
AIAA JOURNAL
Vol. 37, No. 2, February 1999

Multiblock Approach for Calculating Incompressible
Fluid Flows on Unstructured Grids

Chunhua Sheng¤ and David L. Whit� eld†

Mississippi State University, Mississippi State, Mississippi 39762
and

W. Kyle Anderson‡

NASA Langley Research Center, Hampton, Virginia 23681

A multiblockapproach is presented for solving two-dimensional incompressible turbulent � ows on unstructured
grids. The arti� cial compressibility form of the governingequationsis solved by a node-based, � nite volumeimplicit
scheme, which uses abackward Euler time discretization.PointGauss–Seidel relaxationsare used to solve the linear
system of equations at each time step. A multiblock strategy to the solution procedure is introduced, which greatly
improves the ef� ciency of the algorithm by signi� cantly reducing the memory requirements while not increasing
the CPU time. Results presented show that the current multiblock algorithm requires 73% less memory than the
single-block algorithm.

Introduction

I N the past decade, much progress has been made in developing
computational techniques for predicting � ow� elds about com-

plex con� gurations. These techniques include both structured and
unstructuredgrid algorithms, which have their own advantages and
disadvantages. The biggest advantage of the unstructured grid ap-
proach over the structured grid approach is that the process of grid
generationfor complexgeometriesis greatlysimpli� ed.Anotherad-
vantage is that unstructured grids lend themselves to adaptive grid
methodsbecausenew nodescanbe added to a localizedregionof the
mesh by modifying a small subset of the overall grid data structure.
Although the unstructured grid approach enjoys these advantages
over structuredgrids, � ow solvers that utilize it suffer several disad-
vantages.Theseprimarilyincludea factorof 2–3 increasein memory
requirements and computer run times on a per-grid-pointbasis.1

This work introducesa multiblockapproach to calculate the two-
dimensional incompressible Euler and Navier–Stokes � ows based
on unstructured grids. The multiblock technique has been widely
and successfully used in solution algorithms of structured grids to
solve � ows about complex con� gurations.2 ;3 The application of
the multiblock approach in the unstructured grid area seems not to
have received much attention. This is partly because computational
meshes for complex geometries can be relatively easily generated
usingunstructuredgridswithout the aid of the multiblocktechnique.
However, studiesof structuredgridalgorithmsby thepresentauthors
found that the multiblockapproachcan also signi� cantly reduce the
memory requirements by almost one order of magnitude in real-
world � ow computations.2;3 These studies and � ndings motivated
the current work to use the same multiblock concept to reduce the
memory requirements of an unstructuredgrid algorithm.

The baseline code FUN2D1 was originally developed at NASA
Langley Research Center. It solves the arti� cial compressibility
form of the two-dimensional incompressible Euler and Navier–
Stokes equations on unstructuredmeshes. Two different turbulence
models4 ;5 are included in the code for turbulent � ow computations,

Received May 9, 1997; presented as Paper 97-1866 at the AIAA 13th
Computational Fluid Dynamics Conference, Snowmass Village, CO, June
29–July 2, 1997; accepted for publication July 1, 1998. Copyright c° 1998
by the American Institute of Aeronautics and Astronautics, Inc. All rights
reserved.

¤Research Engineer,ComputationalFluidDynamics Laboratory,National
Science Foundation Engineering Research Center. Member AIAA.

†Professor, Computational Fluid Dynamics Laboratory, National Science
Foundation Engineering Research Center. Member AIAA.

‡Senior Research Scientist, Aerodynamic and Acoustic Methods Branch,
Fluid Mechanics and Acoustics Division. Member AIAA.

althoughthe currentworkonly uses the lattermodel.The discretized
scheme uses a vertex-centered� nite volume upwind approximation
with edge-based data structure. The numerical � uxes for the invis-
cid part are evaluated using the � ux-difference splitting scheme.
The viscous terms are evaluated with a � nite volume formulation
that is equivalent to a Galerkin type of approximation.6 The time-
advancement algorithm is based on the linearized backward Euler
time-difference scheme, which yields a linear system of equations
for the solution at each time step. The Gauss–Seidel procedure is
used to solve the linear system of equations at each time step.

The idea to use the multiblock approach to reduce the memory
requirements of the algorithm is quite simple. Instead of solving
the equations for all of the nodes of the grid at one time, the so-
lution process is broken down into several pieces (blocks) on the
grid, which are performed one by one. Because only one block is
processed at any time, the memory is allocated to store the data for
that block, which requires much less memory than that to store the
data for the whole grid. Special attentionshould be paid to the block
interfaces where the information must be properly passed from the
other blocks.

This paper is organized as follows: The arti� cial compressibil-
ity form of the two-dimensionalReynolds-averagedNavier–Stokes
equations is � rst outlined, followed by the numerical procedures
used in Ref. 1. The multiblock algorithm is introduced next, which
mainly includes grid decomposition, multiblock implementation,
and boundary treatment at block interfaces. Solutions of turbulent
� ows about a NACA 4412 airfoil and two four-element airfoils are
presented to demonstrate the ef� ciency and accuracy of the current
multiblock algorithm. Some conclusionsare summarized in the last
section.

Governing Equations
The unsteady two-dimensional incompressible Reynolds-ave-

raged Navier–Stokes equations without body forces are written
in Cartesian coordinates and in conservative form. A pseudo-time
derivative of pressure is added to the continuity equation. The re-
sulting set of equations in integral form represents a system of con-
servation laws for a control volume that relates the rate of change of
a vector of average state variables q to the � ux through the volume
surface, which can be written as

V
@q

@ t
C

@Ä

fi ¢ On dl ¡
@Ä

fv ¢ On dl D 0 .1/

where On is the outward-pointingunit normal to the control volume
V . The vector of dependent state variables q and the inviscid and

169

170 SHENG, WHITFIELD, AND ANDERSON

viscous � uxes normal to the control volume fi and fv are given as

q D
p

u

v

; fi ¢ On D
¯2

u2 C nx p

v2 C n y p

fv ¢ On D
0

nx ¿x x C n y ¿x y

nx ¿x y C n y¿yy

where ¯ is the arti� cial compressibility parameter; u and v are the
Cartesian velocity components in the x and y directions, respec-
tively; 2 is the velocitynormal to the surface of the control volume,
where

2 D nx u C n yv

and p is the pressure. Note that the variables in the preceding
equations are nondimensionalized with the characteristic length,
freestream values of velocity, density, and viscosity. Pressure is
normalizedusing the relationship.p ¡ p1/=p1V 2

1 , where the sub-
script denotes a freestream or reference value. The shear stresses in
Eq. (1) are given as

¿x x D .¹ C ¹t /.2=Re/ ux ; ¿yy D .¹ C ¹t /.2=Re/ vy

¿x y D .¹ C ¹t /.1=Re/ .u y C vx /

where ¹ and ¹t are the laminar and turbulent viscosities, respec-
tively, and Re is the Reynolds number.

Solution Algorithm
Finite Volume Scheme

The baseline � ow solver is a node-based � nite volume implicit
scheme. The computational domain is divided into a � nite number
of triangles from which control volumes are formed that surround
each vertex in the mesh. The � ow variablesare stored at the vertices
of the triangle. Equation (1) is then numerically integrated over the
closed boundaries of the control volumes surrounding each node.
These control volumes are formed by connecting the center of each
triangle to the midpoint of the edges, as shown in Fig. 1. These
nonoverlapping control volumes combine to completely cover the
domain and are considered to form a mesh that is dual to the mesh
composed of triangles formed from the vertices.

Numerical Flux Evaluation
The numerical evaluation of the surface integrals in Eq. (1) is

conductedseparatelyfor the inviscid and viscous contributions.The
inviscid � uxes are obtained on the faces of each control volume
with a � ux–difference-splittingscheme, whereas the viscous terms
are evaluated with a � nite volume formulation that is equivalent
to a Galerkin type of approximation.1 The inviscid � uxes on the
boundaries of the control volume around the central node 0 are
given by

8 D 1
2 [fi .q

CI On/ C fi .q
¡I On/]¡ 1

2
j NAj.qC ¡ q¡/ .2/

where 8 is the numerical � ux and fi is the � ux vector given in Eq.
(1). A nonsingular eigensystem for the matrix j NAj was obtained in
Ref. 1 and will not be repeated here. Quantities q¡ and qC are the
values of the dependent variables on the left and right sides of the

Fig. 1 Control volume surrounding a
node:——, mesh, and — —, median
dual (boundary of control volume).

boundary of the control volume. For � rst-order-accuratedifferenc-
ing, q¡ and qC are set equal to the data at the nodes lying on either
side of the boundary face. For higher-order differencing, these val-
ues are computed with a Taylor series expansion about the central
node 0 of the control volume:

qface D qnode C rq ¢ r .3/

where r is the vector that extends from the central node to the mid-
point of each edge and rq is the gradientof the dependentvariables
at the node.

The gradient rq can be evaluated with a least-squaresprocedure
in which the data surrounding each node are assumed to behave
linearly. The data at each node surrounding the center node may be
expressed as

qi D q0 C qx0 .xi ¡ x0/ C qy0 .yi ¡ y0/ .4/

By expressingthe data in a like manner at each of the N surrounding
nodes, an N £ 2 system of equations is formed as

1x1 1y1

1x2 1y2

:::
:::

1xN 1yN

qx0

qy0
D

q1 ¡q0

q2 ¡q0

:::
:::

qN ¡q0

.5/

This equation represents an overdetermined system, which can be
solved by using the normal equation approach7 to obtain the gra-
dients at the nodes. Another approach to calculate the gradients at
the nodes, as suggested in Ref. 6, is to use the Gram–Schmidt pro-
cess because of the sensitivity of the normal equation approach to
the condition number squaredof the solutionmatrix.6 The resulting
formulas for calculating the gradients at the center node in Fig. 1
are given as

qx0 D
N

i D 1

W x
i .qi ¡ q0/; qy0 D

N

i D 1

W y
i .qi ¡ q0/ .6/

where the summation is over all of the edges that connect to the
node and the weights are given by

W x
i D [ryy.xi ¡ x0/ ¡ rx y.yi ¡ y0/]

rx x ryy ¡ r 2
x y

W y
i D [rx x .yi ¡ y0/ ¡ rx y .xi ¡ x0/]

rx x ryy ¡ r 2
x y

with

rx x D
N

i D 1

.xi ¡ x0/2; ryy D
N

i D 1

.yi ¡ y0/
2

rx y D
N

i D 1

.xi ¡ x0/.yi ¡ y0/

Note that Eq. (5) gives unweighted gradients in which all of the
data surrounding the central node are given equal consideration. It
was found in Ref. 6 that weighted gradients, which are evaluated
by using inverse distance or Green’s theorem, provide better accu-
racy than unweightedgradients,when actual gradientsare required,
as in the production terms for the turbulence model. However, for
reconstructing nonlinear data on highly stretched meshes, such as
viscous grids, an unweighted formulation is far superior to either
inverse distance weighting or the use of gradients calculated with
Green’s theorem.6

The viscous � ux contribution to the residual is obtained using a
� nite volume approach. In this approach,quantitiessuch as velocity
derivatives are � rst evaluated in each triangle of the mesh, and the
viscosity is computed as an average of the three nodes making up
the triangle.

SHENG, WHITFIELD, AND ANDERSON 171

Time-Advancement Scheme
The time-advancementalgorithmis basedon the linearized,back-

ward, Euler time-differencingscheme, which yields a linear system
of equations for the solution at each time step:

[A]nf1qgn D ¡frgn .7/

where frgn is thevectorof steady-stateresiduals,f1qgn is thechange
in the dependent variables, and the solution matrix [A]n is written
as

[A]n D
V

1t
I C @r

@q
8/

The solution of this system of equations is obtained by a relax-
ation scheme in which f1qgn is obtained through a sequence of
iterations f1qgi , which converge to f1qgn . There are several varia-
tions of classic relaxationproceduresthat havebeen used in the past
for solving this linear system of equations.8;9 In this work, a point
implicit Gauss–Seidel procedure as described in Ref. 1 is used. To
clarify the scheme, [A]n is � rst written as a linear combination of
two matrices representing the diagonal and off-diagonal terms:

[A]n D [D]n C [O]n .9/

and the solution to the linear system of equations is obtained by
adoptinga Gauss–Seidel type of strategyin which all odd-numbered
nodes are updated � rst, followed by the solution of the even-
numbered nodes. This procedure can be represented as

[D]nf1qgi C 1 D ¡ fr gn ¡ [O]f1qg.i C 1/= i .10/

where f1qg.i C 1/= i is the most recent value of 1q, which will be at
subiteration level i C 1 for the odd-numbered nodes that have been
previously updated and at level i for the even-numbered nodes.
Normally, 15–20 subiterations are adequate at each time step.

Turbulence Modeling
For the current study, the one-equation turbulence model of

Spalart and Allmaras5 is used. Attention is paid to the distance
function when coupling this turbulence model with the multiblock
algorithm described next. That is, the distance function for each
node of the grid is computed based on the closest distance to the
wall across all blocks, prior to processing each block. In the solu-
tion process, the equation for turbulent viscosity is solved using a
backward Euler time-stepping scheme similar to that used for the
� ow variables but separated from the � ow equations. This results
in a loosely coupled solution process that allows easy interchange
with new turbulence models. For more details about the turbulent
model and its implementation, see Refs. 1 and 5.

Multiblock Algorithm
Grid Decomposition

In the process to generate a multiblock structured grid, the phys-
ical domain is � rst divided into several subdomainswith prescribed
block boundaries. The grid in each block is then generated sep-
arately. To generate a multiblock unstructured grid, however, the
already described process does not apply because prescribed block
boundarieswill degrade the grid quality in these regions.The multi-
block unstructured grid is generated through a grid-decomposition
process. First, the computationalgrid of the whole physical domain
is constructed within a single block using the grid-generationpro-
gram TRI8IT.1 Then a domain-decomposition method is used to
break the mesh into several subdomains (or blocks) by selecting all
of the cells that fall into the region set for each subdomain. Each
block contains a complete set of node information, just like a sepa-
rate grid. A � le that contains information to connect block-to-block
interfaces is also created. This domain-decompositionmethod has
also been used for other purposes in unstructured grid algorithms,
for example, see Ref. 10 for parallel computations.

There are several criteria that are used to guide the process of the
grid decomposition.The most important one is the number of nodes
or cells in each block. Because the overall memory requirements

of the solver are determined by the largest block, each block grid
should contain a nearly equal number of nodes or cells to achieve
the best reduction in memory usage.Other criteria, such as selecting
the fewest interfaces for a given number of blocks to minimize the
data communication between blocks, should also be considered.
A readily available software (METIS)11 can partially ful� ll these
requirementsandwas used in the currentwork to partitionthe single-
block mesh into multiblock grids.

Multiblock Strategy and Memory Allocation
The implementationof the multiblock algorithmon unstructured

grids adopts a similar strategy as used in structured grids in Ref. 2,
i.e., a verticalmode in which a complete cycle is completed in each
blockbefore proceedingto the next block.The advantageof this ap-
proach is that the solution process (nonlinear and linear procedure)
in each block is local and, thus, does not depend on the solution in
otherblocks.The data at block interfacesare treatedas blockbound-
ary conditions,which are updated after each time step, as described
subsequently. This nature of independence of the solution to other
blocks offers great � exibility in both implementation and memory
allocationfor the algorithmand also provides a natural platform for
parallel implementations. (In fact, the main difference between the
multiblock algorithm and the parallel implementation is that, in the
former, the solution in each block is performed sequentially in a
prescribed order, whereas in the latter, all blocks are solved simul-
taneously.) The disadvantage of the vertical mode is that, if a grid
has a lot of blocks, the convergencerate could suffer because of the
explicit nature of the data interchangebetween blocks. Because the
main purpose of this work is to reduce the memory requirements
of the unstructured grid algorithm, the memory allocation in the
code must be done in a special way to achieve the best ef� ciency in
both memory usage and CPU time. In the current work, all memory
is allocated either locally or globally. For local memory, only the
storage needed for the current block is allocated when the solution
process enters that block, and this storage is freed at the time when
the solutionprocess leaves the block. The new storage is reallocated
when the solution process moves to the next block. The local mem-
ory allocationis mainly for variablesthat do notneed to be stored for
all blocks, such as the � ux Jacobian matrix (most costly part in the
memory usage), which is updatedafter each time step in each block.
On the other hand, the global memory allocationmeans that storage
is allocated for all blocks and is not freed until the solution process
is complete. Some data, such as � ow variables, grid coordinates,
and the distance function in the turbulence model, must be stored
in a global way for all blocks. Therefore, by adopting the described
strategy for memory allocation, the memory requirements of the
multiblock algorithmwill be much less than that of the single-block
algorithm where all memory is allocated globally.

Note that the way to compute and save the metric quantitiesof the
grid has great impact on the overall memory usage in the multiblock
algorithm because the storage for these metric terms is the second
largest part in the memory cost. If the metric terms of the grid are
computed and saved in each block, the memory reduction by this
method is limited to the maximum of 45% of the single-grid algo-
rithm. The reason is that the memory needed to store these metric
terms will exceed the memory reduced by the just-describedmulti-
block algorithm when a certain number of blocks is exceeded. An
improvement can be made by allocating these metric terms locally
for each block and recomputingthem after each time step.Although
this will introduce some CPU time overhead, it is the most univer-
sal way for general unsteady problems with dynamic moving grids
because for these problems the metric terms of the grid must be
recalculated after each time step following the grid movement any-
way. In fact, because the memory usage of the algorithm is further
reduced by this method, the overall CPU time to execute the code
may be even less because more data in the main memory can now
reside in a much faster accessible data cache device, which allows
more ef� cient implementationof thecode.Results in thiswork show
that, by adopting the described strategy, the memory savings by the
multiblock algorithm is signi� cantly increased to up to 73% of the
single-blockalgorithm,whereas the CPU time cost is even 12% less
than that of the multiblock code in which the metric terms of the
grid are allocated globally for all blocks.

172 SHENG, WHITFIELD, AND ANDERSON

Fig. 2 Nodes at block interfaces.

Interface Treatment
Two major issues in the multiblock implementation are the data

structure and the treatment of the block interfaces where two or
more blocks are next to each other. A natural choice is to use the
same edge-based data structure to store the data at block interfaces
and to treat the nodes at the interface in the same way as the interior
nodes (Fig. 2). In the algorithm, a set of buffer arrays is declared
for each block to store the data on phantom edges that surround
the current block and have the connection to the block interfaces
(dashed lines in Fig. 2). In the actual computation, the nodes at
block interfaces (circles in Fig. 2) are computed in two steps. In the
� rst step, contributionsfrom interior edges (solid lines in Fig. 2) are
collected, and values are stored at the nodes. This procedure is the
same as for all interior nodes. In the second step, contributionsfrom
other blocks are added to these nodes at block interfacesby looping
over the phantomedges surroundingthe currentblock using the data
stored in the buffer arrays. The data in the buffer arrays are updated
after each time step when all blocks have been processed.Note that
the method provides synchronizedboundaryconditionsat the block
interfaces because the gradient of � ow variables is computed based
on the values at the same previous time step. This ensures that the
performanceof the multiblock algorithm will be close to that of the
single-block algorithm.

Results
Results are given for three airfoil cases, a NACA 4412 airfoil and

two four-elementairfoils. The unstructuredgrids are � rst generated
in a single block with a code described in Ref. 1, and a domain
decompositionmethod is used to divide the grid into several blocks.
Solutions are obtained with the single-block and the multiblock al-
gorithms. Comparison is made for the memory usage and CPU time
between the two methods. Note that, for both multiblockand single-
block algorithms, the metric quantities of the grid are recomputed
after each time step. For each case, the Courant–Friedrichs–Lewy
number has been linearly ramped from 20 to 200 over 100 itera-
tions, and 15 subiterationswere used at each time step to obtain an
approximate solution of the linear system. All computations were
carried out on an SGI R10000 194-MHz single processorwith 2-GB
in-core memory and 2-MB data cache size.

NACA 4412 Airfoil
The � rst case selected to test the current algorithm is the viscous

� ow over a NACA 4412 airfoil. Computations are performed with
both the single-block and multiblock algorithms, and results are
compared with the experimental data obtained in Ref. 12. The � ow
conditions include an angle of attack of 13.87 deg and a Reynolds
number of 1:52 £ 106 (based on the chord length of the airfoil). The
unstructuredgrid contains 10,347 nodes and 20,694 cells. The nor-
malizedgrid spacingat the wall is about 1:0 £ 10¡5. The multiblock
grid is obtained by dividing the single-blockgrid into three blocks,
with the number of nodes of 3030, 3625, and 3864 in each block,
respectively (Fig. 3).

Figure 4 shows the convergence histories for both single-block
and multiblock algorithms. Both solutions have about the same

Fig. 3 Three-block grid for NACA 4412 airfoil.

Fig. 4 Convergence histories of single-block and multiblock solutions.

Fig. 5 Comparison of Cp distributions between the experimental data
and computations.

convergence rate, which indicates that the ef� ciency of the multi-
blockalgorithmis not degradedwith the currentmultiblockstrategy
and the treatmentof blockinterfaces.Figure 5 shows thecomparison
of the Cp distributions on the airfoil surface between the experi-
ment and computations. The result shows that both multiblock and
single-block solutions are very close to each other, which are in
good agreement with the experimental data. Figure 6 shows u ve-
locity contours of both the single-block and multiblock solutions.
The continuity of the contour lines across the interfaces indicates
the proper treatment of passing data among blocks. Table 1 shows
the memory usage and CPU times for 1000 time iterations for both
single-block and multiblock solutions. It is seen that the memory
requirements for the three-blockmultiblock code are 41% less than
that for the single-blockgrid.

SHENG, WHITFIELD, AND ANDERSON 173

Table 1 Memory usage and CPU time of single-block and multiblock
solutions for NACA 4412 airfoil

Grid, nodes Block Memory, MB CPU time, min

10,347 1 22 42
10,347 3 12 38

a) Single block

b) Multiblock

Fig. 6 Computed u velocity contours around the airfoil.

Fig. 7 Eight-block grid for the four-element airfoil with 34,295 nodes.

Four-Element Airfoil
To further demonstrate the ef� ciency of the current multiblock

algorithm, computations were performed on two four-element air-
foils. The unstructured mesh for the � rst con� guration was built
with 34,295 nodes and 68,596 cells, decomposed into eight blocks
(Fig. 7). The block boundaries are placed in several critical wake
regions to test the robustness and ef� ciency of the current code, as
well as the accuracy of the block boundary condition as described

Fig. 8 Convergence histories for the four-element airfoil at Re =
9 £ £ 106 and 0-deg angle of attack.

Fig. 9 Convergence histories for the four-element airfoil at Re =
9 £ £ 106 and 16-deg angle of attack.

before. The normalized grid spacing on the wall is 1:0 £ 10¡5 , and
the Reynolds number is 9 £ 106 based on the length of the airfoil
with the slat and � aps retracted. Computations are performed for
the � ow at 0- and 16-deg angles of attack, and results are compared
with the experimental data in Ref. 13.

Figures8 and9 show theconvergencehistoriesof bothmultiblock
and single-block solutions at 0- and 16-deg angles of attack. The
convergence rates of the multiblock and single-block solutions are
very similar for both � ow conditions. The computed and measured
Cp distributions on the slat, main, main � ap, and auxiliary � ap
surfacesare shownin Figs. 10and11.Computed resultsare matched
very well with the experimentaldata at both 0- and 16-deg angles of
attack. Note that the current multiblock solver reproduces the same
solution as the single-block solver does.

A numerical test was also conducted on another four-element
airfoil for which the unstructured mesh was built with 132,331
nodes and 264,668 cells, partitioned into 20 blocks (Fig. 12) using
METIS.11 The normalized grid spacing on the wall is 1:0 £ 10¡6,
which yields a yC value of less than 1 for the nodes off the wall
surface. The in� ow conditions include 20.318-deg angle of attack
and a Reynolds number of 9 £ 106 . Figure 13 shows the contoursof
the u velocity componentsobtainedby both single-blockand multi-
block solutions. It is seen that overall � ow patternsbetween the two
solutions are very similar. Figure 14 shows the convergence histo-
ries of both multiblock and single-blocksolutions. It shows that the
performance of the multiblock solution is not degraded when the
number of blocks is increased.

Table 2 summarizes the CPU times for 1000 time steps and mem-
ory requirements for the last two grids. It is seen that the mem-
ory savings by the multiblock solution over the single-block solu-
tion is 63% for the 8-block grid case and 73% for the 20-block
grid case. The CPU time for the multiblock solutions is about
10–40% less than that required in the single-block solutions.
The preceding single-block solutions require about 8–22% more

174 SHENG, WHITFIELD, AND ANDERSON

Fig. 10 Comparison of Cp distributions for the four-element airfoil at Re = 9 £ £ 106 and 0-deg angle of attack.

Fig. 11 Comparison of Cp distributions for the four-element airfoil at Re = 9 £ £ 106 and 16-deg angle of attack.

SHENG, WHITFIELD, AND ANDERSON 175

Table 2 Memory usage and CPU times of single-block and
multiblock solutions for four-element airfoils

Grid, nodes Blocks Memory, MB CPU time, min

34,295 1 66 229 (188)a

34,295 8 25 138
132,331 1 241 864 (799)a

132,331 20 65 776

aCPU time of solutions where the metric terms of the grid are not recomputed.

Fig. 12 Four-element airfoil with 132,331 nodes partitioned into 20-
block grid.

a) Single block

b) Multiblock
Fig. 13 Computed u velocity contours around the four-element airfoil
on grid with 132,331 nodes.

Fig. 14 Convergence histories for four-element airfoil with 132,331
nodes.

CPU time than the original code because of the overhead of the
CPU time introduced by recomputing metric quantities of the grid.
Nonetheless,the multiblockalgorithmstill takes less CPU time than
the original single-block algorithm.

Conclusions
The development of a multiblock algorithm to solve the two-

dimensional incompressible Reynolds-averaged Navier–Stokes
equations is presented. The multiblock technique has been used
in many computational � uid dynamics applications for structured
grids. However, little attention has been given to applying this
approach to the unstructuredgrid area. Results presentedshow that,
by properlyallocatingthememory for the code, themultiblocksolu-
tion may save up to 73% of the memory of the single-blocksolution.
Furthermore, the current multiblock algorithm does not introduce
any overhead of the CPU time (it even reduces the CPU run time
comparedwith the single-blocksolutions) on the computer used for
the current work. It is expected that the CPU time may go up some
on computers where cache management is less important. Never-
theless, the featuresdemonstratedfrom the current multiblockalgo-
rithmprovethat this techniqueis a useful alternativeto the disadvan-
tage associatedwith the large memory requirementsof unstructured
grid algorithms. Although the results presented here are for two-
dimensional cases, the concepts and methods of the algorithm are
readily applicable to general three-dimensional compressible and
incompressible � ow solvers. It is believed that the combination of
the advantagesfrom the multiblocktechnologyand the unstructured
grid technology makes it possible to provide a highly ef� cient and
cost-effectivecomputational tool to predict realistic complex � ows
about complex con� gurations.

Acknowledgments
This research was supported by the NASA Langley Research

Center under NASA Grant NAG-1-1990. This support is gratefully
acknowledged.The authorswish to thankGregoryHenleyof theNa-
tional Science Foundation Engineering Research Center for Com-
putational Field Simulation for helpful discussions.

References
1Anderson,W. K., Rausch, R. D., and Bonhaus,D. L., “Implicit/Multigrid

Algorithms for Incompressible Turbulent Flows on Unstructured Grids,”
AIAA Paper 95-1740, June 1995.

2Sheng, C., Taylor, L. K., and Whit� eld, D. L., “Multiblock Multigrid
Solution of Three-Dimensional Incompressible Turbulent Flows About Ap-
pended Submarine Con� gurations,” AIAA Paper 95-0203, Jan. 1995.

3Sheng, C., Chen, J. P., Taylor, L. K., Jiang, M. Y., and Whit� eld, D. L.,
“Unsteady Multigrid Method for Simulating 3-D Incompressible Navier–

Stokes Flows on Dynamic Relative Motion Grids,” AIAA Paper 97-0446,
Jan. 1997.

4Baldwin, B., and Barth, T., “A One-Equation Turbulence Transport
Model for High Reynolds Number Flows of Unstructured Meshes,” AIAA
Paper 91-0721, Jan. 1991.

5Spalart, P., and Allmaras, S., “A One-Equation Turbulence Model for
Aerodynamic Flows,” AIAA Paper 92-0439, Jan. 1992.

176 SHENG, WHITFIELD, AND ANDERSON

6Anderson, W. K., and Bonhaus, D. L., “An Implicit Upwind Algorithm
for Computing Turbulent Flows on Unstructured Grids,” Computers and
Fluids, Vol. 23, No. 1, 1994, pp. 1–21.

7Golub, G., and Loan, C. V., Matrix Computations, Johns Hopkins Univ.
Press, Baltimore, MD, 1989, pp. 224–231.

8Anderson, W. K., “Grid Generation and Flow SolutionMethod for Euler
Equations on Unstructured Grids,” NASA TM-4295, April 1992.

9Batina, J. T., “Implicit Flux-Split Euler Schemes for Unsteady Aero-
dynamic Analysis Involving Unstructured Dynamic Meshes,” AIAA Paper
90-0936, April 1990.

10Barth, T. J., and Linton, S. W., “An Unstructured Mesh Newton Solver
for Compressible Fluid Flow and Its Parallel Implementation,” AIAA Paper
95-0221, Jan. 1995.

11Karypis, G., and Kumar, V., “METIS—A Software Package for Par-

titioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-
Reducing Orderings of Sparse Matrices,” User’s Manual, Dept. of Computer
Science/Army HPC Research Center, Univ.ofMinnesota,Minneapolis,MN,
Nov. 1997.

12Coles, D., and Wadcock, A. J., “Flying-Hot-WireStudy of Flow Past an
NACA 4412 Airfoil at Maximum Lift,” AIAA Journal, Vol. 17, No. 4, 1979,
pp. 321–329.

13Valarezo, W., Dominik,C., McGhee, R., Goodman,W., and Paschal, K.,
“Multi-Element Airfoil Optimization for Maximum Lift at High Reynolds
Number,” AIAA Paper 91-3332, Sept. 1991.

J. Kallinderis
Associate Editor

