2 − 1
ujkulm

]}
〈ΨiΨjΨkΨlΨmΨr〉

±
{

Nq∑
i=0

Ng2∑
j=0

Nq∑

k=0

Nint∑

l=0

(F±1 )i

[
2

γ2 − 1
ujkal

]}
〈ΨiΨjΨkΨlΨr〉

+

{
Nq∑
i=0

Nint∑
j=0

Nint∑

k=0

(F±1 )i

[
2

γ2 − 1
a2
jk

]}
〈ΨiΨjΨkΨr〉

+

{
Nq∑
i=0

Nq∑
j=0

Nq∑

k=0

(F±1 )i
q2
jk

2

}
〈ΨiΨjΨkΨr〉 (C.2)

where

q2
jk = ujuk + vjvk

ukl = (nx)kul + (ny)kvl.
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Note that PC representation is not unique. For example, the quantity (M±1)2 in the

form of Eqn. 4.5 was expanded, although M ± 1 or M could have been expanded al-

ternatively. Further, note that the second through fourth components of the split flux

vector depend on all modes of the first component. This has algorithmic consequences

in the implementation.

C.3 VLSFV in PC Compact Form

The components of the Van Leer split fluxes given by Eqn. C.2 in short-hand notation

are:

F±1,r = ±1

4
ρ⊗ a⊗ (M ± 1)2 ⊗4s · 〈~ΨNq ,Nint,Nint,Ng2,r〉

F±2,r =

[
(F±1 )⊗ nx ⊗

(−u
γ

)]
· 〈~ΨNq ,Ng2,Ng2,Nq ,r〉

+

[
(F±1 )⊗ nx ⊗

(±2a

γ

)]
· 〈~ΨNq ,Ng2,Nint,r〉

+
[
(F±1 )⊗ u] · 〈~ΨNq ,Nq ,r〉

F±3,r =

[
(F±1 )⊗ ny ⊗

(−u
γ

)]
· 〈~ΨNq ,Ng2,Ng2,Nq ,r〉

+

[
(F±1 )⊗ ny ⊗

(±2a

γ

)]
· 〈~ΨNq ,Ng2,Nint,r〉

+
[
(F±1 )⊗ v] · 〈~ΨNq ,Nq ,r〉

F±4,r =

{
(F±1 )⊗

[
− γ − 1

γ2 − 1
u⊗ u

]}
· 〈~ΨNq ,Ng2,Nq ,Ng2,Nq ,r〉

±
{

(F±1 )⊗
[

2

γ2 − 1
u⊗ a

]}
· 〈~ΨNq ,Ng2,Nint,r〉

+

{
(F±1 )⊗

[
2

γ2 − 1
a⊗ a

]}
· 〈~ΨNq ,Nint,Nint,r〉

+

{
(F±1 )⊗

[
u⊗ u+ v ⊗ v

2

]}
· 〈~ΨNq ,Nq ,Nq ,r〉 (C.3)

where

u = nx ⊗ u+ ny ⊗ v.
Note again the simililarity between Eqn. C.3 and the deterministic version, Eqn. C.1.
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C.4 VLSFV Jacobian Matrix in Deterministic Form

With V 2 = u2 + v2, the deterministic jacobian Van Leer components of the matrix in

local coordiantes is given by;

∂F±1
∂ρ

= ±a
8

(M + 1)(3M ± 1)

∂F±1
∂u

= ±ρ
2

(M ± 1)nx

∂F±1
∂v

= ±ρ
2

(M ± 1)ny

∂F±1
∂p

= ± γ

2a
(−M2 + 1)

∂F±2
∂ρ

= F±1
nx
γ

(
∓a
ρ

)
+

(
nx(−u± 2a)

γ
+ u

)
∂F±1
∂ρ

∂F±2
∂u

= F±1

(
1− n2

x

γ

)
+

(
nx(−u± 2a)

γ
+ u

)
∂F±1
∂u

∂F±2
∂v

= F±1

(
−nxny

γ

)
+

(
nx(−u± 2a)

γ
+ u

)
∂F±1
∂v

∂F±2
∂p

= F±1

(
±nxa
γp

)
+

(
nx(−u± 2a)

γ
+ u

)
∂F±1
∂p

∂F±3
∂ρ

= F±1

(
∓nya
γρ

)
+

(
ny(−u± 2a)

γ
+ v

)
∂F±1
∂ρ

∂F±3
∂u

= F±1

(−nxny
γ

)
+

(
ny(−u± 2a)

γ
+ v

)
∂F±1
∂u

∂F±3
∂v

= F±1

(
1− n2

y

γ

)
+

(
ny(−u± 2a)

γ
+ v

)
∂F±1
∂v

∂F±3
∂p

= F±1

(
±nya
γp

)
+

(
ny(−u± 2a)

γ
+ v

)
∂F±1
∂p

∂F±4
∂ρ

= F±1

(
− a

ρ(γ2 − 1)
[±(γ − 1)u+ 2a]

)
+

(
(1− γ)u2 ± 2(γ − 1)ua+ 2a2)

γ2 − 1
+
V 2

2

)
∂F±1
∂ρ

∂F±4
∂u

= F±1

(
2nx
γ + 1

[−u± a] + u

)
+

(−(γ − 1)u2 ± 2(γ − 1)ua+ 2a2)

γ2 − 1
+
V 2

2

)
∂F±1
∂u

∂F±4
∂v

= F±1

(
2ny
γ + 1

[−u± a] + v

)
+

(−(γ − 1)u2 ± 2(γ − 1)ua+ 2a2)

γ2 − 1
+
V 2

2

)
∂F±1
∂v

∂F±4
∂p

= F±1

(
γ

ρ(γ2 − 1)
[±(γ − 1)M + 2]

)
+

(−(γ − 1)u2 ± 2(γ − 1)ua+ 2a2)

γ2 − 1
+
V 2

2

)
∂F±1
∂p
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C.5 VLSFV Jacobian Matrix in PC Compact Form

∂F±1,r
∂ρl

=

[
±1

4

(
~δNq ,l ⊗ a

)
⊗ ((M ± 1)2 ⊗4s)

]
· 〈~ΨNq ,Nint,Nint,Ng2,r〉

+

[
±1

4

(
ρ⊗ ∂a

∂ρl

)
⊗ ((M ± 1)2 ⊗4s)

]
· 〈~ΨNq ,Nint,Nint,Ng2,r〉

+

[
±1

4
(ρ⊗ a)⊗

(
∂(M ± 1)2

∂ρl
⊗4s

)]
· 〈~ΨNq ,Nint,Nint,Ng2,r〉

∂F±1,r
∂ul

=

[
±1

4
(ρ⊗ a)⊗

(
∂(M ± 1)2

∂ul
⊗4s

)]
· 〈~ΨNq ,Nint,Nint,Ng2,r〉

∂F±1,r
∂vl

=

[
±1

4
(ρ⊗ a)⊗

(
∂(M ± 1)2

∂vl
⊗4s

)]
· 〈~ΨNq ,Nint,Nint,Ng2,r〉

∂F±1,r
∂pl

=

[
±1

4

(
ρ⊗ ∂a

∂pl

)
⊗ ((M ± 1)2 ⊗4s)

]
· 〈~ΨNq ,Nint,Nint,Ng2,r〉

+

[
±1

4
ρ⊗ a⊗ ∂(M ± 1)2

∂pl
⊗4s

]
· 〈~ΨNq ,Nint,Nint,Ng2,r〉

∂F±2,r
∂ρl

=

[(
∂(F±1 )

∂ρl
⊗ nx

)
⊗
(−u
γ

)]
· 〈~ΨNq ,Ng2,Ng2,Nq ,r〉

+

[(
∂(F±1 )

∂ρl
⊗ nx

)
⊗
(±2a

γ

)]
· 〈~ΨNq ,Ng2,Nint,r〉

+

[(F±1 ⊗ nx
)⊗

(±2

γ

∂a

∂ρ

)]
· 〈~ΨNq ,Ng2,Nint,r〉

+

[
∂(F±1 )

∂ρl
⊗ u
]
· 〈~ΨNq ,Nq ,r〉

∂F±2,r
∂ul

=

[(
∂(F±1 )

∂ul
⊗ nx

)
⊗
(−u
γ

)]
· 〈~ΨNq ,Ng2,Ng2,Nq ,r〉

+

[(F±1 ⊗ nx
)⊗

(−1

γ
(nx ⊗ ~δNq ,l)

)]
· 〈~ΨNq ,Ng2,Ng2,Nq ,r〉

+

[(
∂(F±1 )

∂ul
⊗ nx

)
⊗
(±2a

γ

)]
· 〈~ΨNq ,Ng2,Nint,r〉

+

[
∂(F±1 )

∂ul
⊗ u
]
· 〈~ΨNq ,Nq ,r〉

+
[
F±1 ⊗ ~δNq ,l

]
· 〈~ΨNq ,Nq ,r〉

∂F±2,r
∂vl

=

[(
∂(F±1 )

∂vl
⊗ nx

)
⊗
(−u
γ

)]
· 〈~ΨNq ,Ng2,Ng2,Nq ,r〉

+

[(F±1 ⊗ nx
)⊗

(−1

γ
(ny ⊗ ~δNq ,l)

)]
· 〈~ΨNq ,Ng2,Ng2,Nq ,r〉

+

[(
∂(F±1 )

∂vl
⊗ nx

)
⊗
(±2a

γ

)]
· 〈~ΨNq ,Ng2,Nint,r〉

+

[
∂(F±1 )

∂vl
⊗ u
]
· 〈~ΨNq ,Nq ,r〉
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∂F±2,r
∂pl

=

[(
∂(F±1 )

∂pl
⊗ nx

)
⊗
(−u
γ

)]
· 〈~ΨNq ,Ng2,Ng2,Nq ,r〉

+

[(
∂(F±1 )

∂pl
⊗ nx

)
⊗
(±2a

γ

)]
· 〈~ΨNq ,Ng2,Nint,r〉

+

[(F±1 ⊗ nx
)⊗

(±2

γ

∂a

∂pl

)]
· 〈~ΨNq ,Ng2,Nint,r〉

+

[
∂(F±1 )

∂pl
⊗ u
]
· 〈~ΨNq ,Nq ,r〉

∂F±3,r
∂ρl

=

[(
∂(F±1 )

∂ρl
⊗ ny

)
⊗
(−u
γ

)]
· 〈~ΨNq ,Ng2,Ng2,Nq ,r〉

+

[(
∂(F±1 )

∂ρl
⊗ ny

)
⊗
(±2a

γ

)]
· 〈~ΨNq ,Ng2,Nint,r〉

+

[(F±1 ⊗ ny
)⊗

(±2

γ

∂a

∂ρl

)]
· 〈~ΨNq ,Ng2,Nint,r〉

+

[
∂(F±1 )

∂ρl
⊗ v
]
· 〈~ΨNq ,Nq ,r〉

∂F±3,r
∂ul

=

[(
∂(F±1 )

∂ul
⊗ ny

)
⊗
(−u
γ

)]
· 〈~ΨNq ,Ng2,Ng2,Nq ,r〉

+

[(F±1 ⊗ ny
)⊗

(−1

γ
(nx ⊗ ~δNq ,l)

)]
· 〈~ΨNq ,Ng2,Ng2,Nq ,r〉

+

[(
∂(F±1 )

∂ul
⊗ ny

)
⊗
(±2a

γ

)]
· 〈~ΨNq ,Ng2,Nint,r〉

+

[
∂(F±1 )

∂ul
⊗ v
]
· 〈~ΨNq ,Nq ,r〉

∂F±3,r
∂vl

=

[(
∂(F±1 )

∂vl
⊗ ny

)
⊗
(−u
γ

)]
· 〈~ΨNq ,Ng2,Ng2,Nq ,r〉

+

[(F±1 ⊗ ny
)⊗

(−1

γ
(ny ⊗ ~δNq ,l)

)]
· 〈~ΨNq ,Ng2,Ng2,Nq ,r〉

+

[(
∂(F±1 )

∂vl
⊗ ny

)
⊗
(±2a

γ

)]
· 〈~ΨNq ,Ng2,Nint,r〉

+

[
∂(F±1 )

∂vl
⊗ v
]
· 〈~ΨNq ,Nq ,r〉

+
[
F±1 ⊗ ~δNq ,l

]
· 〈~ΨNq ,Nq ,r〉

∂F±3,r
∂pl

=

[(
∂(F±1 )

∂pl
⊗ ny

)
⊗
(−u
γ

)]
· 〈~ΨNq ,Ng2,Ng2,Nq ,r〉

+

[(
∂(F±1 )

∂pl
⊗ ny

)
⊗
(±2a

γ

)]
· 〈~ΨNq ,Ng2,Nint,r〉

+

[(F±1 ⊗ ny
)⊗

(±2

γ

∂a

∂pl

)]
· 〈~ΨNq ,Ng2,Nint,r〉

+

[
∂(F±1 )

∂pl
⊗ v
]
· 〈~ΨNq ,Nq ,r〉
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∂F±4,r
∂ρl

=

{
∂(F±1 )

∂ρl
⊗
[
− γ − 1

γ2 − 1
u⊗ u

]}
· 〈~ΨNq ,Ng2,Nq ,Ng2,Nq ,r〉

±
{
∂(F±1 )

∂ρl
⊗
[

2(γ − 1)

γ2 − 1
u⊗ a

]}
· 〈~ΨNq ,Ng2,Nq ,Nint,r〉

±
{

(F±1 )⊗
[

2(γ − 1)

γ2 − 1
u⊗ ∂a

∂ρl

]}
· 〈~ΨNq ,Ng2,Nq ,Nint,r〉

+

{
∂(F±1 )

∂ρl
⊗
[

2

γ2 − 1
a⊗ a

]}
· 〈~ΨNq ,Nint,Nint,r〉

+

{
F±1 ⊗

[
2

γ2 − 1

∂a

∂ρl
⊗ a
]}
· 〈~ΨNq ,Nint,Nint,r〉

+

{
F±1 ⊗

[
2

γ2 − 1
a⊗ ∂a

∂ρl

]}
· 〈~ΨNq ,Nint,Nint,r〉

+

{
(∂F±1 )

∂ρl
⊗
[
u⊗ u+ v ⊗ v

2

]}
· 〈~ΨNq ,Nq ,Nq ,r〉

∂F±4,r
∂ul

=

{
∂(F±1 )

∂ul
⊗
[
− γ − 1

γ2 − 1
u⊗ u

]}
· 〈~ΨNq ,Ng2,Nq ,Ng2,Nq ,r〉

+

{
F±1 ⊗

[
− γ − 1

γ2 − 1
(nx ⊗ ~δNq ,l)⊗ u

]}
· 〈~ΨNq ,Ng2,Nq ,Ng2,Nq ,r〉

+

{
F±1 ⊗

[
− γ − 1

γ2 − 1
u⊗ (nx ⊗ ~δNq ,l)

]}
· 〈~ΨNq ,Ng2,Nq ,Ng2,Nq ,r〉

±
{
∂(F±1 )

∂ul
⊗
[

2(γ − 1)

γ2 − 1
u⊗ a

]}
· 〈~ΨNq ,Ng2,Nint,r〉

±
{
F±1 ⊗

[
2(γ − 1)

γ2 − 1
(nx ⊗ ~δNq ,l)⊗ a

]}
· 〈~ΨNq ,Ng2,Nint,r〉

+

{
∂(F±1 )

∂ul
⊗
[

2

γ2 − 1
a⊗ a

]}
· 〈~ΨNq ,Nint,Nint,r〉

+

{
(∂F±1 )

∂ul
⊗
[
u⊗ u+ v ⊗ v

2

]}
· 〈~ΨNq ,Nq ,Nq ,r〉

+

{
F±1 ⊗

[
~δNq ,l ⊗ u+ u⊗ ~δNq ,l

2

]}
· 〈~ΨNq ,Nq ,Nq ,r〉

(C.4)
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∂F±4,r
∂vl

=

{
∂(F±1 )

∂vl
⊗
[
− γ − 1

γ2 − 1
u⊗ u

]}
· 〈~ΨNq ,Ng2,Nq ,Ng2,Nq ,r〉

+

{
F±1 ⊗

[
− γ − 1

γ2 − 1
(ny ⊗ ~δNq ,l)⊗ u

]}
· 〈~ΨNq ,Ng2,Nq ,Ng2,Nq ,r〉

+

{
F±1 ⊗

[
− γ − 1

γ2 − 1
u⊗ (ny ⊗ ~δNq ,l)

]}
· 〈~ΨNq ,Ng2,Nq ,Ng2,Nq ,r〉

±
{
∂(F±1 )

∂vl
⊗
[

2(γ − 1)

γ2 − 1
u⊗ a

]}
· 〈~ΨNq ,Ng2,Nint,r〉

±
{
F±1 ⊗

[
2(γ − 1)

γ2 − 1
(ny ⊗ ~δNq ,l)⊗ a

]}
· 〈~ΨNq ,Ng2,Nint,r〉

+

{
∂(F±1 )

∂vl
⊗
[

2

γ2 − 1
a⊗ a

]}
· 〈~ΨNq ,Nint,Nint,r〉

+

{
(∂F±1 )

∂vl
⊗
[
u⊗ u+ v ⊗ v

2

]}
· 〈~ΨNq ,Nq ,Nq ,r〉

+

{
F±1 ⊗

[
~δNq ,l ⊗ v + v ⊗ ~δNq ,l

2

]}
· 〈~ΨNq ,Nq ,Nq ,r〉

∂F±4,r
∂pl

=

{
∂(F±1 )

∂pl
⊗
[
− γ − 1

γ2 − 1
u⊗ u

]}
· 〈~ΨNq ,Ng2,Nq ,Ng2,Nq ,r〉

±
{
∂(F±1 )

∂pl
⊗
[

2(γ − 1)

γ2 − 1
u⊗ a

]}
· 〈~ΨNq ,Ng2,Nint,r〉

±
{

(F±1 )⊗
[

2(γ − 1)

γ2 − 1
u⊗ ∂a

∂pl

]}
· 〈~ΨNq ,Ng2,Nint,r〉

+

{
∂(F±1 )

∂pl
⊗
[

2

γ2 − 1
a⊗ a

]}
· 〈~ΨNq ,Nint,Nint,r〉

+

{
F±1 ⊗

[
2

γ2 − 1

∂a

∂pl
⊗ a
]}
· 〈~ΨNq ,Nint,Nint,r〉

+

{
F±1 ⊗

[
2

γ2 − 1
a⊗ ∂a

∂pl

]}
· 〈~ΨNq ,Nint,Nint,r〉

+

{
(∂F±1 )

∂pl
⊗
[
u⊗ u+ v ⊗ v

2

]}
· 〈~ΨNq ,Nq ,Nq ,r〉

(C.5)

It should be noted that finding the derivatives of the terms like ∂a
∂ρl

, ∂a
∂pl

, ∂(M±1)2

∂ρl
,∂(M±1)2

∂ul
,

∂(M±1)2

∂vl
, and ∂(M±1)2

∂pl
for the Jacobians of the VLSFV involves solving a linear problem
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of the form,

∂~α

∂ql
=




Ψ0(ξ0) Ψ1(ξ0) · · · ΨNint(ξ0)

Ψ0(ξ1) Ψ1(ξ1) · · · ΨNint(ξ1)
...

...
. . .

...

Ψ0(ξNint) Ψ1(ξNint) · · · ΨNint(ξNint)




−1

d

dql





r0

r1

...

rNint





(C.6)

where ~α are the deterministic modes of any generic variable for user-input Nint modes,

ql = (ρl, ul, vl, pl), and ~r is the correnponding right hand side of the generic variable.

The definition of ~r is best explained through an example. Suppose one wants to

compute the deterministic density inverse modes for a stochastic variable, rhoinv∗,

then

α∗ =
1

ρ∗


Ψ0(ξ0) Ψ1(ξ0) · · · ΨNint(ξ0)

Ψ0(ξ1) Ψ1(ξ1) · · · ΨNint(ξ1)
...

...
. . .

...

Ψ0(ξNint) Ψ1(ξNint) · · · ΨNint(ξNint)








α0

α1

...

αNint





=





1
ρ0Ψ0(ξ0)

+ 1
ρ1Ψ1(ξ0)

+ · · ·+ 1
ρNqΨNq (ξ0)

1
ρ0Ψ0(ξ1)

+ 1
ρ1Ψ1(ξ1)

+ · · ·+ 1
ρNqΨNq (ξ1)

...

1
ρ0Ψ0(ξNint )

+ 1
ρ1Ψ1(ξNint )

+ · · ·+ 1
ρNqΨNq (ξNint )





where,

~r =





1
ρ0Ψ0(ξ0)

+ 1
ρ1Ψ1(ξ0)

+ · · ·+ 1
ρNqΨNq (ξ0)

1
ρ0Ψ0(ξ1)

+ 1
ρ1Ψ1(ξ1)

+ · · ·+ 1
ρNqΨNq (ξ1)

...

1
ρ0Ψ0(ξNint )

+ 1
ρ1Ψ1(ξNint)

+ · · ·+ 1
ρNqΨNq (ξNint )






