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A data transfer strategy applicable to overset grid configurations has been developed that improves inter-
polation and extrapolation accuracy and eliminates orphan points. Traditional trilinear mappings based
on interpolation stencils are replaced with a “cloud”-based algorithm which retains no dependence on
grid connectivity. A variable number of donor points was sourced from a single grid in the vicinity of a
receptor point, permitting consistent treatment of orphan points in the data transfer method. This
cloud-based interpolation methodology demonstrates the ability to preserve flow-field features for con-
figurations both with and without adequate mesh overlap. The approach eliminates problems associated
with orphan points and reduces transient conservation errors by an order of magnitude.
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1. Introduction

Within the fluid mechanics community, many applications of
interest involve predicting the unsteady behavior of configurations
moving in multiple frames of reference. To facilitate the engineer-
ing analysis, an efficient means of handling the evolution of com-
putational domains due to mesh motion, deformation, and/or
grid adaptation is necessary. The state of the art in computational
fluid dynamics (CFD) is to use an overset or Chimera approach [1,2],
which applies overlapping grids for the time-accurate solution of
unsteady problems and the modeling of complex geometries.
This modular approach utilizes multiple body-fitted grids to model
each moving component, in addition to one or more stationary
background grids that model the remainder of the flow field.
Overset grid systems permit interior grid boundaries to be placed
arbitrarily so that different components may move freely relative
to each other. The scheme has since been applied to both struc-
tured and unstructured grids for many engineering problems of
interest [3-6].

1.1. The overset method

An overset scheme requires that flow-field data be exchanged
between pairs of overlapping meshes at each solver iteration to
enable a solution on each component grid that is globally consis-
tent. Points on non-solid interior boundaries requiring data
exchange are known as fringe points. Additional effort is needed
to obtain a solution because of the potentially complex domain
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interconnectivity between multiple overlapped grids. Moreover,
since fringe points from neighboring grids are in general
non-coincident, data transfer requires interpolation at each time
step. Hole-cutting to remove points interior to solid boundaries,
search operations to identify donor/receptor pairs, and calculation
of interpolation weights are typically performed by additional soft-
ware, such as PEGASUS 5 [7], PUNDIT [8], or Suggar++ [9]. The data
transfer entails calculating a new solution at target locations
known as receptors based on the solution from source points
known as donors. On a Cartesian or structured mesh, the most effi-
cient approach is to directly apply trilinear interpolation [10]. The
PEGASUS 5 grid preprocessor [7] employs this technique. A more
general approach relies on isoparametric mappings with trilinear
basis functions, applicable to both structured and unstructured
grids. PUNDIT [8] and Suggar++ [11] both apply this technique.
Complications arise when acceptable donor points for interpo-
lation cannot be found, giving rise to “orphan” points. This situa-
tion occurs if adjacent grids have insufficient overlap or if
significant disparities in mesh spacing between grid levels exist.
A point is considered to be an orphan when one or more of its
donors is also a fringe point requiring an interpolated solution.
An important consideration is that achieving higher-order spatial
accuracy requires larger stencils. For example, an implicit
sixth-order or explicit fourth-order scheme can require a
five-point stencil which necessitates two levels of fringe points
to maintain consistency with the interior of the computational
domain [12,13]. When orphan points are present, solution fidelity
may be lost because two levels of fringes cannot be resolved.
Similarly, interpolation accuracy generally increases with overlap
size because more points are available from which to perform
the data transfer. The problem of orphan points is exacerbated
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Nomenclature

o radial basis interpolation coefficient
B polynomial interpolation coefficient
As isotropic grid spacing

At simulation time step size

radial basis kernel, ®(X,%;) = ¢(||X — Xi||,)
radial basis function (RBF), ¢(r)

hangar height

Mach number

number of interpolation source points

zZz T S

n normalized frequency, fx, /U,
Q number of polynomial coefficients

r radial (Euclidean) distance, || X ||

S interpolant to an unknown function
Ve free-stream velocity

X set of source data points

Xr reattachment point

Xs separation point

by relative mesh motion which can increase the number of
orphans and/or change their locations over time.

Solutions at orphan locations are typically estimated by an
averaging procedure [14,15,6]. Two general mitigation approaches
exist when orphan points are present. First, the grids may be rede-
signed to improve the quality of mesh intersections. In a recent
application of an unstructured near-body methodology coupled
to a Cartesian off-body solver, Abras and Hariharan [16] had to
manually adjust the trim distance dictating the amount of overlap
between near-body and off-body meshes. However, manual
adjustments are not always possible, especially when considering
complex geometries, and grid refinement can significantly increase
cost. For example, a wing-store configuration studied by Power
et al. [6] had 0.5% of all cells orphaned. Application of an adaptive
mesh refinement procedure was able to eliminate all orphans but
increased the total cell count by 10%. Even if increased mesh sizes
are acceptable, it may be difficult to guarantee that meshes in rel-
ative motion will be orphan-free for all time steps throughout the
simulation. As an alternative, a dense interface grid may be added
in the orphan region [17,6]. These approaches require user inter-
vention and added cost, either in engineering hours or computa-
tional time.

1.2. Scattered data interpolation

Scattered or cloud-based data techniques can provide a
continuous mapping between arbitrarily structured data
samples and remain decoupled from solver type (e.g., unsteady
Reynolds-averaged Navier-Stokes, vorticity-velocity, or potential
flow methodologies) and topology (Cartesian, structured, and
unstructured). More broadly described as kernel function interpo-
lation, an interpolant is formed by a linear combination of nonlin-
ear basis functions (kernels) to represent nonlinear functions. The
approach is well established within other fields (e.g., computer
graphics, digital elevation modeling, or optical design) but their
application to CFD problems has been limited. This data transfer
methodology has the potential to reduce or eliminate orphan
points while increasing interpolation accuracy. Since donor points
can be sourced from any location on any grid, the approach natu-
rally precludes scenarios involving a lack of sufficient donor points.

When constructing an interpolant (s) to an unknown function
(f) sampled from a set of scattered data points (X), a solution is
readily obtained when interpolation conditions

s(*) = f,

are independent of rigid (Euclidean) transformation [18]. This is
automatically the case when applying basis functions that depend
only Euclidean distance (r = ||x||,) [18], i.e., radial basis functions
(RBFs). The quality of the results is then sensitive to the location
of kernel centers [19]. In the case of the centers coinciding with
the locations at which the solution is known, an interpolant exists

X c X, (1)

per the Mairhuber-Curtis theorem [20]. An additional consideration
is that RBFs are by definition isotropic because the function has the
same evaluation in all directions. However, fluid dynamics data are
often discontinuous in nature. Therefore an alternative approach is
to use not radial but elliptical bases to introduce data adaptivity
into the data transfer algorithm. The development of anisotropic
basis functions based on local solution gradients is described in
Ref. [21]. Rather than developing new basis functions, the present
work focuses on applying established RBFs to the problem of over-
set data transfer.

Recommendations from a number of authors [22,23,20] have
suggested that scattered data interpolation with RBFs is a general,
accurate approach to transferring arbitrarily distributed data.
These methods are especially attractive for overset data transfer
because:

1. They permit interpolation and extrapolation [24] based on arbi-
trarily clustered clouds of points in any dimensional space.

2. They have in general higher-order accuracy that can be
increased by freely adding data points.

3. They are directly applicable to unstructured methodologies
since the interpolant is decoupled from the computational
mesh, eliminating requirements on the spatial structure of the
sampled data.

4. They can be readily applied to the problem of solution transfer
in overset methods since they do not require connectivity
information.

For these reasons, an RBF approach is ideally suited for data
transfer with orphan points since there are no overlap or connec-
tivity requirements on the donor points. Therefore the same data
transfer approach may be applied regardless of grid configuration.

An RBF is a univariate function of Euclidean distance from a
chosen center x.. Therefore the RBF (¢) is related to its kernel func-
tion (@) as follows:

P(X,Xc) = D[ X =X | o) = o(1). )

An RBF interpolant based on the set of data samples X has the fol-
lowing form:

N Q

Srx(X) =D o5 @(X, X)) + Y fibi(X), 3)
j=1 k=1

where s is the RBF interpolant of the function f evaluated at an arbi-

trary location x; o5 and f; are the interpolation coefficients to be

determined; and x; are the RBF centers that coincide with the data

sampling locations. Typically, p, is chosen to be a polynomial basis.

An additional constraint is placed on the function p, to ensure solv-

ability of the interpolation system [20]:

N
> oypi(x)) = 0. (4)
j=1



90 E.W. Quon, M.J. Smith/Computers & Fluids 117 (2015) 88-102

Egs. (3) and (4) are combined and solved as a linear system of
equations:

EPe ®

where the submatrices are defined as:
Avx = (P(X;, X)) € RNV (6)
P = (py (%)) € RV (7)

Solution of Eq. (5) produces an interpolant that depends on both
spatial coordinates and the local solution field.

The potential challenges in applying RBF interpolation are
widely understood [25,26]. Effective interpolation requires a
trade-off between the number of source points and numerical sta-
bility. Increasing the amount of source data generally increases
accuracy but degrades the conditioning of the interpolation matrix
(Eq. (5)). Even if the matrix inversion can be reliably performed, the
cost of a direct evaluation using Gaussian elimination is O(N?) [27],
where N is the number of source points. Therefore interpolation
cost can quickly become a non-negligible portion of the overall
simulation cost when transferring an entire overset solution field
at once. A practical engineering solution is to employ a small sub-
set of points (i.e.,, a cloud) within a neighborhood of the target
point for each data transfer. Even if cost were not prohibitive, spu-
rious fluctuations and solution degradation near clustered grid
points may occur [24], further motivating a localized approach.

2. Numerical approach
2.1. Data transfer

The data transfer algorithms considered in the present work
require accuracy comparable or greater than the solver order of
accuracy (second order) for arbitrarily dense data. These algo-
rithms have been applied to transfer discrete flow variable data
between a single donor grid and a receptor grid. Focus is on two
basis functions: the thin-plate spline (TPS) recommended in Refs.
[28,29] for accuracy and robustness with both interpolation and
extrapolation

(r) = r*log(r), (8)

and the compactly-supported Wendland C* (W2) basis function
recommended in Refs. [30-32]

4
o) = {(()1 —nt4r+1), r<i )
, r>1.

In addition to TPS and W2, other basis function choices exist but
may include dependencies on additional shape parameters (e.g.,
the multiquadrics and Gaussian functions). Improper selection of
these shape parameters can result in an ill-conditioned interpola-
tion matrix and reduce interpolation accuracy [28].

The derivation of the W2 function [20] ensures continuity up to
the second derivative (C> smooth). Since typical CFD meshes have
high levels of resolution, the increased smoothness recoverable by
higher-order Wendland C* basis functions provides little added
benefit [33]. Therefore only the C* function recommended by pre-
vious authors was studied, and functions in the Wendland family
with k > 2 were not considered. Recent work in this area by
Costin and Allen [32] investigated interpolation with the W2 func-
tion across non-matching Cartesian grid interfaces rather than
unstructured overlapping grids. Their focus was on applicability
to non-contiguous fluid-structure interfaces rather than applica-
bility to general data type interpolations. Rendall and Allen [33]

applied RBFs to the problem of volumetric CFD data interpolation
within a single grid. They evaluated solutions of subsonic airfoils
at angle of attack o = 5°, a subsonic wing-body at o = 3°, and a
transonic wing at o = —0.5°; unsteady data were not considered.
The present work focuses on time-accurate solutions since tran-
sient problems are of interest to many disciplines within fluid
dynamics.

Both the TPS and W2 basis functions are evaluated to explore
the sensitivity of the interpolated solution to two qualitatively dif-
ferent functions when applied to local subsets of data. The TPS is a
global function defined for all r and increases in value as r — co. In
contrast, the W2 function is a compact function which by defini-
tion decays to identically zero at a finite distance. For overset
CFD problems of interest, application of global RBF interpolation
using all data samples is intractable since typical computational

meshes have ©(10°%) or greater points. Therefore in practice the
data transfer will be limited to local subsets of points, motivating
the use of compact basis functions. However, traditionally applied
global RBFs that have demonstrated success for a variety of data
[29] are not automatically precluded from the local approach.
Therefore they have been investigated in this capacity as well.

The support radius for compact basis functions dictates the
region of influence for each sample point, and consequently the
number of sample points near the receptor that influence the solu-
tion at the receptor location. Increasing the support radius is there-
fore analogous to increasing the number of interpolation samples.
In Eq. (9), the radius r has been normalized by the support radius so
that the function is zero at a nominal distance of one. This normal-
ization does not affect the inherent positive definite property of the
basis function that ensures solvability of the interpolation problem
[34]. A constant value for the support radius does not need to be
explicitly specified a priori as commonly reported in literature
[34,32] but instead can be permitted to vary depending on local
point distribution [26,33]. Larger support radii will result in a
smoother interpolated field [ 18], indicating that for fluid dynamics
applications the choice of support radius is problem and grid
dependent.

For varying mesh density as often encountered in complex fluid
dynamics calculations, employing a fixed support radius can intro-
duce problems by unnecessarily increasing smoothness in high
point density regions or providing inadequate resolution in regions
of low point density. Instead of explicitly specifying a support
radius, sample points may be selected by fixing the number of
nearest field points to include. Difficulties may arise for this
approach both in selecting the number of points, and in selecting
appropriate samples when available proximate field points are less
than or greater than the desired number. As an alternative, the cur-
rent work utilizes existing grid connectivity information to sys-
tematically select points near the receptor resulting in a cloud of
more uniformly distributed data with an approximately constant
number of donor samples. The support radius is then not a free
parameter but rather implicitly specified by normalizing the coor-
dinates of the sample points to a unitary domain. This normaliza-
tion is accomplished by translating the receptor and surrounding
donor data points to the origin and scaling the coordinates of the
interpolation sample points (i.e. the donor points) so that all points
lie within [-1,1] in each dimension. Data samples outside of the
support radius are excluded. The same sampling and normalization
approach is applied for both TPS and W2 interpolations.

Clouds of interpolation points are formed by first identifying the
cell enclosing the receptor point. The cloud should include at min-
imum all nearest neighbors to the receptor point [34], which are
the nodes of the enclosing computational cell. To verify the
higher-order accuracy of this localized approach, interpolation of
the two-dimensional Rastrigin function has been evaluated:
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f(x,y) =20 +x* +y* — 10 cos(27x) — 10 cos(27y) (10)
This analytical function is of interest because it is both oscillatory
and has a nonlinearly varying mean [32]. The solution on the
[-5.12,5.12]* domain was transferred between non-coincident
Cartesian grids of increasing mesh density, where mesh density is
defined as the number of points in each direction. As illustrated in
Fig. 1, interpolation errors may be reduced through mesh refine-
ment or including more data samples. When interpolating with
only the enclosing nodes (four donors in this case), RBF interpola-
tion results in no appreciable improvement over bilinear interpola-
tion; the observed differences in error were at most ©(107°). If
additional surrounding donor points are included, the convergence
rate increases significantly. As the input mesh is refined, the highest
observed error convergence rate is between fourth and fifth order
(Table 1), comparable to the value of 4.30 for W2 interpolation of
the same analytical function reported by Ref. [32]. Both basis func-
tions achieve at minimum second-order convergence as required,
but W2 has higher-order convergence in this problem.

2.2. Treatment of orphan points

When applying a cloud-based interpolation method, the same
approach to data transfer may be applied to configurations both
with and without orphan points. Some examples of interpolation
point clouds are illustrated in Fig. 2 as filled circles. In the current
implementation, potential donor points that are also fringe points
are removed from the interpolation cloud to permit explicit evalu-
ation of the interpolant. Fig. 2(a) outlines the enclosing cell whose
nodes would have originally been used for linear interpolation.
Additional neighboring nodes have been included to systematically
increase the effective support radius. To maintain computational
efficiency, expanding the cloud of points beyond a single level of
surrounding nodes has not been considered. In the case of an
orphaned fringe point where one or more donors are also orphans
(Fig. 2(b)), the linear interpolant within the outlined cell cannot be
explicitly formed. However, with the RBF data transfer algorithm, a
valid solution is still obtained. Since the selected cloud of source
points does not necessarily encompass the target point when con-
sidering orphans, the resulting data transfer may be an interpola-
tion or extrapolation.

Since there is no requirement that the receptor point be located
within a particular cell (unlike standard mapping techniques) or
that the donor points are connected to form a stencil as required
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Table 1

Convergence rates (at N = 81) for the Rastrigin function when applying localized and
global interpolation approaches. oo indicates that all data samples were included for
the global approach.

Method Data samples Order

Thin-plate spline 4 1.98
16 3.66
0 4.23

Wendland 2 4 1.98
16 4.72
00 5.07

for polynomial-based techniques, points may be arbitrarily
included to compensate for a lack of resolution in the immediate
vicinity of the receptor. The size of the cloud is allowed to vary
in size to accommodate receptor points with insufficient donors.
For instance, the number of non-fringe donors must be greater
than or equal to the number of points comprising a single cell to
maintain linear interpolation resolution (Fig. 1). If this condition
is not met, then additional levels of neighboring nodes are added
to the cloud until the minimum donor requirement is satisfied

(Fig. 2(b)).
2.3. Computational tools

The baseline numerical analysis that was selected to develop
and explore this overset concept is FUN3D [35], a fully unstruc-
tured, unsteady Reynolds-Averaged Navier-Stokes (URANS) solver
developed primarily at NASA Langley Research Center. The present
work used the incompressible path within FUN3D, which employs
an artificial compressibility method to calculate the pressure and
velocity fields satisfying the incompressible, viscous Navier—
Stokes equations. Numerical schemes implemented in the code
are spatially second-order accurate with Roe upwinding and have
second-order or higher temporal accuracy by applying multi-step
backward difference formulas. For all cases in the present work,
an optimized second-order temporal scheme with error controller
[36] has been utilized. FUN3D includes overset mesh capabilities
for accurate resolution of complex geometries and multiple frames
of motion, for example in rotorcraft applications [37].

Two auxiliary codes are included to provide overset capabilities
to FUN3D: Suggar++ (Structured, Unstructured Generalized
overset Grid AssembleR) and DiRTlib (Donor Interpolation
Receptor Transaction library) [14,38]. Suggar++ handles grid
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Fig. 1. Root-mean-square (RMS) interpolation error of an analytical test function; the number in parenthesis indicates the number of data samples included in the

interpolation.
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(a) Normal fringe point

(b) Orphan fringe point

Fig. 2. Clouds of source points in the vicinity of orphan points. Filled black circles denote selected donors while open square symbols indicate orphans. The cell enclosing the
receptor point (filled blue circle) is outlined on the black grid. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

transformations and hole-cutting, donor-receptor identification,
and calculation of interpolation weights; DiRTIlib interfaces with
the flow solver and uses the domain connectivity information gen-
erated by Suggar++ to calculate interpolated values. For static
meshes, Suggar++ performs as a preprocessor to match donor
and receptor points, after which interpolation weights are calcu-
lated based on donor locations only. For dynamic meshes,
Suggar++ is both a preprocessor and an iterative routine operating
within FUN3D. At each solver time step and subiteration (for
time-accurate simulations), DiRTlib retrieves the solutions at
donor points and updates the solutions at fringe points. Pressure
and velocity fields are updated through this process. To provide a
cloud of source points for the scattered data technique, the stan-
dard donor search procedure has been modified to return not only
the cell nodes encompassing the receptor node, but the neighbors
of these cell nodes as well. Connectivity information is not required
for the scattered data interpolation but has been utilized for conve-
nience to avoid having to perform nearest neighbor searches.

3. Evaluation cases

Two test cases have been considered in the present work. The
first is the two-dimensional simulation of an inviscid convecting
vortex, a standard feature of many fluid dynamics problems. The
second is the calculation of a ship airwake, which evaluates the
methodology for a three-dimensional, turbulent flow.

3.1. Inviscid convecting vortex

A vortical disturbance is modeled in a form consistent with the
FUN3D non-dimensionalization scheme [39]:

u I z—z —r?
o ko) an
w I x—x —r?
U."UR R P <T> (12)
norm Fz
pp 1212 =1 eXD(T) (13)
2 2
r2:(xixC) ;;(zizf) (14)

for constant density p = p_, free-stream reference velocity U, and
Prorm = P — P, U2.. The vortex is centered at (x.,z;) with reference

length equal to a nominal core radius R of 1.0 and non-dimensional
vortex strength I'/U..R of 0.02. The pressure expression (Eq. (13)) is

2
obtained by integrating % = @ [40].

Overset simulations with trilinear interpolation performed data
transfers with only the nodes of the cell enclosing the receptor
point, which on average numbered between six and seven nodes.
For this two-dimensional configuration, computational cells were
primarily triangles that were extruded to form volumes for the
three-dimensional flow solver. These triangles became six-noded
pentahedra (while quadrilaterals became eight-noded hexahedra),
hence trilinear rather than bilinear interpolation was performed.
The number of donor points was fixed for the linear approach,
regardless of whether orphan points were present. In comparison,
the RBF interpolations were based upon clouds of 23-24 nodes on
average, nearly a fourfold increase. This indicates that most trian-
gles are connected to nine other nodes on average for a total of 12
nodes on a two-dimensional plane. In the presence of orphan
points, the number of available donors decreased by 19-38%, and
the minimum number of points per cloud was 10. All donor statis-
tics are summarized in Table 3.

Unstructured test configurations with and without orphan
points were created from the meshes depicted in Fig. 3. A configu-
ration with orphan points was created by resizing the background
grid (Fig. 3(a)) to have an approximately 20% larger cutout region.
This grid was overset with a patch grid that was not resized
(Fig. 3(b)), thus reducing the amount of overlap between grids.
Baseline, fine, and coarse meshes were considered corresponding
to isotropic cell sizes of As = 0.2, 0.1, and 0.4, respectively. In the
baseline case (As = 0.2), the reduced overlap region transformed
over half of the fringe points (2,036) into 1,152 orphans points.

Table 2
Unstructured grids used in the vortex convection study with orphan points.
Grids Grid Spacing (As)  Nodes Fringes  Orphans
Vortex, single grid 0.4 8,528 - -
0.36 10,350 - -
0.2 33,646 - -
0.1 133,640 - -
Vortex, overset 0.4 11,128 1,154 0
0.2 40,944 1,894 0
0.1 162,808 4,074 0
Vortex, overset 0.4 9,352 158 1,040
with orphan points 0.2 33,256 884 1,152
0.1 129,818 3,394 1,008
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Table 3
Donor statistics for the vortex convection study.
Overset configuration Mesh spacing Avg. Min. Max.
Trilinear interpolation 04 6.71 6 8
0.2 6.84 6 8
0.1 6.78 6 8
Trilinear interpolation 0.4 6.56 6 8
with orphans 0.2 6.84 6 8
0.1 6.82 6 8
RBF interpolation 04 22.85 18 28
0.2 24.02 18 28
0.1 24.06 18 32
RBF interpolation 04 14.11 10 24
with orphans 0.2 16.23 10 26
0.1 19.59 10 26

These orphan points are illustrated by the symbols in Fig. 3(c).
Since these orphan points cannot be adequately resolved with
the original overset interpolation paradigm, an effective gap in
the computational grid is formed. On the coarse mesh (As = 0.4),
the number of orphan points was an order of magnitude larger
than the number of calculable fringe points. This represents an
extremely unlikely, but very rigorous evaluation case. All grids
studied in the present section are summarized in Table 2.

Results were computed with a time step of At = 0.005. A tem-
poral study determined that this step size is sufficiently small to
permit analysis of spatial errors [21]. Calculations on baseline grids
with a spacing of As = 0.2 resulted in the predicted flow fields
illustrated by Fig. 4. The orphan-free overset solution (Fig. 4(b))
preserved the same qualitative features as the single-grid case
(Fig. 4(a)), which exhibited minor dissipation due to the relative
coarseness of the mesh. If orphan points are present in the grid
configuration, the traditional trilinear approach is not well defined

(a) Unstructured background grid

with irregular cutout

since the flow field is not known at one or more constituent nodes
of the donor cell. In this case, values at receptor points are deter-
mined by averaging rather than interpolation [14]. This procedure
tended to dissipate the vortex structure after passage through the
upstream and downstream overset boundaries (Fig. 4(c)). In com-
parison, the scattered data transfer approach utilizing RBFs elimi-
nates the uncertainty at orphan locations arising from any
averaging procedure. The RBF algorithm systematically includes
additional data in the interpolation to maintain resolution at
orphan locations.

The root-mean-square (RMS) errors between the computation
and the exact solution are tabulated in Table 4 for the baseline case
after the vortex has convected in and out of the overset patch
region. As expected for the configurations without orphan points,
the errors in each solution variable are the same order of magni-
tude, and differences between the single and overset grid configu-

ration are O(107) or less and are therefore negligible. In the
overset cases, the error introduced by interpolation is an order of
magnitude less than the discretization error (observed in the
single-grid case). For all configurations with and without orphan
points, the RBF algorithm consistently results in lower error than
the traditional calculation with trilinear interpolation.

When orphan points were introduced into the computational
mesh, the velocity errors in the calculation with trilinear interpola-
tion increased by a factor of three to four over the orphan-free case.
The largest change in error occurs for pressure, which increased by
an order of magnitude (Table 4). Application of either TPS or W2
interpolation mitigated the RMS error and successfully preserved
the structure of the vortex (Fig. 4(d)). Compared to the trilinear
interpolated solution, the errors in u and w were reduced by 59%
and 45%, respectively, and the error in interpolated pressure
reduced by an order of magnitude. In comparison with an
orphan-free configuration, the vortex structure is slightly skewed
with the deformation approximating the shape of overset gap

12 16 -8 -4 0 4 8

(b) Irregular patch grid

(¢) Orphan points

Fig. 3. Overset grid systems for the convecting vortex calculation (baseline grids, As = 0.2). The outlined region denotes the extent of the patch grid. Orphan points are
indicated by red square symbols. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(d) Overset, with orphans and RBF interpolation

Fig. 4. A comparison of the vorticity field for a single-grid case, an overset case without orphans, and two overset cases with orphans. The solution at five instances in time
have been superimposed on the same image. All calculations were performed on the baseline mesh (As = 0.2).

Table 4
Root-mean-square errors for overset solutions with and without orphans compared
to the single-grid case (baseline meshes, As = 0.2).

Test case u error w error p error

Single grid 22x107% 2.7 x107% 39x10°°
Overset, trilinear 24x107* 3.0x107* 44%x10°°
Overset, TPS 23x107* 29x10* 42%x10°°
Overset, W2 22x107* 28x107* 41x10°°
Overset with orphans, trilinear 9.7 x 1074 89 x 1074 7.4%x107°
Overset with orphans, TPS 40x10% 49 %104 6.6 x 1076
Overset with orphans, W2 40x107* 49x107* 6.8 x10°°

(Fig. 4(d)). Results from applying the W2 basis were visually indis-
tinguishable from the TPS approach, and not shown. Differences
between the two functions are at most 3% and an order of magni-
tude smaller than the observed error (Table 4).

To reduce discretization error and permit more accurate evalu-
ations of overset interpolation error, refined versions of the grids in
Fig. 3 (with As =0.1) were created. RMS errors for the fine grid
case are tabulated in Table 5. In comparison with the results in
Table 4, the orphan-free errors have decreased by a factor of four
in all cases. This indicates that the overall spatial errors are exhibit-
ing second-order convergence as expected from the spatial
scheme. Despite having a more refined mesh, the presence of
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Table 5
Root-mean-square errors for overset solutions with and without orphans compared
to the single-grid case (fine mesh, As = 0.1).

Table 6
Root-mean-square errors for overset solutions with and without orphans compared
to the single grid case (coarse mesh, As = 0.4).

Test case u error w error p error Test case u error w error p error
Single grid 49x107° 72x107° 1.0x10° Single grid 588 x 1074 6.42 x 1074 1.03 x 107°
Overset, trilinear 58 x107° 8.0x107° 11x10°° Single grid (As = 0.36) 533x1074 5.47 x 1074 8.46 x 1078
Overset, TPS 54x107° 7.7 x107° 11x10° Overset 570 x 1074 6.45 x 107* 1.02x107°
Overset, W2 52x107° 76x107° 11x10°° Overset, TPS 543 x1074 6.32x 1074 9.95x 1078
—4 —4 -5
Overset with orphans, trilinear  86x10° 1.0x104 19x10° Overset, W2 534 x 10 6.29 x 10 1.02 x 10
Overset with orphans, TPS 6.0x107° 84 x107° 12x10°° Overset with orphans 1.05 x 1073 1.04 x 1073 434x107°
Overset with orphans, W2 59x107° 8.4 x107° 13x10°° Overset with orphans, TPS 8.82x1074 9.50 x 1074 1.11 x 107
Overset with orphans, W2 892 x 1074 9.52 x 1074 427 x 1074

orphan points resulted in 25-73% higher error compared to the
orphan-free overset solution when applying trilinear interpolation.
In comparison, the TPS and W2 overset solutions only exhibited
increases in error of up to 11% and 18% respectively. When apply-
ing either scattered data transfer technique, spatial errors are
reduced by over 30% in streamwise velocity and pressure, and by
16% in normal velocity. The TPS and W2 solutions with orphans
are within 5% of the orphan-free trilinear overset solution in terms
of streamwise velocity and normal velocity, while the difference in
pressure error is an order of magnitude smaller than the velocity
errors.

Alternatively, coarse grids (As ~ 0.4) were evaluated to study
the accumulation of interpolation errors with decreasing spatial
resolution. Cell sizes in this grid configuration are larger than rec-
ommended for CFD simulations. The error in all three solution vari-
ables was actually comparable to or lower than the single-grid
configuration. This is not surprising when considering that the
overset configuration had 30% more nodes, thus providing suffi-
cient additional spatial resolution to reduce errors. To enable more
accurate comparisons between the single and overset grid config-
urations, the single-grid spacing was slightly reduced from
As =0.4 to 0.36 to more closely match the number of nodes
(Table 2) in both configurations. When orphan points are present
in the grid, the advanced data transfer results demonstrate
improvement over the linear data transfer with up to 16% and 9%
error reduction in streamwise and normal velocities. Compared
to the other grid configurations tested, the effectiveness of the
scattered data interpolation is limited by the quality of the sam-
pled data. This is especially apparent when considering the pres-
sure errors. The pressure field on the coarse grid (As~0.4)
exhibits only very small variations compared to the other variables
(0(107*)) due to the I'* term in the vortex definition (Eq. (13)).
Therefore it was sensitive to any higher-order interpolation errors
such as over- or under-shoot, illustrated by the fact that pressure
errors are larger with either RBF approach than the linear approach
when orphan points are present. For this case, the W2 pressure
solution has nearly four times the error of the TPS solution.
Accumulation of interpolation errors was also observed in Ref.
[21] for a rotor blade solution repeatedly transferred between fine
and coarse meshes, which similarly demonstrated that the TPS
solution tends to be more stable than the W2 solution. This behav-
ior only occurs when the solution significantly deteriorates due to
both lack of grid resolution and the presence of orphan points and
represents a situation that is not likely to be encountered in
practice.

To obtain an accurate estimate of data transfer effectiveness,
the spatial errors have been separated from temporal error. A tem-
poral convergence study (with At = 0.005,0.01,0.02,...,0.32) was
performed to isolate the spatial error as At — 0, and series conver-
gence was accelerated with the Richardson extrapolation tech-
nique [41]. Data presented in Tables 4-6 correspond to
At =0.005, the finest time step examined. Based on these

extrapolated errors, the overset interpolation error was deter-
mined by subtracting the single-grid spatial error from the overset
spatial errors. The resulting isolated overset errors are plotted in
Fig. 5. In general, configurations both with and without orphan
points tend to converge at the finest grid level tested for the linear
and TPS overset approaches, and the RBF interpolation approaches
consistently outperformed trilinear interpolation. In the
orphan-free configurations, consistent improvements from apply-
ing the RBF approach were observed in the velocity variables. At
the baseline grid level, isolated overset errors in streamwise veloc-
ity were reduced up to 71% compared to trilinear interpolation
when applying TPS interpolation and an order of magnitude when
applying W2 interpolation. Improvements of up to 39% and 52%
were observed in normal velocity for TPS and W2, respectively.
For configurations with orphan points, the TPS and W2 results
were typically indistinguishable with approximately half an order
of magnitude reduction in overset error at the baseline and fine
grid levels compared to the trilinear approach. Errors were slightly
higher at the baseline grid spacing (As = 0.2) than the coarsest grid
(As = 0.4) because there were 11% more orphan points in the base-
line configuration (Table 2). The isolated pressure error on the
coarse As = 0.4 configuration again illustrates the possibility for
the higher-order interpolation to introduce additional error when
the quality of the sampled data is low.

The final part of the convecting vortex analysis focuses on the
extent to which the conservation laws of fluid dynamics are satis-
fied when applying the various interpolation methods. This may be
evaluated by considering the net mass and momentum fluxes in
and out of the computational domain. Any deviation from zero is
considered conservation error. These conservation errors were cal-
culated from instantaneous solutions for linear and RBF interpola-
tion methods on the baseline grid with orphans. Romberg
integration was applied to estimate the numerical fluxes in the
limit of zero grid spacing. For N = 2¥ + 1 equally spaced points
where k is a positive integer, the Romberg algorithm performs k
iterations to remove error terms up to O(1/N*) [42]. To initiate
this procedure, the boundary solutions are collocated to provide
a number of equally spaced points equal to 2¥ + 1. The shortest
integration path lies along the upstream and downstream bound-
aries. These boundaries have the fewest points and will have the
highest theoretical error. On these boundaries, 81 points (on the
baseline mesh) are interpolated to 129 locations (for k = 7) and
results in an integration error ~ O(As?) ~ 107,

The conservation errors in mass, x-momentum, and z-momen-
tum are plotted in Fig. 6 for the baseline grid level. For all three
quantities, the error on the single grid is of the order 10~/, which
is greater than the error in the numerical integration and therefore
significant. Errors are introduced in the overset simulations when
the vortex is in the vicinity of the overset interfaces at x ~ —6
and x ~ 6. These errors appear as local maxima in the computed
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Fig. 5. Richardson extrapolated overset errors for various data transfer strategies on configurations with and without orphans.

net flux, with double peaks appearing prominently on the coarser
mesh at x ~ -9, -5, 6, and 9 (Fig. 6, left column). The peaks corre-
spond to the passage of the front and rear of the vortex core where
swirl velocity and velocity gradients are at a maximum. After the
vortex passage, the initial conservation error level may not be
immediately recovered because the maximum number of subiter-
ations was fixed for all simulations. Application of advanced data
transfer techniques reduced maximum conservation errors by
approximately 80-90% each time the vortex passed through an
overset boundary.

The mass conservation error returns to the approximate unper-
turbed level at x ~ —4 after the vortex core has crossed from the
background onto the overset patch grid. After the vortex moves
from the patch back to the background grid through the second
set of fringe points (beginning at x ~ 4), the accumulated error is
consistently higher than the passage through the first set of fringes.
While the fluxes in both linear and RBF overset simulations display

the same trends over time or as a function of vortex position,
applying a RBF interpolation technique does not simply scale the
errors. For instance, the large increase in conservation error is
accompanied by a delayed return to the unperturbed level
(Fig. 6, right column) when applying trilinear interpolation. In
addition, the mass and x-momentum fluxes have not returned to
initial levels even at the end of the simulation (Fig. 6(a) and (b)).
For more complex aerodynamics, the accumulation of overset con-
servation errors may be more significant and require additional
spatial and temporal refinement than in current engineering
practice.

The cost of simulating each of the vortex cases on a single pro-
cessor is summarized in Table 7. For all cases, the cost of applying
either RBF was within 2.5% of each other. For cases without
orphans, the cost increase associated with applying RBF interpola-
tion is negligible as illustrated in Fig. 7. At the coarsest grid level,
the cost increase over trilinear interpolation is 17% which
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Fig. 6. Calculated net flux through the outer boundary of the computational domain for the inviscid convecting vortex test case. The left column presents results on a linear
scale to elucidate the effect of vortex passage through overset boundaries with orphans. The right column presents the same errors on a logarithmic scale.
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Table 7

Cost in terms of averaged wallclock time per step for the vortex convection test cases and methods presented.
Case Method Grid Fringes Avg. Cost/ % incr.

spacing subiters step (s) in cost

Vortex Linear 0.4 1154 8.08 0.4167 -
Vortex TPS 04 1154 8.29 0.4860 16.6
Vortex w2 0.4 1154 8.32 0.4789 14.9
Vortex Linear 0.2 1894 8.87 2.1718 -
Vortex TPS 0.2 1894 9.02 2.3416 7.8
Vortex w2 0.2 1894 9.02 2.2868 53
Vortex Linear 0.1 4074 9.80 10.3831 -
Vortex TPS 0.1 4074 9.84 10.6672 2.7
Vortex W2 0.1 4074 9.79 10.6085 2.2
Vortex w/orphans Linear 0.4 158 16.3 0.7830 -
Vortex w/orphans TPS 0.4 1198 39.7 2.1038 168.7
Vortex w/orphans W2 0.4 1198 39.6 2.1021 168.5
Vortex w/orphans Linear 0.2 884 36.2 4.6648 -
Vortex w/orphans TPS 0.2 2036 37.1 5.2125 11.7
Vortex w/orphans W2 0.2 2036 36.0 5.1956 114
Vortex w/orphans Linear 0.1 3394 38.6 17.6546 -
Vortex w/orphans TPS 0.1 4402 389 20.1944 14.4
Vortex w/orphans W2 0.1 4402 38.9 20.4251 15.7

corresponded to an increase in average wallclock time of less than
0.1 s per iteration. On larger meshes, the increase in average wall-
clock time is less than 0.3 s per iteration, corresponding to less
than 3% increase in cost over the linear overset approach.

When orphan points exist in the grid configuration, the linear
overset approach applies an averaging procedure whereas the
RBF approach interpolates all fringe points in the same manner.
The increase in cost of the RBF approaches comes from an approx-
imate fourfold increase in the number of subiterations required
(“Avg. subiters.” in Table 7) to reduce the temporal error by an
order of magnitude, which is offset by the number of donor points
decreasing by approximately 20-40% (Table 3). The decrease in
average donors per fringe point is due to orphaned points being
rejected as suitable donors in the data transfer. As mesh density
increases, the number of suitable donor points also increases (e.g.
from 14 to 20 donors on average, Table 3) so that the number of
donors approaches the same number as the orphan-free simula-

tions. In general, the cost scales approximately as O(N*) where N
is the number of fringe points (Fig. 7). This quadratic relationship

n
£
T

Linear interp
22 - | —&a—— TPSinterp
—o—— W2interp a
20 Linear interp, orphans
& E TPS interp, orphans ’

- W2 interp, orphans

—_
[«
I

-
n
I

—_
o
T

Average wallclock time [s]
® ~
I 1

| - 1 | - L 1
1000 2000 3000 4000

Number of fringe points

Fig. 7. Average wallclock time required per solver iteration as a function of the
number of overset fringe points.

is related to the cost of multiplying the inverse of the
left-hand-side matrix in Eq. (5) to evaluate the interpolation coef-

ficients. While the cost of the matrix inversion is O(N?), this is
incurred in a preprocessing step rather than at run time.

3.2. Ship airwake simulations

The advanced overset methodology has been further evaluated
on the turbulent three-dimensional airwake of a model frigate
(Fig. 8). An overset approach has been applied to study a naval ship
airwake, which can provide flexibility in modeling the ship under
different operating conditions as well as motions. In the present
study, a 1/50th-scale model at 70.6 ft/s headwind conditions has
been simulated at a computational time step equal to 0.0005 s
per step. This step size follows previous investigations of the same
geometry in which highly unsteady flow was observed in the deck
region [44]. The ship is modeled with viscous surfaces and the far
field is modeled with a Riemann invariant condition. The sea
boundary is considered to be part of the far field, neglecting the
moving interface between the air and water. Turbulent quantities
were calculated with a hybrid RANS/Large Eddy Simulation tech-
nique implemented in FUN3D that captures the complex physics
at large spatial scales on the order of the mesh cell size, and models
only the behavior of scales smaller than the cell size [45].

A single grid configuration was created for reference as a best
possible solution to compare with the overset solutions. The over-
set configuration included two grids, a near-body ship grid and a

0 5 ’///
] ,/"”v: { . //80
20 l’ “><10 > 3
B
150
s D g H: hangar
i D: aft deck

Fig. 8. SFS ship geometry with dimensions in feet, from Ref. [43].
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Fig. 9. Streamwise and normal velocity (u and w) spectra above the aft deck.

background grid. The same ship surface grid with y* <1 was
included in both grid models. All grids were centered on the ship
center and had far-field boundaries extending outward 4.5 ship
lengths (L) in the streamwise and lateral directions, and 0.75L
normal to the sea plane. The near-body grid in the overset config-
uration extended 0.75L; and 0.5L; ship lengths in the outward and
normal directions from ship center. To maintain similarity
between the single and overset configurations, the point

distribution at the outer boundary of the near-body overset grid
was enforced in the same region within the single-grid configura-
tion. The final single and overset grids contained 2.7 and 3.0 mil-
lion nodes, respectively. The overset configuration contained
31,982 fringe points on overset boundaries, exclusive of interior
fringe points. Remaining additional nodes are accounted for by
the overlapping portions of the fluid domain solved by both grids.

Analysis focuses on the aft ship deck region (indicated in Fig. 8)
because it is critical to naval aircraft operations and because the
flow can be related to backward-facing step physics. Velocity spec-
tra were calculated from solutions sampled above the center of the
deck at the height of the aircraft hangar. A dominant frequency of
approximately 7.8 Hz was found from a Fourier analysis in both
streamwise and normal velocity components for all configurations
(Fig. 9). Flow-field averaging in all cases was therefore performed
over a period of 0.128 s (corresponding to 7.8 Hz), equal to the time
required for the flow to traverse the length of the ship once or the
deck five times. This period includes 256 data samples taken at
0.0005 s intervals. The sampling interval is equal to the computa-
tional time step size.

The flow conditions in this simulation correspond to a Reynolds
number based on hangar height of 1.82 x 10°> and the flow has
been assumed to be fully turbulent. At this Reynolds number, the
maximum contribution to energy in the flow is expected to occur

at a normalized frequency of n E%z 0.1 [46], where x, is the
mean reattachment length, the location at which the flow
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Fig. 10. Averaged contours of streamwise velocity for single and overset grid configurations, viewed from the port side. In the overset cases, black line contours represent the

single-grid solution.
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reattaches on the deck behind the circulating region. This low fre-
quency behavior is indicative of an unsteady “flapping” of the
shear layer throughout the separated region of the field [47]. For
the current test case, the detected frequency of 7.8 Hz equates to
n = 0.113. Computations agree with experimental results to within
13% and the differences are attributed to the added geometric com-
plexity in the SFS2 model.

To illustrate the sensitivity of the hangar wake to the overset
boundaries near the ship, Fig. 10 depicts averaged flow fields for
the linear and RBF overset approaches. The nearest overset bound-
ary is located approximately 1.26 times the deck length down-
stream from the ship stern, near the edge of the contour plots in
Fig. 10(b)-(d). On average, the boundary solutions differed on the

order of 10~* between methods. However, these variations were
sufficient to modify the unsteady flow upstream of the boundary
as differences are visible above the aft deck. Bold contour lines
have been superimposed on Fig. 10(b)-(d) to bracket the region
between 0.7-0.8V,, and highlight differences between the flow
fields. To quantify the differences between the single and overset
grid configurations, all solutions were collocated onto an identical
Cartesian mesh. In comparison with the single-grid solution, aver-
age streamwise velocity errors were over 7% lower when applying
TPS or W2 interpolation rather than trilinear interpolation.
Average normal velocity errors were 15% and 35% lower than with
linear interpolation when applying TPS and W2 functions, respec-
tively. These differences translate into reduced errors in the deck
surface solution.

As in the original SFS experiment [48], a recirculation region
behind the hangar was observed. In addition, a secondary recircu-
lation region between the step and the separation point has been
reported in the literature, the extent of which tends to decrease
with increasing Reynolds number [47]. This feature was not clearly
observed in the current results, likely due to the large Reynolds
number. To estimate the locations at which the unsteady flow sep-
arates and reattaches on the deck, skin friction contours were
extracted from the ship surface and contour lines at which the skin
friction is zero were identified. The locations along the ship center-
line at which the skin friction changes from positive to negative
have been tabulated as the separation location (Table 8).
Similarly, the locations at which the skin friction changes from
negative to positive have been tabulated as reattachment locations.

Under current flow conditions, the recirculation region spans
over half the length of the flight deck. The flow separates from
the deck at approximately half a hangar height away from the
hangar, and reattaches at a distance of approximately 2.6 hangar
heights along the deck. Digitized measurement data from Ref.
[47] describe the separated flow in terms of skin friction and for-
ward flow probability (FFP) distribution; when the flow has an
equal probability of flowing forward or backward, that location is
considered the separation point. The skin friction data do not indi-
cate a strong dependence on Reynolds number and the calculated
separation locations range between 0.1 and 0.25x,. FFP data for the
largest Reynolds number tested (1.6 x 10%) locates the separation
point near 0.20x, [47]. Both methods predict an absolute separa-
tion location of 1.1-1.3h.

Table 8
Locations of separation and reattachment on the ship deck, normalized by hangar
height.

Overset method Separation, Reattachment, Xs /Xy
xs/h xr/h
Single grid 0.5247 2.5646 0.2046
Trilinear 0.4763 2.6212 0.1817
interpolation
Thin-plate spline 0.5175 2.6099 0.1983
Wendland C2 0.5171 2.6271 0.1968

Table 9
Cost in terms of averaged wallclock time per step for the ship airwake test cases and
methods presented.

Overset method Average cost/step (s) % change
Trilinear interpolation 18.8474 -
Thin-plate spline 19.9706 6.0
Wendland 2 20.0179 6.2

Experimental separation locations are approximately double
the calculated separation locations (Table 8), owing to the finite
length of the ship deck. In the SFS configuration, the length of
the deck is 4.5h, while the experimental channel extended over
95h [47] downstream of the step. Therefore the relative separation
location is a more useful measure. In terms of the relative separa-
tion location, both calculations and experiment indicate that the
flow separates from the deck at 0.20x,, suggesting the validity of
the single grid CFD model. The relative separation location calcu-
lated from the linearly interpolated overset simulation differs from
the single-grid solution by 11%. In comparison, TPS and W2 overset
results are within 3% and 4% of the single-grid solution (Table 8).

The ship airwake case was run in parallel on 256 processors.
When applying RBF interpolation, the average size of the interpo-
lation problem (in terms of the number of average donors)
increases eightfold from 8 to 32. In three dimensions, the number
of donors is approximately 30% higher than the two-dimensional
case, indicating increased cost. However, parallel solver operation
reduces the number of fringe points per processor and as a result
the added interpolation time was only 6% of the total solver cost
per step (Table 9).

4. Conclusions

The practical potential of an overset data transfer strategy based
upon scattered data interpolation with radial basis functions
(RBFs) has been demonstrated for two test cases. First, a simple
vortex convection case was studied in detail; then experience from
that study was applied to a complex vortex-dominated problem.
The methods outlined in this paper provide a framework for more
general data transfers including configurations with multiple
donor grids. Although not explored here, donor points may be arbi-
trarily sourced from any number of grids in the vicinity of a recep-
tor point provided a donor grid suitability algorithm is
implemented and/or grid preferences are explicitly specified for a
given problem.

The observed solution accuracy in the presence of orphan points
demonstrates the effectiveness of the RBF approach in both inter-
polation and extrapolation. Application of a cloud-based algorithm
in place of linear interpolation is therefore recommended based on
the following findings:

« RBF interpolation can significantly reduce overset interpolation
error. In the vortex validation case, configurations both with
and without orphan points converged with grid refinement
and the RBF interpolation approaches consistently outper-
formed trilinear interpolation. Isolated overset errors were
reduced by up to an order of magnitude with RBF interpolation
in comparison with traditional trilinear basis functions.

e The RBF overset algorithm eliminates orphan points because
clouds of non-fringe donor points can always be found in the
vicinity of a receptor, enabling interpolation or extrapolation.
This approach eliminates the need to perform averaging when
suitable donors are lacking. In addition to reducing spatial
errors, the RBF data transfer minimized transient conservation
errors in the presence of orphans in the vortex validation case.
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o Investigation of a three-dimensional turbulent separated flow
demonstrated overset solution sensitivities to the choice of data
transfer method. The RBF approach was able to preserve
near-body flow physics through accurate data exchange
between near- and far-field domains.

e The observed minimum cost increase for applying RBF interpo-
lation was 2% and 6% in two and three dimensions respectively.
Based on the vortex convection study, the computational cost
appears to scale with the total number of fringe points squared.
Since high node-count grids motivate parallel solver execution,
the increase in fringe points per processor is naturally limited in
practice, thus minimizing the increase in computational
expense due to data transfer.
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