Seeking reality in the future of aeronautical simulation

Date: June 16, 2014
Source: NASA
Summary: NASA aeronautical innovators are helping to design future airliners that will cut fuel consumption, reduce polluting emissions and fly more quietly. Yet in computational fluid dynamics, or CFD, the design tools that helped give us the modern airliners flying today are not expected to be up to the challenge in the future without some serious upgrades.

Share This
- Email to a friend
- Facebook
- Twitter
- LinkedIn
- Google+
- Print this page

This CFD visualization required a NASA supercomputer to handle the intensive calculations. It shows a mesh adaptation used to simulate a transport aircraft in a high-lift configuration.

Credit: NASA / Elizabeth Lee-Rausch, Michael Park

Related Topics
- Matter & Energy
 - Aviation
 - Vehicles
 - Aerospace
- Computers & Math
 - Computer Modeling
 - Computer Science
 - Information Technology
- Related Articles
 - Concorde
 - Boeing 747
 - User interface design
 - Architecture
 - Circuit design
 - Engineering

The right tool for the job. It's a platitude that is as true for garage tinkerers as it is for the NASA aeronautical innovators who are helping to design future airliners that will cut fuel consumption, reduce polluting emissions and fly more quietly.

Yet at least in one area -- namely computational fluid dynamics, or CFD -- the design tools that helped give us the modern airliners flying today are not expected to be up to the challenge in the future without some serious upgrades.

This was the finding of a report recently released by NASA called "CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences." It came out of a one-year study funded by NASA that included Boeing, Pratt & Whitney, Stanford University, The Massachusetts Institute of Technology, The University of Wyoming and The National Center for Supercomputing Applications.

The dilemma is that today's CFD, which simulates airflow around an airplane and through its jet engines, is largely designed to deal with aircraft with traditional tube and wing configurations that everyone is used to. And even then CFD's full effectiveness through all phases of flight is limited.

But future aircraft designs routinely flying during the 2030's may look very different from today's airliners in order to deliver on the promises of reduced fuel burn, noise and emissions.

Wings may be longer and skinnier and held up, or braced, by strusses. Aircraft hulls may be broader and flatter or have more pointed noses. Jet engines may be mounted on the top of the aircraft. Or the joint between a wing and the body may be blended into a seamless contour.

Understanding the physics behind how all of these new variables will affect airflow during all phases of flight, and then finding a way to model that in a computer simulation and validate the CFD is accurate, are the challenges facing NASA's computer experts right now.

Impact of the 1,000 Mph Supersonic Car Predicted

London 2012 Velodrome: The Role of Simulation in the Design Process

Intelligent Control for Performance: Reducing Drag, Saving Fuel

New Ideas Sharpen Focus for Greener Aircraft

Virtual Surgery Shows Promise in Personalized Treatment of Nasal Obstruction

> more related stories

http://www.sciencedaily.com/releases/2014/06/140616101635.htm
"If we can get more physics into the models we’re using with our CFD, we’ll have a more general tool that can attack not only off-design conditions of conventional tube and wing aircraft, but it also will do better with the different looking configurations of the future," said Mike Rogers, an aerospace engineer at NASA’s Ames Research Center in California.

Data from wind-tunnel testing of these new aircraft designs as they come along will help refine the CFD algorithms. The overarching goal is to improve the entire suite of testing capabilities - simulation, ground and flight test -- to provide a more effective, comprehensive toolbox for designers to use to advance the state of the art more quickly.

"It's an iterative process," Rogers said. "We need to continually assess how well our tools are working so we know whether they are adequate or not."

In the meantime, even as NASA's CFD experts work down a path toward their long-range future goals of 2030 -- advancements made possible only because of vast leaps in computer processing speed and power -- their first step is to meet a set of more immediate technical challenges as soon as 2017.

The first stepping-stone goal is to reduce by 40 percent the error in computing several flow phenomena for which current models fail to make accurate predictions; these flow features are likely to be encountered on some of the new aircraft configurations now being studied.

The report highlighted the need for upgrading not only the CFD algorithms, but also discussed how those new algorithms must be written to take advantage of the ever-increasing speed and complexity of future supercomputers.

The above story is based on materials provided by NASA. Note: Materials may be edited for content and length.

Cite This Page:
MLA APA Chicago

Share This
> Email to a friend
> Facebook
> Twitter
> LinkedIn
> Google+
> Print this page

Graphene Oxide
acsmaterial.com
Single Layer Graphene Oxide ACS Material--Your best choice

More Matter & Energy News
Friday, September 26, 2014

Featured Research from universities, journals, and other organizations
Power Outage? Robots to the Rescue
Power Outage? Robots to the Rescue
Mechanized Human Hands to Improve Lost Function
On the Road to Artificial Photosynthesis
Bottleneck in Crystal Structure Prediction Solved
Paving the Way for Spin-Based Computing
How to Make Stronger, 'Greener' Cement
Harvesting Hydrogen Fuel from the Sun
Interstellar Molecules Are Branching Out
Putting the Squeeze On Quantum Information
Solar Cell Compound Probed Under Pressure

More Matter & Energy News from AP, Reuters, AFP, and other news services
Power Outage? Robots to the Rescue
Mechanized Human Hands to Improve Lost Function
On the Road to Artificial Photosynthesis
Bottleneck in Crystal Structure Prediction Solved
Paving the Way for Spin-Based Computing
How to Make Stronger, 'Greener' Cement
Harvesting Hydrogen Fuel from the Sun
Interstellar Molecules Are Branching Out
Putting the Squeeze On Quantum Information
Solar Cell Compound Probed Under Pressure

Strange & Offbeat Stories

Space & Time
Earth’s Water Is Older Than the Sun: Likely Originated as Ices That Formed in Interstellar Space
A Galaxy of Deception: Hubble Snaps What Looks Like a Young Galaxy in the Local Universe
Most Metal-Poor Star Hints at Universe’s First Supernovae
Clear Skies on Exo-Neptune: Smallest Exoplanet Ever Found to Have Water Vapor
‘Uniofuturah’: Asteroid Named for University of Utah

Matter & Energy
Mechanized Human Hands: System Designed to Improve Hand Function Lost to Nerve Damage
Magnetic Field Opens and Closes Nanovesicle
‘Plasma Bubbles’ May Have Aided Enemy in Fatal Afghan Battle
‘Bendy’ LEDs: Displays and Solar Cells With Inorganic Compound Semiconductor Micro-Rods One Step Closer
Artificial Intelligence That Imitates Children’s Learning

Computers & Math
Yoga, Meditation May Help Train Brain to Help People Control Computers With Their Mind
Brain Scans Reveal ‘Gray Matter’ Differences in Media Multitaskers
Engineers Show Light Can Play Seesaw at the Nanoscale: Step Toward Faster and More Energy-Efficient Optical Devices
New RFID Technology Helps Robots Find Household Objects
A Breakthrough in Electron Microscopy: Scientists Reconstruct Third Dimension from a Single Image

In Other News
India reaches Red Planet, but at home red tape binds space firms
First Russian woman lifts off to International Space Station
Driving while texting with Google Glass as distracting as phone: study
Study finds solar system’s water older than the sun
Nobel Prize science predictions see honors for pain, LEDs and more

Health News
European agency collects data on experimental Ebola treatments
AstraZeneca says expanded use of lung cancer drug backed by EU agency
‘Collateral’ death toll expected to soar in Africa’s Ebola crisis
Money talks: Obamacare initiative makes

http://www.sciencedaily.com/releases/2014/06/140616101635.htm