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Computational fluid dynamics (CFD) is used to resolve the unsteady Navier Stokes
equations for prediction of aerodynamic forces and moments acting on dynamic helicopter
sling loads. The six-degree-of-freedom (6-DOF) rigid-body equations are tightly coupled
with CFD to simulate body motion, and a model of the cables is developed to provide
constraint forces and moments. This work presents the methodology and results of the
coupled simulations with validation against experimental data. In addition, integration
schemes for the 6-DOF equations are evaluated, and the effect of feature-based grid adapta-
tion is investigated. Results of the simulations demonstrate good correlation with available
experimental data and also show that the cable model assumptions are important in the
dynamic behavior of the sling load.

Nomenclature
U, U, W Velocity components in the body frame
D, q, T Angular velocity components in the body frame
Ve, Vy, Ve Velocity components in the inertial frame

e Radial-direction unit vector

F , M Force and moment vectors

T Cable tension

F,, Fy Spring and damper forces

F., M, Total constraint force and moment applied by cables
P, O Cable attachment points on body and fixed space
1 Inertia tensor

eg, €1, €2, €3 Quaternions

S Numerical order of accuracy

B8 Yaw angle

Wn Natural frequency, w, = \/k/m

o Damping ratio

At Time step

Re Reynolds number, Re = pV,eLyes /1t

Subscript

n Time level

r Radial component

1

Cable number

I. Introduction

A major benefit of helicopters and other rotor-based vertical lift vehicles is their versatility in being
able to transport diverse loads to remote or precarious locations. Loads attached by cables underneath the
rotorcraft are referred to as sling loads. This method of transporting loads is very common in both military
and civilian operations because of the wide range of load types that can be attached in this way.
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However, in practice a number of difficulties arise in sling load operations. In general, sling loads are not
designed for aerodynamic efficiency and as such usually can be classified aerodynamically as bluff bodies. In
forward flight, the unsteady wake shed from the sling load results in periodic oscillations of the load. The
magnitude of oscillation increases with flight speed as the unsteady aerodynamic forces become stronger,
resulting in a dangerous condition in which the sling load may be lost, the rotorcraft and crew may be put
in danger, or both. Therefore, it is important that for any sling load configuration, a safe flight envelope
must be determined prior to operation.

Currently, flight envelope validation for sling loads is carried out via flight testing, which is expensive
and time-consuming.! Substantial savings are possible by migrating to flight envelope validation based on
computational simulation and wind tunnel testing. However, bluff bodies are challenging for aerodynamic
analysis in that they produce large unsteady, turbulent wakes with periodic separation and reattachment,?
precluding the use simplistic aerodynamic models that neglect these phenomena. In addition, in some flight
conditions the rotor wake may impinge on the load, further complicating both numerical and experimental
aerodynamics predictions.

In addition to aerodynamic complexities, the system dynamics must also be considered. Variations in
cable attachment geometry and materials may have a significant effect on dynamic response of the sling
load,? and widely varying sling geometries and systems used in operations introduce challenges in developing
a generalized model for use in simulation. Furthermore, the rotorcraft and sling load make up a coupled
system in which the rotorcraft’s dynamics can affect the sling load, and vice-versa. Due to complexity and
size constraints, in most cases it is not possible to investigate the coupled system dynamics in a wind tunnel,
and in computational analyses the added complexity results in significantly higher cost.

There have been a number of recent efforts to understand sling load dynamics and aerodynamics. Raz
et al.* and Cicolani et al.® used wind tunnel testing while focusing on passive stabilization of sling load
dynamics. They reported good correlation of wind tunnel results with flight testing and demonstrated that
higher safe flight speeds could be reached in sling loads operations by the addition of aerodynamic fins.
Raz et al.! used wind tunnel testing and flight test data to investigate several important aspects of sling
loads operations, including coupled helicopter-load dynamics, pilot induced oscillations, and most notably
that carefully-implemented wind tunnel testing of scaled sling load models can give good correlation with
flight test data. Others have approached the problem using simulation instead of wind tunnel testing.
For example, Cicolani and da Silva® used computational fluid dynamics (CFD) and dynamic simulation in
a one-way coupling approach. In that study, unsteady aerodynamic characteristics of the load were first
simulated using two-dimensional CFD and used to construct a forcing function for the sling load dynamics
in frequency-domain response analysis. A similar approach was also used by Cicolani et al.,” but with the
aerodynamic model augmented by wind tunnel and three-dimensional CFD data.

Theron et al.® simulated the aerodynamics of a spinning load in prescribed motion about a fixed axis
using three-dimensional CFD and a variety of turbulence models to demonstrate that CFD is capable of
predicting aerodynamic force coefficients accurately when the load is in motion. Further testing of various
CFD codes, turbulence models, and load geometries was carried out by Theron et al.” in both steady and
prescribed dynamic motion. Mantri et al.'® used wind tunnel testing as well as two-dimensional and three-
dimensional CFD to investigate the aerodynamics and dynamics of sling loads. One key result of the CFD
studies performed therein is that two-dimensional CFD may be appropriate only for a small range of flow
regimes seen in sling loads operations, but to capture all of the aerodynamic phenomena during sling loads
simulation a fully three-dimensional grid and turbulence model are required. Greenwell?> and Prosser and
Smith!! have demonstrated that the requirement for three-dimensional aerodynamic analysis are a result of
complex flow features such as separation, reattachment, and relief effects which become dominant at different
orientation angles relative the flow direction.

The goal of the present research is to improve the understanding of the complex physics of dynamic bluff
bodies (in particular, sling loads) using high-fidelity unsteady Navier-Stokes-based computational aerody-
namics coupled with computational dynamics in a two-way coupling fashion. In previous sling loads studies
involving CFD simulation, CFD was used to extract static aerodynamic data or limited dynamic data for
later use in simulation models or comparison with wind tunnel and flight test data®'® . In the present
paper, the dynamics and aerodynamics of a sling load configuration are simulated simultaneously using CFD
coupled with a library to compute the dynamic response of the load. The ultimate goal of this research
is to investigate whether modern computational approaches are sufficient to predict the physical behavior
of this complex system so that in the future less flight testing will be required for operational validation
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of sling-load missions. In this work, the methodology used for Navier-Stokes-based dynamic simulations is
presented, along with results of simulations and correlation with experimental data.

II. FUNS3D Code

High-fidelity sling loads analysis requires a computational tool able to capture highly separated and
unsteady turbulent wakes over a broad range of Reynolds numbers and Mach numbers. Sling load dynamics
involve large oscillations, which means that overset grid capability is required for dynamic simulations. The
CFD code FUN3D, developed at NASA Langley, is used in this research to fulfill these requirements. FUN3D
solves the Navier-Stokes equations using an implicit finite-volume approach on unstructured mixed element
grids.!?13 Grid adaptation is leveraged to improve the capture of the turbulent wake region.'* A number
of turbulence modes are available, including Spalart-Allmaras, Menter kw-SST, Detached-Eddy Simulation,
and hybrid RANS-LES. In this work, the hybrid RANS-LES model is chosen because it is appropriate for
unsteady flows with large separated regions.!®: 6

The dynamic simulation of sling loads also requires the CFD code to be able to handle moving bodies
with large degrees of displacement and rotation. In FUN3D, the overset grid option is employed to allow for
these types of simulations. Overset grid mechanics and interpolation are controlled through the DiRTLib'”
(Donor Receptor Transaction Library) and SUGGAR++!® (Structured, Unstructured, and Generalized Grid
AssembleR) libraries.

III. Six-Degree-of-Freedom Simulation

The six-degree-of-freedom (6-DOF) motion of a rigid body may be described completely using a system
of first-order ordinary differential equations. The equations are written in the moving body frame so that the
rotational inertia tensor is constant. The four-parameter quaternion formulation may be used to describe
the orientation of the rigid moving body without any singularities.'® This formulation leads to the following
system of thirteen equations to be solved simultaneously

1 1 1
i= S (Bror—wg) b= (Ewrup) b= L (Rug o) 0
Ploz — qI:ry — 11y, = M, +qr (I Izz ( T2) Iyz - pr-[xy +pqls.
_plary + quy - ".’Iyz = M + pr (I Ia:x ( 2) I, _pquz + quxy
—p[ quz + TIzz - M +pq (I ITI?J ( 2) Izy - qTIa:z +prlyz
. 1
€0 = 5 (—e1p — e2q — e37)
. 1
@L=g (eop — e3q + ear)
. 1
€2 =35 (esp + eoq — ex1r)
. 1
€ =5 (—e2p + e1q + eqr)

X=V, Y=V, Z=V,

where the force and moment components are given in the moving body frame. There are two contributions to
these forces and moments: aerodynamics computed by FUN3D and constraint forces and moment computed
by the cable model. The positions X, Y, and Z as well as the velocities V., V,, and V, are given in the
inertial frame. V;, V,, and V, are calculated from the moving-body frame velocities u, v, and w using the
transformation matrix which is determined from the quaternions eg, e1, o, and es.!?

FUNS3D has been linked to a 6-DOF library developed by the University of Alabama at Birmingham and
Mississippi State University under the DOD PET program.2? This library permits simulation of multiple
moving bodies with compound forces and moments applied to each. It calculates rigid body motion under
the influence of these external forces and moments using fourth-order Runge-Kutta temporal integration of
Eq. 1.

3 of 19

American Institute of Aeronautics and Astronautics



III.A. Evaluation of Integration Schemes

The temporal integration scheme in the 6-DOF library is the fourth-order Runge-Kutta (RK4) explicit
scheme. The RK4 scheme solves systems of first-order ordinary differential equations of the form {i} =
f(t,{z}). Equation 1 falls into this category. In the Runge-Kutta 4th-order (RK4) scheme, the state
variables are not updated directly from time level ¢,, to time level ¢,,.1. Instead, they are updated in four
intermediate steps. This Runge-Kutta scheme is popular because it reaches high-order accuracy without the
need for storage of data from previous time steps. As an explicit scheme, an iterative process is not required,
making it simple to implement in a computer code.

In the current application, however, the F' and M terms in Eq. 1 present some difficulty. Ideally for
computational efficiency, the 6-DOF library would receive forces and moments from the CFD solver once per
time step, numerically integrate Eq. 1, and then return the updated values of the state variables to the solver
again. This approach means that F' and M, which are computed by FUN3D, cannot be updated during the
intermediate time steps in the RK4 scheme, which certainly introduces error into the solution. Alternatively,
for a proper implementation of the scheme, the flow solver would have to be called three additional times
to recompute F' and M for the intermediate steps. This approach is not desirable because it results in a
computational cost four times that of the former approach.

To determine the influence of error in the solution of Eq. 1 when the RK4 scheme is used without
updating F' and M during the intermediate steps, a simple spring-mass test case was investigated. The mass
was 40 kg and the spring constant was 1000 N/m. The simulation was initialized with the mass at rest
and a stretched length of 1 m for the spring. The RK4 scheme was evaluated for this system by running a
ten-second simulation with time step size ranging from 0.0001 seconds to 0.01 seconds in order to quantify
numerical error and time-step convergence.

For an unforced spring-mass system with given initial conditions, the exact solution to the equation of
motion is given by Eq. 2

x = C cos (wpt) + Ca sin (wyt) (2)

where z is the stretched length of the spring, w, is the natural frequency, equal to \/%, and C7 and Cy are

constants that depend on the initial state of the system. Given z(0) = 1 and 4 (0) = 0, it can easily be
shown that C; = 1 and Cy = 0. Thus, for this simple spring-mass system the solution to the equation of
motion is

x = cos (wpt) (3)

In assessing the accuracy of the scheme, the numerical output was matched with a curve fit of the
following form

x = e cos (wnt) (4)

where the term e°® models the growth or decay of the amplitude in the solution. Since there is no physical
damping in the problem, any damping in the numerical solution, either positive or negative, results from
numerical error. The proximity of ¢ to 0 is indicative of the accuracy of the scheme. A non-negligible
positive value of ¢ indicates instability of the system due to numerical error, and a negative value indicates
numerical dissipation. The result for the RK4 scheme implementation in the 6-DOF library is shown in Fig.
1(a).

In Fig. 1(a), it is clear that there is significant error for the coarsest time step of 0.01 seconds. The growth
rate o decreases by an order of magnitude each time the time step decreases by an order of magnitude, so
that with a very small time step of 0.0001 seconds the growth rate is on the order of 10~4, which may be
considered negligible. However, this time step size represents over 1200 steps per cycle, which is quite a
large number even by CFD standards. For example, rotorcraft simulations on unstructured grids typically
use 360 steps per revolution.?! Therefore, the error introduced by this implementation of the RK4 scheme
without force and moment updates at intermediate steps may be important in the coupled simulations.

With these results in mind for the test case, it is clear that a different time integration strategy is desirable
for the 6-DOF equations of motion. Updating the forces and moments for the RK4 intermediate steps would
significantly increase the computational cost of the simulation, so instead a different integration scheme was
sought that does not require these intermediate steps. One such scheme is the Adams-Bashforth scheme.
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Figure 1: Exponential growth of spring amplitude in simulation of a spring-mass system for two different
schemes
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Like the RK4 scheme, the Adams-Bashforth scheme is also an explicit scheme and belongs to the family of
linear multistep methods,?? with the capability to achieve high accuracy up to fifth order. However, this
scheme does not require any intermediate state updates like RK4. For the Adams-Bashforth scheme of order
s, the state variables are updated from time ¢, to t,; according to the following equation:

s—1
{ohupr = {2h + A agsf (tago foh) (5)
§=0

The coefficients a,; may be determined via a Taylor series expansion of x and f(¢,x) terms in the
equation and choosing o ; such that all terms above order s are canceled.?? The coefficients up to order 5
are given in Table 1.22

Table 1: Coefficients for the Adams-Bashforth schemes

S Qg oy (eD] ag Qy
1 1 — — — —
2 3/2 —1/2 — — —
3 23/12 —4/3 5/12 — —
4 55/24 —59/24 37/24 -3/8 —
5 1901/720 —1387/360 109/30 —637/360 251/720

Equation 5 indicates that the Adams-Bashforth scheme of order s requires data for each of the thirteen
state variables for the previous s time steps in order to update the system to time level n + 1. This
memory requirement is one downside of the Adams-Bashforth schemes in comparison with RK4. The Adams-
Bashforth fifth-order scheme (AB5) was implemented into the 6-DOF library and tested for the same spring-
mass case as presented for RK4. The results for the AB5 scheme are shown in Fig. 1(b). Figure 1(c)
compares the exponential growth rate, o, of the numerical solution on a log-log scale. From this figure it
is apparent that the AB5 scheme performs much better in terms of numerical error than the RK4 scheme
without intermediate force and moment updates. In fact, in this simple test case, o was lower in magnitude
for the AB5 scheme with a time step of 0.01 seconds than for the RK4 scheme with a time step two orders
of magnitude smaller.

The AB5 scheme requires no calls to the flow solver during intermediate time steps, saving 75% the
computational cost compared to a proper RK4 implementation for a coupled simulation. The downside to
the AB5 scheme is the additional memory required to store the past state information f of Eq. 5. For the
6-DOF equations of motion being solved here, this amounts to 65 additional double precision floating point
numbers per moving body, or 520 additional bytes. In the present effort, only one moving body is being
simulated, so the memory cost is quite negligible. Based on these results, the AB5 scheme is used in all
dynamic simulations of sling loads in this paper.

IV. Cable Modeling

Although FUN3D can simulate moving bodies in 6-DOF motion, only aerodynamic loads and loads that
are known functions of time can be applied to the moving body. Thus, it was necessary to create a model
of the cables which produce constraint forces and moments on the moving body. The cable model code
passes these forces and moments to the 6-DOF library in addition to the aerodynamic forces and moments
computed by the flow solver.

A simple model has been developed in which the cables produce spring-like and damper-like forces on the
moving body. A similar approach was taken by Tyson et al.2* The model is developed so that any number
of cables may be attached to a moving body and to fixed points in space. The fixed points may be different
for each cable, but note that this treatment precludes coupled simulation of helicopter and load dynamics
because these points are fixed in inertial space. Consider Fig. 2, which provides an illustration of the cable
modeling approach. In Fig. 2, a box is suspended by three cables. The tension produced by each cable i on
the box is T;. The tension on each cable acts in a direction along the vector from the fixed attachment point
O; in space to the attachment point P; on the moving body. This direction is referred to as €,.;. By setting
the cable tension force in this direction, the assumption is made that the cable is straight.
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Figure 2: Model of a swinging box suspended by four cables in parallel

The sum of all three tension forces results in the overall cable force, F’;, that is applied at the center of
gravity (CG) of the moving body. For reference, the radial direction €, and tangential component of velocity
V; are also shown for the moving body (though it is understood that the sum of forces F,. does not necessarily
act along the vector €,.). The tension force T; of each cable is the result of two contributions, each acting in
the negative radial direction for the cable,

T, = — (Fsi + Fa;) € (6)

where Fj; is a spring-like force, and Fj; is a damper-like force. For a cable of length [;, the magnitude of the
spring-like force is a function of the distance between P; and O;. If this distance is d;, then the magnitude
of the spring-like force may be written

d — 1 S
pof R@—1), iz -
0 d; <1

where k; is the effective spring constant for the cable. Including a damping force is also important because it
allows the tension force to reach a steady-state value without significant oscillation about some mean value,
as would be the case if only the spring-like force were included. The magnitude of the damping force is given
as

CiVri d; > 1;
FZ: 1YTrey 1 —— Y1 8
¢ { 0 di<l; ®

where ¢; is the damping constant and wv,; is the velocity of the local attachment point P; in the radial
direction. Note that in Egs. 7 and 8 it is possible for the cable to produce no force at all when d; < [;. This
treatment allows a simple means to model a slack cable. The total constraint force F, is just the sum of all
the tensions:

1!

i=1

N

where N is the number of cables. To compute the moments, the only additional parameter required is the
vector from the CG to points P;, or rog;. The total constraint moment applied at the CG is given as

N
M. = ZFCGi x T; (10)
i=1
The parameters k and ¢ may be determined in a number of ways. If the simulation is to be compared with

an experiment, it may be possible to measure the effective spring and damping constants for the cables. The
spring constant is related to the modulus of elasticity for the material and can be determined by stretching
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the spring with a known applied force and measuring the strain. The damping constant can be more difficult
to determine experimentally. In a less precise approach, the spring constant may be estimated by providing
a maximum desired stretch for some condition (say, in a pendulum swinging motion) and determining the
spring constant necessary to achieve that motion. The damping constant, in turn, can be set to a value that
is sufficiently large to result in an overdamped system for the mass-spring-damper system. Such an approach
would be appropriate if the cables are quite stiff and not expected to stretch and unstretch in an oscillatory
fashion. However, a cable that is very stiff (with a large spring constant) may result in numerical instability
if the time step is too large.

V. Simulations and Results

V.A. Static Simulations

Simulation of bluff bodies in turbulent flow in CFD is challenging even without dynamics included, involving
separation, reattachment, and unsteady shedding of the turbulent shear layer.!! Therefore, it is important
to first validate the flow solver and simulation procedures against static data before moving on to dynamic
cases.

CFD simulations were performed to compare with experimental data for a box configuration. Experi-
mental data used for the correlation was carried out in the 9 x 7 ft. John J. Harper wind tunnel at the School
of Aerospace Engineering of Georgia Institute of Technology.'%2° The box configuration is a 1/11*"-scale
model of Container Express (CONEX) cargo container.* The dimensions and inertial parameters (the latter
of which are important for dynamic simulations) of the box are given in Table 2.

Table 2: Dimensions and inertial parameters for box

Length (m) 0.23368 Mass (kg) 1.490
Width (m)  0.16764 I, (1073 kgm?) 11.04
Height (m) 0.17145 I, (1073 kgm?)  7.77

I.. (1073 kgm?) 10.49

The static simulations were intended to demonstrate many of the complex unsteady aerodynamic effects
which occur in the dynamic cases as well, including separation, reattachment, and unsteady turbulent vortex
shedding. Static simulations were performed for the box at a single pitch angle of 0 degrees with yaw angles
varying from 0 to 90 degrees. The experiments were performed at a tunnel speed of 35 mph, resulting in a
Reynolds number of 215,000 based on the average of length and width.

An overset mesh approach is used with a near-body grid for the box placed inside a background grid
representing the Harper wind tunnel. The overset grid has 3.2 million vertices. The near-body grid is mixed
element with prismatic elements in the boundary layer. The composite grid is comprised of 58% tetrahedral
elements and 42% prismatic hexahedral elements. Face angles in the grid range from 8.7° to 160.9° with a
mean of 76.6° and standard deviation of 21.1°. For accurate resolution of the turbulent boundary layer, 35
cells were used in the normal direction with a dimensionless wall distance, y*, less than 1 on the surface.
Boundary layer parameters similar to these have been used successfully in previous studies of unsteady,
separated bluff-body flows.?6 A side view of the grid and boundary layer are shown in Fig. 3. In this figure,
the box is placed at the § = 0 orientation.

Static simulations were performed in time-accurate mode to capture the unsteady bluff-body vortex
shedding. A hybrid RANS-LES turbulence model was used to resolve large eddies and turbulent fluctuations
in the wake while modeling boundary layer turbulence. This model has been shown to give good predictions
in bluff-body simulations in the past.'® !¢ Time averaged coefficients of drag, side force, and yaw moment
are presented in Fig. 4 for the simulations along with two sets of experimental data. Force coeflicients
are normalized by the average of the front and side areas, since during the 5 sweep from 0 to 90 degrees
the front and side faces switch positions. Yaw moments are measured about the center of the box and are
non-dimensionalized by the same area and by the average of box length and width as the reference length
dimension. The time-accurate CFD simulations were run long enough that the forces and moments could
be averaged over several cycles of vortex shedding.

Overall, correlation between CFD and experiment in the static simulations is quite good. There is some
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Figure 3: Grid for box simulations (at § = 0 degrees)
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Figure 4: Mean force and moment coefficients for box at Re = 215,000 in a sweep of yaw angle. Experimental
data from Mantri et al.'0>2?
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scatter in the experimental data, particularly in the 2010 drag data and 2012 experimental yaw moment
data. CFD agrees well with both sets of experimental drag data at 0 degrees and near 90 degrees, but at 90
degrees the CFD prediction is slightly higher than experiment. At mid-range yaw angles, the CFD prediction
is very close to the 2010 experimental data, though there is scatter in the data there. The CFD prediction
and both sets of experimental data agree well over most of the sweep for side force and yaw moment. In
the side force, there are some discrepencies near § = 90, and here the CFD data correlates more closely
with the 2010 experimental data. The CFD data predicts a somewhat higher peak in yaw moment than
the experimental data in the lower half of the 8 sweep but somewhat lower (in magnitude) peak at the
higher end. Despite these small differences, however, the CFD data is generally near the center of the two
experimental data sets, so confidence in the CFD methodology is high. The data also compares well with
prior work by Theron et al.”

V.B. Dynamic Simulations
V.B.1. Ezxperimental validation

A number of dynamic experiments were previously

performed in the John Harper tunnel using the 45F F—-—'.

1/11* scale CONEX box model.'’  Flow veloc- wk i

ities in the tunnel at which measurements were b /

taken ranged from 10 to 45 mph, corresponding to _ %5 ,’

a Reynolds number of 85,000 to 390,000 based on b 3ok ]

the average side length. In each case, the box model % r !

was suspended from the top of the tunnel by four E-: 251 ii

cables attached to the top corners of the box. Wind ; ok i

tunnel tests did not account for any helicopter dy- £ Va

namics (the sling load was attached to the ceiling of ® 15F .-’

the wind tunnel) or rotor wake interactions on the ot e

sling load. The mount at the top of the tunnel was 10:— -

gimballed so that rotation could occur freely in any 5k e

direction. The dynamic experiments started from L . ” L L
0 ﬂS 20 30 40

rest with the narrow side of the box (correspond-
ing to the width dimension) facing forward and the
tunnel off. The flow velocity was slowly increased Figure 5: GT experimental data for mean trailing an-
in increments of 5 mph, and the mean trailing angle gle for the box model as a function of tunnel velocity!?
was measured after allowing enough time for flow

transients from the change in tunnel velocity to die out. Four different box models were tested, with varying
moment of inertia, but for comparison with CFD only the model with the greatest moment of inertia was
considered. The mass and moments of inertia for this configuration are given in Table 2.

Figure 5 shows the results from the wind tunnel tests. Initially, the trailing angle increases in a manner
roughly proportional to the square of tunnel velocity. Above 35 mph, a sudden increase in trailing angle
occurs. This sudden increase in trailing angle occurs because the yaw oscillations of the box have become
large enough that the narrow side is no longer facing forward. Instead the broad side faces forward, causing a
sharp increase in drag and trailing angle. CFD simulations in this paper attempt to correlate with the mean
trailing angle data of Fig. 5 and also to capture the transition from narrow-side-forward to broad-side-forward
(hereafter referred to as NS-BS transition).

Flow velocity (mph)

V.B.2. 25 mph simulation

Initial simulations were performed at 25 and 40 mph for comparison with experimental data. The simulations
used the same overset grid as in the static simulations (Fig. 3). The background grid is a model of the test
section of the tunnel, and the overset grid has 3.2 million nodes. These two flow speeds were selected because
of their differing NS-BS transition behavior in the experimental data.

In the first cases, the simulations were initialized with the box hanging at rest directly below the at-
tachment point of the cables at the top of the tunnel. The flow was initialized in two steps. First, the
solver was run in steady mode to remove flow transients, and subsequently it was run unsteady for 500 steps
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with the box held static to allow the unsteady separated wake to develop. This procedure allows an accu-
rate representation of the initial flow field so that unnecessary errors are not introduced into the dynamic
simulation.

The 25 mph simulation ran for over 20,000 time steps, equating to 6.24 seconds of physical time. The
simulation required roughly 18 hours per 1000 steps on 64 processors, highlighting the expense of dynamic
bluff body simulations in CFD. Figure 6 gives the euler angles and angular rates for the box during the
simulation.
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Figure 6: Results of the initial 25 mph simulation

For the first 5 seconds of the simulation, the box undergoes pitch oscillations which are both caused and
damped primarily by drag. The damped nature of the oscillations indicates that a periodic “steady-state”
solution is being reached for the pitch angle. However, the aerodynamics and dynamics are highly coupled
and nonlinear, and while the pitching motion is being damped by drag, there is also a yawing motion that
grows with time. After 5 seconds, the yaw angle increases to the point that the box undergoes NS-BS
transition, disrupting the periodic pitch oscillation. Note that the rapid departure of yaw angle during NS-
BS transition is not indicative of numerical instability, as flow residuals maintain good convergence during
this dynamic behavior.

The small mean trailing angle of 9 degrees for
the 25 mph test in Fig. 5 indicates that in the ex- Pitch angle
perimental this NS-BS did not take place. This dis- - - — - Pitch rate
crepancy needs to be investigated further. Consid- I ]
ering the relatively simple model of the cables used
in the simulation, it is possible that discrepancies in
the dynamics are caused by the cable model. For
example, if there is some drag in the experimental
gimbal mount, some yaw damping would be present
whereas there is none in the cable model used in
simulation. Other possible causes, which are inves-
tigated in this paper, include differences in starting
condition or a need for grid refinement in CFD.

Despite the difference in NS-BS transition be-
havior observed in the dynamics, the pitch oscilla-
tions before transition occurs are nonetheless useful
for predicting the mean trailing angle if transition
had not occurred. During the first 5 seconds of the Figure 7: Prediction of mean trailing angle
simulation, the box undergoes two and a half pitch
oscillations, shown in Fig. 7. This figure overlays the pitch angle and pitch rate on the same plot. Provided
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no NS-BS transition had occurred, it would be expected that the mean trailing angle would be close to the
each angle at which the slope of the pitch rate is 0 in these first two and a half oscillations, because the net
force in the tangential direction is 0 at these points. The predicted mean trailing angle using this approach
is 8.8 degrees, which is remarkably consistent with the experimental result of 9 degrees.

V.B.3. 40 mph simulation

The 25 mph simulation demonstrates that CFD can accurately predict the mean trailing angle of the sling
load. To further investigate the NS-BS transition phenomenon, a 40 mph simulation was also performed.
Figure 8 gives the body angles and angular rates for the 40 mph simulation. Major differences in this
simulation compared with the 25 mph case include the magnitude of the pitch angle during the initial swing,
which is about 40 degrees for this case compared with 17 degrees for the other, and that the yaw and roll
amplitudes become large much earlier in the simulation. In this simulation NS-BS transition occurs after
2.5 seconds, whereas in the 25 mph simulation it occured after 5 seconds. This is expected, because the
aerodynamic moments responsible for the transition behavior are greater in magnitude for the 40 mph case.
This transition was also observed in the experimental tests for the 40 mph case, but not for the 25 mph case.
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Figure 8: Results of the initial 40 mph simulation

In the 40 mph case, the NS-BS transition occurs after less than two pitch cycles. The mean trailing
angle before transition occurs is about 20 degrees; however, this cannot be compared with the experimental
data of Fig. 5 because at 40 mph the trailing angle reported is for post NS-BS transition. Due to the cost
of the simulations, the 40 mph case was not run for long following the NS-BS transition. In the future if
correlation of the mean trailing angle is desired for the 40 mph case, the simulation should be initialized with
the broad side facing forward and at an initial trailing angle close to that recorded in experiment. This type
of initialization allows the final mean trailing angle to be captured without requiring as long a simulation.

Although NS-BS transition behavior was encountered in the 25 mph simulation but not in experiment,
the time required for this behavior to occur in the two simulations is encouraging because it highlights the
trend seen in experiment. Namely, the NS-BS transition occurs more quickly at higher flow speeds. The
fact that this trend is captured in simulation also suggests that some damping may be needed in the cable
model to accurately represent the real attachment.

A significant benefit of numerical simulation is the wealth of data that is readily available without the
need for expensive instrumentation. This data can provide valuable insight into the flow physics. As an
example, during the 25 mph simulation, pressure distributions and flow field samples were saved periodically.
Figure 9 shows a side view of the box and grid colored by contours of vorticity magnitude at various steps
in the simulation, which highlights the highly separated and turbulent nature of the flow. Of particular
interest is the difference in the shear layer behavior in the three snapshots. Initially, both the top and
bottom surfaces of the box experience fully separated flow. After 1700 steps, the boundary layers are still
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fully separated on the top and bottom surfaces, but the shear layer is moving closer to the top surface.
After 3450 steps, the shear layer on the top surface has reattached, and a separation bubble has formed.
Figure 10 shows the pressure distributions on the top and bottom surfaces of the box at the same points
in the simulation, revealing regions of attached flow, separation, and reattachment. These complexities in
flow physics can greatly influence the forces acting on the box and make simplified aerodynamic modeling
particularly challenging.? 1,27

(c) After 3450 steps (1.04 seconds)
Figure 9: x-z slice of the flow field colored by vorticity magnitude

V.B.4. Initial conditions

In order to minimize pitch oscillations and better approximate the conditions in the wind tunnel, the 25
mph case was re-evaluated with new initial conditions. Instead of hanging at rest directly below the cable
attachment point at the top of the tunnel, the estimate of the final mean trailing angle from the previous
simulation was used as the initial position.

In addition to being more representative of the wind tunnel tests, it is hypothesized that the initial
conditions may have an impact on the NS-BS transition behavior. The initial conditions used for the
original 25 mph and 40 mph simulations resulted in significant pitch oscillations, as seen in Figs. 6 and 8.
The pitch oscillations are especially large in the 40 mph simulation. Figure 8(b) shows that the maximum
magnitude of pitch rate is around 1.1 rad/sec, which occurs during the first upswing. The body velocity
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corresponding to this point in time is 1.14 m/s, or about 6.5% the upstream velocity of the flow. Considering
that the aerodynamic forces and moments are proportional to the square of the total air velocity seen by
the box, a 6.5% increase in relative velocity corresponds to a 13.5% increase in the forces and moments.
Therefore, it is expected that the large swinging amplitudes in the initial simulation may cause the NS-BS
transition to occur more quickly than in a simulation with less extreme pitch oscillations.

Figure 11 shows the results of a 25 mph simulation with new initial conditions. In this case, the box starts
from rest hanging with an 8.8° trailing angle. The solution is initialized in the same manner as the original
simulations; first, a steady-state simulation is performed for 500 iterations in order to remove transients
arising from the initial flow field. Next, a time-accurate simulation is performed while the box remains static
to allow the unsteady wake to be set up. The dynamic simulation begins after this initialization procedure.
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Figure 11: Comparison of Euler angles for the original 25 mph simulation and a 25 mph simulation with

modified initial conditions

Figure 11(a) shows the pitch angle for the original simulation and the simulation with new initial condi-
tions. The most obvious difference in this figure is the drastic difference in amplitude of pitch oscillations.
As expected, using the expected mean trailing angle as the initial trailing angle results in only small pitch
oscillations about the mean. In this case, the oscillation magnitude is around 1 degree in either direction.
The period of pitch oscillations is also very similar to the initial simulation, but the phase is different by
180°. In the case with new initial conditions, the box first swings down instead of up, giving rise to the
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phase differnce.

Figures 11(b) and (c) compare the yaw and roll angles, respectively, for the two simulations. In both
cases, behavior similar to that of the pitch oscillations is seen. The magnitudes of yaw and roll oscillations are
smaller for the case with new initial conditions up until NS-BS transition. This result is expected, because
the smaller pitch oscillations result in smaller dynamic pressures and thus smaller magnitudes of forces and
moments. As was the case for the pitch angle, the yaw and roll oscillations exhibit a phase shift of 180°
relative the original simulation.

In addition to the reduced oscillation magnitudes and phase differences compared to the original simu-
lation, with the new initial conditions NS-BS transition is delayed. Figure 11(b) shows that the transition
occurs one half cycle later for the simulation with new initial conditions. This result supports the hypothesis
which motivated the simulation. The new initial conditions did not completely eliminate NS-BS transition.
However, the study does demonstrate that in a nonlinear system with coupled degrees of freedom, details
such as initial conditions can have an effect on dynamics and stability.

V.B.5. Grid adaptation

Due to the expense of unsteady bluff body simulations in CFD, a full grid independence study is not practical.
Instead, for the simulations in Sections V.B.2-V.B.4 the same grid was used which gave good results in the
static simulations. FUN3D has the capability to perform adaptive grid refinement based on flow features.?82?
Grid adaptation is a powerful way to refine the grid so that points are concentrated in the regions where they
are needed while coarsening the grid elsewhere, resulting in an accurate solution with high grid efficiency.
This approach has been routinely applied to rotorcraft and wind turbine simulations with success.3032

This capability is present in FUN3D for steady or unsteady simulations on single or overset grids. A
metric-based approach is taken, which builds up information about flow conditions throughout the grid
during a portion of the simulation. The metric-based approach requires specification of a flow field indicator,
which may be vorticity magnitude, pressure gradient, velocity gradients, or other quantities. After the metric
is constructed during the simulation, the grid is refined based on the local value of this metric. For this study
vorticity magnitude was used as the indicator. This indicator has been used successfully in other dynamic
simulations of bluff bodies.??

The time window to build the metric in a dynamic simulation should be long enough so that the adapted
grid is refined everywhere needed. In the present case, the time window was constructed for the interval
between 1.9 and 3.1 seconds in the simulation with new initial conditions (Fig. 11). This time interval
brackets the downward swing of the box during its second pitch oscillation cycle and also contains a full
cycle of yaw oscillation. After building the time-dependent metric, the near body and background grids are
adapted based on this metric information. Figure 12 shows the top view of the baseline and adapted grid.
The baseline grid has 3.2 million nodes, and after adaptation that number increases to 5.3 million. Figure
12 shows that the grid has been refined in the separated shear layer region and in the wake. Elsewhere in
the grid, there are some differences between the two but the overall grid density remains similar.

Starting with the adapted grid, the simulation with new initial conditions was re-run to assess the effect
of grid adaptation on the dynamics. Figure 13 shows the pitch and yaw angles compared for the baseline and
adapted grid simulations. There are several notable differences in the pitch angle for the two simulations.
First, the adapted grid simulation has a longer initial downswing after release and establishes a smaller mean
trailing angle before NS-BS transition occurs. The longer downswing also introduces a phase difference in
the pitch oscillations between the two simulations.

Figure 13(b) shows that the yaw oscillations are initially smaller for the adapted case, but that they
eventually grow larger. There is also a phase difference in yaw between the two cases which tends to grow
with time, indicating that the frequency of yaw oscillations is greater for the adapted case than the baseline
case. The eventually-larger yaw oscillations result in an earlier NS-BS transition than in the baseline case.

Even though the adapted-grid case resulted in NS-BS transition sooner than the baseline case, the initial
yaw oscillations are smaller in magnitude, indicating that the initial yaw moment is also smaller. The smaller
initial yaw moments indicate that under some conditions grid adaptation may help delay NS-BS transition
behavior for the 25 mph case to better correlate with the experimental result. To investigate this possibility
further, coupling interactions between the various degrees of freedom need to be analyzed in detail. The
initial conditions are also shown to have a significant effect on the dynamics of the system, so in future
comparisons between experiment and CFD the initial conditions should be carefully synchronized between
the two.
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VI. Conclusions

In this paper, the Navier-Stokes equations and rigid body equations of motion are coupled to simulate
the dynamics of sling loads. Two different time integration implementations are evaluated for the rigid body
equations of motion, and the Adams-Bashforth fifth-order scheme is used for dynamic simulations because
of its accuracy and benefits in coupled simulations with respect to computational expense. For simulation
of sling loads, constraint forces and moments are computed by modeling the cables with a spring-damper
representation.

Before performing any dynamic simulations, the CFD solver was first validated against wind tunnel data
for the box geometry over a wide range of yaw angles, showing good correlation. Dynamic simulations were
then performed at 25 mph and 40 mph and compared with wind tunnel results. Key results of the dynamic
simulations include:

e The mean trailing angle observed in experiment is accurately captured by CFD for the 25 mph case.
For the 40 mph case, the simulation would need to be run further beyond NS-BS transition or restarted
with initial conditions close to what is expected for the final mean trailing angle in order to assess the
accuracy of the mean trailing angle prediction.

e NS-BS transition behavior is observed in both the 25 and 40 mph simulations. In experiment, this
behavior was seen at 40 mph but not 25 mph. In simulation, NS-BS transition occurs more quickly in
the 40 mph simulation than the 25 mph simulation.

e Using initial conditions close to the final mean trailing angle results in significantly smaller pitch
oscillations and longer time to NS-BS transition, indicating that initial conditions can have a significant
effect on the dynamics of a coupled nonlinear system. Better correlation between simulation and
experiment is achieved when the initial conditions are closely matched.

e Grid adaptation results in smaller initial yaw moment magnitude but eventually larger yaw moments
and faster NS-BS transition for the 25 mph case.

e Improvements to the cable model are suggested to improve correlation between experiment and CEFD.
In particular, yaw damping may be required in the cable model.

Based on the results of this study, several items need to be investigated in future work. Measurements of
the yaw damping in the experimental cable attachment should be taken and applied in the CFD model. The
coupling between various degrees of freedom should be investigated; specifically, the effect of this coupling
on yaw moment and other forces and moments should be determined. Further validation with experiment
should be performed to ensure that inclusion of proper yaw damping removes the NS-BS transition behavior
in the 25 mph case. In the longer term, modes and causes of dynamic instability in sling load operations
can be investigated using this Navier-Stokes-based dynamic simulation framework, and this work will help
to reduce the cost required for sling loads operational clearance.
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