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(ABSTRACT)

In transonic flow, the aerodynamic interference that occurs on a strut-braced wing air-

plane, pylons, and other applications is significant. The purpose of this work is to provide

relationships to estimate the interference drag of wing-strut, wing-pylon, and wing-body ar-

rangements. Those equations are obtained by fitting a curve to the results obtained from

numerous Computational Fluid Dynamics (CFD) calculations using state-of-the-art codes

that employ the Spalart-Allmaras turbulence model.

In order to estimate the effect of the strut thickness, the Reynolds number of the flow,

and the angle made by the strut with an adjacent surface, inviscid and viscous calculations

are performed on a symmetrical strut at an angle between parallel walls. The computations

are conducted at a Mach number of 0.85 and Reynolds numbers of 5.3 and 10.6 million

based on the strut chord. The interference drag is calculated as the drag increment of the

arrangement compared to an equivalent two-dimensional strut of the same cross-section. The

results show a rapid increase of the interference drag as the angle of the strut deviates from

a position perpendicular to the wall. Separation regions appear for low intersection angles,

but the viscosity generally provides a positive effect in alleviating the strength of the shock

near the junction and thus the drag penalty. When the thickness-to-chord ratio of the strut

is reduced, the flowfield is disturbed only locally at the intersection of the strut with the wall.

This study provides an equation to estimate the interference drag of simple intersections in

transonic flow.

In the course of performing the calculations associated with this work, an unstructured

flow solver was utilized. Accurate drag prediction requires a very fine grid and this leads

to problems associated with the grid generator. Several challenges facing the unstructured



grid methodology are discussed: slivers, grid refinement near the leading edge and at the

trailing edge, grid convergence studies, volume grid generation, and other practical matters

concerning such calculations.
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Chapter 1

Introduction

In 1996, Dennis Bushnell, chief scientist at the NASA Langley Research Center, challenged

the Virginia Tech Multidisciplinary Analysis and Design (MAD) Center to apply Multidis-

ciplinary Design Optimization (MDO) tools to the study of the strut-braced wing aircraft

concept [1, 2, 3]. Within the MDO framework, the structural and aerodynamic analysis mod-

ules are linked together with an optimizer in order to minimize the aircraft take-off gross

weight or any other suitable objective function subject to some constraints. The synergism

that is obtained within this MDO context achieves a substantial reduction of the aircraft

weight compared to an equivalent cantilever design with the same mission profile.

From the aerodynamics standpoint, the interference drag between the wing, the strut,

and the fuselage is a major obstacle in designing a transonic strut-braced wing airplane.

Subsequent sections of this work will deal with estimating the penalties associated with such

junctions using Computational Fluid Dynamics (CFD) methodology on unstructured grids.

The dissertation will be organized as follows:

• Chapter 2 presents a survey of the literature about innovative aircraft concepts and

the phenomenon of aerodynamic interference in all speed regimes.

• Chapter 3 describes the CFD tools employed in this research. Details are given about

the unstructured grid generation codes and the flow solver.

• Chapter 4 shows the application of the CFD methodology to a strut-braced wing design

obtained with the MDO tools. The effect of employing a straight strut is compared

with the benefits of employing an arch-shaped strut.

1
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• Chapter 5 discusses the application of a CFD approach to estimate the interference

drag penalty of general strut-wall junctions. An expression for the interference drag is

obtained as a function of the thickness of the strut, the Reynolds number of the flow,

and the angle made by the strut with the nearby wall.

• Chapter 6 presents some of the challenges facing CFD today. Trailing edge closure,

grid refinement, volume grid generation, and slivers are some of the topics dicussed in

that chapter.

The dissertation ends with concluding remarks and recommendations for future work in the

field.



Chapter 2

Literature Review

The literature contains useful information about the aerodynamic interference and the emer-

gence of novel designs for commercial transports. The most innovative airplane concepts

about to challenge the position held by cantilever wing airplanes will be discussed first.

Then, a discussion of the various studies made of the interference phenomenon will be pre-

sented for the subsonic, transonic, and supersonic speed regimes.

2.1 Innovative Aircraft Concepts

In today’s aviation industry, cantilever wing designs are the most common configuration

used for transonic civil transport aircraft. The Boeing 747-400 [4] is an example of that

type of airplane. It has a wing sweep of 37.5 degrees and flies at 35,000 ft at a cruise Mach

number of 0.85. Over the years, this design has been scaled to allow the airplane to carry

an increased payload without making major alterations to the concept itself.

In an attempt to seek a major improvement in the performance of transport airplanes,

several innovative concepts have been studied in recent years. McMasters and Kroo [5]

investigated the benefits of a 600-passenger concept with canard and a C-wing. They also

looked at the design of a very large subsonic transport airplane configured as a flying boat.

But the most promising concepts for the future of commercial transonic transport are the

blended wing body, the inboard wing, the joined wing, and the strut-braced wing designs.

The blended wing body [6] consists in blending the passenger cabin, cargo structure, and

3
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propulsion system into the inboard wing. This results in a highly integrated design that

exhibits large aerodynamics benefits compared to its cantilever counterpart.

The inboard wing concept [7] provides a way to increase the payload capacity without

exceeding the dimensions of conventional airplane designs. The wing is located between two

fuselages mounted at the wing tips. Because of the presence of bodies at the wing tips, it is

suggested that this airplane eliminates or reduces the wing tip vortices found on conventional

designs and hence, the induced drag.

The joined wing [8] aircraft employs a swept forward wing and a swept backward wing

joined at the tip. The wings form a diamond shape from the top view and the front view.

The root of the swept forward wing is fixed at the tail of the airplane. The most important

benefits [9] of this configuration over the conventional airplanes are the reduced structural

weight and the lower induced and overall drag. Preliminary design of joined wing aircraft

led to the testing of several models in wind tunnel [10, 11]. Recently, an MDO approach was

applied to the concept to seek a better synergy among the various disciplines involved in the

design of the aircraft. Gallman et al. [9] designed the aircraft for minimum Direct Operating

Cost (DOC) and showed a 4% increase in DOC over a cantilever comparator. Structural

optimization employing a minimum weight optimization approach or a fully stressed design

method was also applied to the joined wing concept by Gallman and Kroo [12]. The addi-

tion of a buckling constraint produced a design that is more expensive to operate than its

cantilever counterpart.

A derivative of the joined wing concept is the boxplane [8] or simply boxwing. The

main difference with the joined wing is that the wings don’t form a diamond shape in the

front view. Instead, vertical sections join the tips of the forward and backward swept wings.

Wolkovitch [8] mentions that this configuration achieves a significant reduction of the induced

drag compared to a conventional wing.

An innovative concept is the strut-braced wing. The strut-braced wing configuration

consists in adding a strut to a conventional airplane configuration to offer additional support

for the wing. Pfenninger [13] proposed the concept as a means of reducing the induced drag

through an increase of the wing aspect ratio. By employing a strut, the bending moment

at the wing root is reduced, and it becomes possible to employ thinner airfoil sections for

the main wing. This allows a reduction of the wing sweep, thus providing more laminar
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flow and hence less skin friction drag on the wing surface. Jobe et al. [14] presented the

preliminary design of a large strut-braced wing airplane and compared it with the result

of an optimization study performed on a cantilever wing design. They concluded that to

achieve minimum fuel, it was necessary to have a wing of high aspect ratio, low sweep and

small thickness to chord ratio. The wing deflection of the cantilever design during taxi was

unacceptable but employment of a strut reduced that deflection to a reasonable level.

Grasmeyer [1], Gern et al. [2], and Gundlach et al. [3] presented the approach employed to

study the benefits of the strut-braced wing concept within an MDO framework. The strut-

braced wing was designed to carry 325 passengers at a cruise Mach number of 0.85 and to have

a range of 7,500 nautical miles. The evaluation of the aerodynamic parameters was based on

simple methods and the interference drag of the wing with the strut was determined from

offline CFD analyses. For the structures, the determination of the bending material weight

of the wing was based on a hexagonal wing box model that takes into account the torsional

stiffness of the wing. The deformation of the wing under load conditions was considered.

The strut was designed with a telescoping sleeve mechanism to prevent buckling in negative

g load conditions. Flutter analyses performed offline revealed that the airplane is safe to fly

within the prescribed flight envelope. The resulting strut-braced wing design was shown to

have a significantly lower take-off gross weight than a baseline cantilever design similar to a

Boeing 777. It also employed less fuel and had smaller engines, both of which contribute to

a reduction of the gas emissions and the noise level. Gundlach et al. [3] optimized the strut-

braced wing and the cantilever designs for minimum take-off gross weight and for minimum

fuel. The effect of changing the mission range to 4,000 nautical miles was investigated. All

those analyses confirmed the benefits of the strut-braced wing compared to its cantilever

counterpart.

2.2 Interference Drag

In this section, the phenomenon of aerodynamic interference is discussed in detail. The in-

formation is categorized according to the speed regime, whether it is in subsonic, transonic,

or supersonic flow. Emphasis is put on wing-body, wing-pylon, and strut-endwall configura-

tions. The measured or computed quantities are also summarized in tables. The following

acronyms are employed in those tables:
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• B.L.: boundary layer

• RANS: Reynolds-averaged Navier-Stokes equations

• TLNS: thin-layer Navier-Stokes equations

• TSD: transonic small disturbances

• SLNS: slender-layer Navier-Stokes equations

• VLM: vortex-lattice method

2.2.1 Subsonic Flow

The work done by many researchers in the subsonic flow speed range is presented in Table 2.1.

Hoerner [24] performed experiments and collected much information related to interfer-

ence drag of struts in subsonic flow. In some instances, he was able to correlate the interfer-

ence drag with a simple equation to aid in estimating the drag of various configurations. The

case of a strut perpendicular to a wall was studied for several strut thicknesses. The trends

suggested that favorable interference drag is possible for thin struts. The interference drag

increases significantly when the strut thickness is increased. By varying the strut sweep, it

was observed that a substantial reduction in the interfernce drag can be achieved. When

the strut is tilted laterally from its position perpendicular to the wall, flow separation in the

junction produces a large increase in the interference drag coefficient.

Kubendran et al. [28] conducted an experiment for the flow around a wing-fuselage junc-

ture. The juncture was simulated by attaching a body of constant thickness with an elliptical

leading edge radius to a flat plate. The body was placed perpendicular to the flat plate. They

obtained favorable interference equivalent to -3% of the total drag of the plate and body in

isolation. Barber [16] measured the intersection losses for a strut perpendicular to a wall in

a low-speed wind tunnel. The struts studied had t/c ratios of 20% and 30%. Lower drag

penalty was observed for thicker incident boundary layers than for thinner ones. Also, the

dependence on the flow incidence angle was markedly smaller for a thicker boundary layer.

In subsonic flow, Roach and Turner [38] tested a number of strut sections perpendicular to

a wall. For streamlined strut sections of small aspect ratio, the secondary losses could be
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Table 2.1: Aerodynamic interference in subsonic flow
Ref. Authors Year Configuration Type of study If numerical, Data

flow equations solved Pressure Forces Others
[15] Ahmed and 1995 wing-body jct Experimental X velocity profiles,

Khan oil viz.
[16] Barber 1978 strut-endwall Experimental X X oil viz.
[17] Burke 1989 wing-body jct Numerical RANS X velocity profiles,

streamtraces
[18] Chang and 1991 wing-body jct Experimental X velocity profiles

Gessner and contours,
turb. quantities

[19] Chen and 1992 cylinder-endwall Numerical RANS X streamtraces
Hung

[20] Devenport 1990 wing-body jct Experimental X turb. quantities,
and Simpson velocity,

oil viz.
[21] Devenport 1990 wing-body jct Experimental X turb. quantities,

et al. oil viz.
[22] Devenport 1992 wing-body jct Experimental X turb. quantities,

et al. velocity,
oil viz.

[23] Fleming et al. 1992 wing-body jct Experimental velocity profiles,
turb. quantities

[24] Hoerner 1965 strut-endwall Experimental X
[25] Kaykayoglu 1996 wing-fuselage– Numerical unsteady VLM X

pylon-store
[26] Khan and 1996 wing-body jct Experimental turb. quantities

Ahmed
[27] Krautheim 1997 strut-walls Experimental X velocity

et al.
[28] Kubendran et al. 1984 wing-body jct Experimental X X velocity profiles,
[29] Kubendran and 1985 wing-body jct Experimental X velocity profiles

Harvey
[30] Kubendran et al. 1986 wing-body jct Experimental velocity profiles,

turb. quantities
[31] Maughmer 1987 wing-fuselage Experimental X X

[32] Ölçmen and 1994 wing-body jct Experimental X velocity profiles,
Simpson oil viz.

[33] Ölçmen and 1996 wing-body jct Experimental X velocity profiles,
Simpson turb. quantities

[34] Ölçmen and 1997 wing-body jct Experimental velocity profiles,
Simpson turb. quantities,

streamlines

[35] Özcan and 1988 wing-body jct Experimental X X streamtraces

Ölçmen velocity profiles
[36] Paul and 1992 wing-body jct Numerical incompressible X velocity profiles,

Carlson with TLNS and SLNS streamtraces
assumptions

[37] Pierce and 1990 strut-endwall Experimental X X velocity contours
Nath

[38] Roach and 1985 strut-endwall Experimental X pressure contours
Turner

[39] Shabaka and 1981 wing-body jct Experimental velocity contours
Bradshaw and vectors,

vorticity
[40] Thwaites 1960 wing-wing and Theoretical incompressible X velocity

wing-body jcts distribution
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reduced to a correlation in terms of the Reynolds number of the flow, the Mach number, the

thickness-to-chord ratio of the strut and the displacement thickness of the incident boundary

layer. Pierce and Nath [37] investigated the interference drag of a streamlined body with a

thickness-to-chord ratio of 42.6%. The study showed a significant drag increase due to the

junction. When compared to similar studies, the results confirmed the dependence of the

interference drag on the thickness-to-chord ratio of the strut.

Ref. [40] presents some theoretical developments to estimate the variation of the chordwise

velocity distribution for various junctions in subsonic flow. For the case of perpendicular

rectangular wings, the expressions derived provide a crude estimate of the behavior of the

flow velocity. The flow velocity on the wing surface is in some cases considerably higher near

the junction than some distance away from it. Therefore, thinning the airfoil sections near

the junction is seen as a way to reduce the onset of compressibility effects and the tendency

of the boundary layer to separate in that region. Similar analyses are presented for two

intersecting swept wings and several wing-body junctions.

The subsonic flow about a wing-body junction is a topic that is studied extensively in the

literature. It serves an important purpose in the determination of the turbulent quantities of

the flow. Several experiments and numerical calculations have been conducted on the topic.

Ref. [41] provides a very good survey of the experiments done on wing-body junctions in

subsonic flow.

Shabaka and Bradshaw [39] measured the turbulent flow and the decay of the horseshoe

vortex forming around an idealized wing-body junction. Devenport and Simpson [20] mea-

sured the turbulent quantities upstream of a wing-body juncture to obtain some insight in

the time-dependent and the time-averaged structure of the flow in that region. They also

observed the separation that occurs because of the adverse pressure gradient produced by

the wing. Abdulla-Altaii and Raj [41] identified a dominant horseshoe vortex and a weaker

corner vortex in the wake of a wing-body junction. Ölçmen and Simpson [33] focused on

the vicinity of a 3-D separation line and in the region where the horseshoe vortex forms

around the wing. In addition, they investigated the flow in the vicinity of the wing-body

junction [34]. Özcan and Ölçmen [35] measured the flow behind a wing-body junction at

high angle of attack. Ölçmen and Simpson [32] measured the pressure fluctuations in the

flow around several wing-body junctions and showed that they are dependent upon the wing
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geometry. Chang and Gessner [18] and Fleming et al. [23] measured the characteristics of the

turbulent flow in the vicinity and downstream of the wing-body junction. For the analysis

of the subsonic flow in wing-body junctions, Navier-Stokes flow solvers have been applied

successfully by Burke [17] and Paul and Carlson [36].

For wing-body junctions, Ahmed and Khan [15] reported that the location of the juncture

vortex is very sensitive to the sweep. The vortex moves towards the wing for back sweep and

away for forward sweep. Khan and Ahmed [26] determined that the effect of the wing sweep

on the flow structure is significant as the forward swept wing has a lower turbulence kinetic

energy level. Kubendran et al. [30] found that the slenderness ratio of the wing leading edge

affects the location and the strength of the vortex that wraps around the wing.

The effect of employing fillets at the leading edge of wing-body junctures was assessed

experimentally by Kubendran and Harvey [29] and Devenport et al. [21, 22]. Kubendran

and Harvey [29] noted that the fillets provide a reduction in the measured drag coefficient of

the arrangement at moderate angle of attack. However, past a certain point in fillet size, the

flow characteristics deteriorate significantly. Devenport et al. [21] measured the turbulent

flow around an idealized wing-body junction. A fillet of uniform radius was wrapped around

the base of the wing. The fillet had the detrimental effect of increasing the strength of the

horseshoe vortex. In addition, the effective nose radius of the wing was increased. The angle

of attack and the thickness of the incoming boundary layer did not change the qualitative

behavior of the vortex in the presence of the fillet. Another experimental study conducted

by Devenport et al. [22] was more successful in designing a leading edge fillet consisting of

a fairing between the nose of the wing and the body surface upstream. At zero angle of

attack, the leading edge separation and the horseshoe vortex were eliminated. At nonzero

angle of attack, the fillet had a desirable effect on the behavior of the flow. Maughmer [31]

reported that an extension of the leading edge of the wing where it intersects the fuselage

reduces the strength of the vortex in the vicinity of the junction and thus decreases the drag

significantly.

Slooff [42] reports some of the issues related to inverse design methods where a target

pressure distribution has to be matched. For those methods, three-dimensional problems are

ill-posed because small differences in the target pressure distribution lead to large differences

in the final geometry. This is illustrated by the example of the design of a wing-body junction.
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In the vicinity of the junction, a slight difference in the target pressure distribution produces

wing sections and twist distributions that are totally different from each other.

Kaykayoglu [25] applied an unsteady vortex lattice method to calculate the loads on a

wing-fuselage-pylon-store configuration in incompressible flow. The position of the pylon and

the store under the wing was shown to have some influence on the aerodynamic coefficients.

Overall, the method proved to be able to simulate the interference phenomenon that takes

place between the wing-fuselage-pylon and the store when it is released.

2.2.2 Transonic Flow

In transonic flow, numerous studies have been performed on multibody, wing-pylon and

wing-body configurations, with more emphasis on numerical calculations. This can be seen

in Table 2.2.

Bartelheimer et al. [46] performed an experiment on a wing placed perpendicular to the

walls of a wind tunnel. Pressure measurements were made along the span of the strut. The

boundary layer characteristics were also determined along the walls to help reproduce the

test conditions with numerical tools. The data obtained was suitable only for “in-tunnel”

CFD validation, because the strut was enclosed by solid wind tunnel walls above, below and

on the sides. It will be used in Chapter 5 for validation purposes.

For wind-tunnel testing in the transonic speed range, Suhs [78] proposed a computational

method to estimate the interference produced by model support struts. The method involved

the solution of the Euler equations over a complete model with and without the supporting

strut. A measure of the interference was obtained by calculating the difference in pressure

coefficients between the two arrangements.

Cottrell et al. [52, 53] measured the interference effect on a multibody configuration

at Mach numbers ranging from 0.6 to 1.2. Configurations containing one, two, and three

finned [52] and unfinned [53] stores were tested in a wind tunnel for various angles of attack.

The experimental data indicated that the interference effects are greatest near unit Mach

number and get smaller when the freestream conditions are increased or decreased from

sonic conditions. Chapman et al. [50] studied similar arrangements of unfinned stores for

the same speed range. For all cases, the normal interference force tends to pull the bodies
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Table 2.2: Aerodynamic interference in transonic flow (M∞ = 0.6 – 1.2)
Ref. Authors Year Configuration Type of study If numerical, Data

flow equations solved Pressure Forces Others
[43] Agrawal et al. 1991 wing-fuselage Numerical Euler X X
[44] Arabshahi and 1989 wing-pylon-store Numerical Euler X

Whitfield
[45] Baxendale 1990 wing-body-pylon-store Numerical Euler X
[46] Bartelheimer et al. 1994 wing-endwalls Experimental X side wall B.L.
[47] Benek et al. 1987 multiple bodies Numerical TLNS X streamtraces

[48] Carlson and 1987 wing-body-pylon Experimental X X
Lamb

Numerical incompressible X
panel method

[49] Chandrasekaran 1988 wing-body-pylon Numerical Euler with X X
interactive B.L.

[50] Chapman et al. 1992 multiple stores Experimental X oil visualization
Numerical TLNS X X

[51] Chesser et al. 1995 aircraft-store Numerical Euler X X
[52] Cottrell and 1988 multiple stores Experimental X oil visualization

Lijewski Numerical Euler X
[53] Cottrell et al. 1988 multiple stores Experimental X oil visualization

Numerical Euler X
[54] Deese et al. 1984 wing-fuselage Numerical Euler X
[55] Deese and 1988 wing-body Numerical TLNS, SLNS X

Agarwal
[56] Ecer et al. 1989 wing-pylon-nacelle Numerical Euler X
[57] Fox et al. 1991 aircraft-stores Numerical Euler X
[58] Fujii and 1987 wing-fuselage Numerical TLNS X streamtraces,

Obayashi contours
[59] Gea et al. 1993 wing-pylon Numerical TLNS X streamtraces,

contours
[60] Jordan 1992 wing-pylon-store Numerical Euler X X
[61] Kao et al. 1993 wing-body Numerical TLNS X velocity vectors
[62] Lijewski 1990 multiple stores Numerical Euler X X
[63] Lijewski 1991 wing-pylon-store Numerical Euler X X
[64] Lijewski 1993 wing-pylon-store Numerical Euler X X
[65] Lijewski and 1994 wing-pylon-store Numerical Euler X X

Suhs
[66] Lord and Zysman 1986 wing-pylon-nacelle Numerical incompressible X

panel method with
compressibility

correction
[67] Lynch and 1991 multiple stores Numerical TLNS X X

Rizk
[68] Madson et al. 1994 wing-pylon-store Numerical full-potential X X
[69] Meakin 1992 wing-pylon-store Numerical TLNS X X
[70] Naik 1989 wing-pylon Numerical Euler X X
[71] Naik et al. 1993 wing-body-pylon Experimental X X oil visualization
[72] Newman and 1992 wing-pylon-store Numerical Euler X

Baysal
[73] Parikh et al. 1992 wing-pylon-store Numerical Euler X X pressure contours
[74] Potsdam et al. 1993 wing-pylon Numerical Euler X streamtraces
[75] Rosen 1988 wing-pylon-store Numerical TSD X
[76] Shankar and 1980 wing-body-pylon-store Numerical TSD X X

Malmuth
[77] Sundaram et al. 1983 wing-body-pylon-store Numerical panel method X
[78] Suhs 1985 wing-body-strut Numerical Euler X
[79] Tu et al. 1992 wing-pylon-store Numerical Euler X
[80] Vatsa and 1988 wing-endwall Numerical TLNS X streamtraces

Wedan
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together, while the axial component increases the drag per body as more stores are added

to the arrangement.

Cottrell et al. [52, 53] and Lijewski [62] obtained good results with Euler flow solvers

to study single and multibody interference phenomenon as long as viscous effects were not

important. For a three-body case, Lijewski [62] noted that the forces and moments are

influenced mainly by the Mach number. Thin-layer Navier-Stokes flow solutions yielded

valuable lessons as well. Benek et al. [47] successfully applied a thin-layer Navier-Stokes flow

solver with grid overlapping to the study of the flow over a single body and a three-body

arrangements. For multibody configurations, Chapman et al. [50] accurately predicted the

trends in the experimental results, but not their value. Lynch and Rizk [67] observed that

the interference level increases when the freestream Mach number is increased or when the

distance between the bodies is reduced. Attractive forces were generated between the bodies

of the configurations studied.

Although Euler and Navier-Stokes flow solvers are commonly applied to the study of wing-

pylon-store arrangements, approaches based on a velocity potential have been employed. In

the early 1980’s, Transonic Small Disturbance (TSD) theory was applied to compute the

flowfield around a wing-fuselage-pylon-store combination by Shankar and Malmuth [76].

After the validation with experimental data showed good agreement with the calculations,

the approach was extended to evaluate the effect of the pylon height and location, store size,

angle of attack, and Mach number on the aerodynamic characteristics of the configuration.

Sundaram et al. [77] presented computations made on a wing-body-pylon-store arrangement

with TSD theory and a correction for viscous/inviscid interaction. The approach employed

was satisfactory in predicting the flow characteristics for attached inviscid flows but was poor

in regions of strong viscous/inviscid interaction. Rosen [75] employed a TSD approach to

predict the flow around many configurations, including a wing-pylon-store case. Unsucessful

attempts were made at extending the application of the subsonic panel code VSAERO to

the calculation of transonic flow around a wing-pylon-nacelle configuration by Lord and

Zysman [66] and over several wing-pylon combinations by Carlson and Lamb [48]. Recently,

Madson et al. [68] employed a transonic full-potential approach to compute the flowfield

around a wing-pylon-finned store geometry at Mach numbers of 0.95 and 1.20. The results

were compared to wind tunnel measurements and to calculations using Euler and thin-layer

Navier-Stokes approaches. The agreement of the forces and pressure distribution on the



Chapter 2. Literature Review 13

store with the experimental data was as good as for the Euler and Navier-Stokes solvers.

Wind tunnel tests and numerical calculations have been used extensively to try to improve

the flow over pylons. Carlson and Lamb [48] tested various pylon sections under a wing in a

transonic wind tunnel facility. The objective of the study was to determine the installation

drag produced by the pylons. The toe-in angle of the pylons and the wing incidence were

varied. Conventional pylons showed a region of strong interference inboard of the pylon

accompanied by separation in some instances. The new concept of a “compression” pylon [48]

was tested. It consists of a pylon with flat sides that continuously diverge for the section

under the wing. This reduces the flow acceleration in the wing-pylon junction. Aft of the

trailing edge, the pylon shape is closed. That pylon shape gave the lowest installed drag for

both Mach numbers tested. Chandrasekaran [49] employed a three-dimensional Euler flow

solver coupled with a boundary-layer interaction method to look at the transonic flow over

wing-pylon arrangements. That approach was shown to be able to handle complex pylon

shapes. It also confirmed the advantages of the compression pylons over their conventional

counterparts.

Naik [70] employed a three-dimensional Euler flow solver to study the pylon geometries

tested by Carlson and Lamb [48]. In addition, the potential of “hybrid” pylons was estimated.

The hybrid pylon combines the advantages of a conventional pylon section with some aspects

of the compression pylons to further reduce the interference drag. The numerical results

highlighted the benefits of the compression pylons and the promises of hybrid pylon sections

compared to conventional pylon shapes. Naik et al. [71] tested conventional, compression,

and hybrid pylon sections in a transonic wind tunnel. Measured data indicated that the

compression and hybrid pylons produce pressure distributions on the wing that are equivalent

to the clean wing case. The separation regions were also small. Chesser et al. [51] compared

the forces and moments generated on a store fixed to a F-15E airplane with two different

pylon shapes. Euler analyses on embedded grids revealed that there was no significant benefit

of the modified pylon shape compared to the original one. This assessment was confirmed

later by wind tunnel tests.

The analysis and attempted geometry refinement of a wing-pylon junction was performed

with two Euler flow solvers on unstructured grids by Potsdam et al. [74]. The poor features

of the existing fillet in the junction of the pylon with the wing were highlighted. One of the
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CFD codes was then coupled with an inverse design method to provide some guidelines on

how to improve the existing pylon section. The flow over the final pylon design was measured

during flight test and validated with a Navier-Stokes flow solver. Gea et al. [59] improved an

existing wing-pylon configuration by employing a Chimera-based Navier-Stokes flow solver.

Multiblock Euler flow solvers were used for flow prediction over a wing-pylon-nacelle com-

bination by Ecer et al. [56], a wing-pylon-store arrangement by Arabshahi and Whitfield [44],

and a wing-body-pylon-store configuration by Baxendale [45]. In the latter case, it was noted

that the methodology was able to predict the flow in regions of high interference such as in

the vicinity of the wing-pylon junctions, on the pylons and on the store. Lijewski [63, 64]

and Lijewski and Suhs [65] employed a blocked and an overlapping-grid approaches with an

Euler flow solver to calculate the pressure distribution and investigate the interference on a

wing-pylon-store configuration in transonic flow.

Other approaches have been applied to the solution of the Euler equations. Newman

and Baysal [72] employed a hybrid domain decomposition for the transonic flow over a wing-

pylon-finned store, Tu et al. [79] used unstructured grids to study the flow over a wing-pylon-

store configuration in the transonic and supersonic speed range, and Fox et al. [57] analyzed

the flow around an F-15E aircraft with finned stores with a grid embedding technique. All

methods agreed well with experimental data. Parikh et al. [73] studied the transonic flow

past a wing-pylon-finned store configuration using an unstructured Euler flow solver as well.

The predicted pressure, forces and moments were in good agreement with the experimental

data. The same configuration was analyzed successfully by Jordan [60] and Meakin [69] with

a thin-layer Navier-Stokes solver.

Agrawal et al. [43] and Deese et al. [54] ran Euler flow solvers over wing-fuselage arrange-

ments in transonic flow. Agrawal et al. [43] compared the accuracy of implicit finite-volume

upwind, explicit finite-volume central-difference, and nonconservative upwind solvers. The

methods predicted similar results except in regions where shock waves were expected and

where the grid was too coarse. Overall, the implicit fine-volume upwind scheme provided

the best results compared to experimental data for various mesh sizes.

Wing-fuselage combinations were studied with thin-layer Navier-Stokes flow solvers by

Fujii and Obayashi [58], Vatsa and Wedan [80], and with thin-layer and slender-layer Navier-

Stokes formulations by Deese and Agarwal [55]. Flow solutions presented by Fujii and
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Table 2.3: Aerodynamic interference in supersonic flow
Ref. Authors Year Configuration Type of study If numerical, Data

flow equations solved Pressure Forces Others
[81] Chen and 1990 wing-body-stores Numerical panel method X X

Liu
[19] Chen and 1992 cylinder-endwall Numerical RANS streamtraces

Hung
[82] Hung and 1984 fin-endwall Numerical TLNS X streamtraces,

Buning contours
[83] Knight et al. 1992 fin-endwall Numerical 3-D RANS and X streamlines,

conical RANS contours
[84] Kulfan 1990 supersonic Theoretical X conceptual

airplane analysis
[85] Lakshmanan and 1993 wing-body jct Numerical RANS X streamlines,

Tiwari contours
[86] Lakshmanan and 1994 wing-body jct Numerical TLNS X velocity profiles,

Tiwari streamtraces
[87] McMaster and 1988 sweptback fin-wall Numerical mass-averaged N-S streamtraces

Shang
[88] Philpott and 1984 two cylinders Experimental X oil visualization,

Zhao schlieren
[89] Pritulo et al. 1995 wing-body Numerical Euler X X
[90] Williams et al. 1994 strut-endwall Experimental X X vel. profiles,

B.L. characteristics
Numerical RANS X X vel. profiles,

B.L. characteristics
[91] Williams et al. 1995 strut-endwall Numerical RANS X streamtraces
[92] Williams et al. 1995 strut-endwall Experimental X streamlines

Numerical RANS X streamtraces
[93] Williams et al. 1995 strut-endwall Numerical RANS X streamlines
[94] Zemsch and 1993 fin-flat plate Experimental X oil visualization

Degrez velocity profiles
Numerical Euler X streamtraces

Obayashi [58] showed the significant influence of the fuselage on the flowfield, especially in

the vicinity of the wing root at high angle of attack. The impact of the junction flow was

assessed also by Vatsa and Wedan [80] who studied the case of a swept NACA 0012 wing

mounted to the side wall of a wind tunnel. The comparison of the numerical results with

experimental data and with “free-air” computations showed a substantial influence of the

side wall boundary layer on the flow over the wing. Kao et al. [61] validated a multiblock

Navier-Stokes solver with experimental data for the transonic flow past a Boeing 747-200

airplane.

2.2.3 Supersonic Flow

A summary of the studies in the literature on the topic of aerodynamic interference in

supersonic flow is presented in Table 2.3.

Kulfan [84] looked at ways to achieve favorable aerodynamic interference for a high-

speed civil transport aircraft. The concepts of supersonic biplanes, wave riders, flat-top

wing bodies and parasol wing were investigated. The parasol wing configuration showed the

greatest promises in terms of lift-to-drag ratio improvements compared to a reference flat
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wing arrangement. The integration of the nacelle for low drag on a supersonic aircraft was

shown to be similar to the parasol wing idea.

Williams et al. [92, 91, 90, 93] performed several numerical and experimental studies

about the interference produced by struts in an annular duct in supersonic flow. Those anal-

yses serve as applications to engine development. In Ref. [92], the configuration contained

four struts located circumferentially in an annular duct. Measurements were compared with

CFD calculations performed on structured grids with a Reynolds-averaged Navier-Stokes

flow solver. Secondary flows were examined including the horseshoe vortices forming at the

leading edge and trailing edge of the strut and at the junction of the strut with the endwall.

Ref. [91] presented a discussion of the effect of varying the strut thickness on the flow. A

Navier-Stokes solution scheme was employed to look at the horseshoe and corner vortices as

well as boundary layer separation. Ref. [90] reported the numerical and experimental investi-

gations of the turbulent boundary layer that develops along the side walls of an annular duct.

Excellent agreement was achieved between the experimental data and the computations. Fi-

nally, Ref. [93] showed the investigation of the influence of strut sweep on the flowfield in an

annular duct. The swept strut did not have clear advantages over the unswept strut.

The supersonic flow past a fin intersecting a flat plate is a topic reported by Hung and

Buning [82], McMaster and Shang [87], Knight et al. [83], Chen and Hung [19], Lakshmanan

and Tiwari [85, 86], and Zemsch and Degrez [94]. Hung and Buning [82] performed an

experiment to assess the influence of the thickness of the incoming boundary layer on the

hoseshoe vortex forming at the junction. The Reynolds-averaged Navier-Stokes solutions

obtained by Chen and Hung [19] on a cylinder perpendicular to a flat plate revealed that the

main effect of increasing the Mach number is to produce a larger vortex structure because

of the shock-wave/boundary-layer interaction. The Navier-Stokes solutions of Lakshmanan

and Tiwari [85] showed that, by properly filleting the junction between a swept fin and a flat

plate, it is possible to reduce significantly the vorticity in the horseshoe vortex. The work of

Lakshmanan and Tiwari [86] with a thin-layer Navier-Stokes solver highlighted the influence

of the Mach number and the Reynolds number on the number of vortices at the wing-body

junction. McMaster and Shang [87] solved the Navier-Stokes equations to determine the

variations in the flowfield when the sweepback angle of the fin is changed. The interference

between the fin and the flat wall was measured by Zemsch and Degrez [94] using laser-

Doppler velocimetry (LDV) and computed with conical Euler equations. The experiment
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showed separation on the leeward side of the fin when the sweep angle and the incidence was

large.

One application of the study of the flow around a fin perpendicular to a flat wall is the

design of wing-fuselage junctions. Favorable aerodynamic interference was achieved between

the wing and the fuselage by Pritulo et al. [89]. The shape of the wing-body combination

was determined by employing an Euler flow solver and applying simple surface deformations

to the existing geometry.

2.3 Contributions to the Field

Although the literature is abundant on the topic of interference, only few studies propose

a simple method or an equation to estimate the interference drag. In subsonic flow, Ho-

erner [24] took into account several geometric parameters and obtained trends and equations

for evaluating the drag penalty of a strut-wall junction. The purpose of this dissertation is to

extend Hoerner’s general approach to the transonic flow regime. But instead of performing

wind tunnel tests, numerical computations on unstructured grids are employed. The objec-

tive is to obtain “empirical” equations that describe the behavior of the interference drag in

terms of a few geometric parameters. These can then be included in the MDO capability.

Along the way, a better understanding of the phenomena taking place near strut-wall and

wing-strut junctions in transonic flow will be gained.
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Description of the Computational
Fluid Dynamics Tools

The analysis of the flowfield with Computational Fluid Dynamics (CFD) requires several

steps that are equally important: the geometry definition, the grid generation, the flow

solution, and the analysis of the results.

The geometry of the configuration of interest has to be defined with enough detail in

regions where a large concentration of mesh points will be required, because this will directly

impact the mesh quality. Based on the geometry at hand, the size of the computational

domain used in the analysis is determined. For the calculations made in transonic flow

about a wing, the boundaries of the computational box typically extend 10 chords to the

far-field downstream [73, 95].

The grid point distribution is specified throughout the domain with a concentration of

mesh points in the regions where strong flow gradients are expected to be found. More

points allow for a better resolution of the properties in those regions. Once the grid spacing

is specified, the computational domain is filled with grid cells and the boundary conditions

are applied.

The flow solver uses the cells to compute an approximation to the flow equations. This

is an iterative process that stops when a given convergence criterion is met, typically a

decrement of the residual. The solution is studied along cross sections and on the body

surface to assess the quality of the solution and the underlying grid. Integrated quantities

such as lift and drag are also considered in this process. If the results don’t meet the

18
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expectations in terms of accuracy, the grid is improved in the regions that need it and the

flow equations are solved again. This continues until the results are judged satisfactory.

In this chapter, two of the steps described before will be discussed. First, the unstructured

grid generation process used in this work will be presented. Then, the flow solver will be

described to complete the picture.

3.1 Unstructured Grid Generation

Several approaches can be used to generate grids for CFD computations. A discussion of the

most widely used methods is presented by Thompson et al. [96] and Mavriplis [97]. In the

present work, the governing flow equations were solved on unstructured grids because the

unstructured grid methodology provides a lot of flexibility in analyzing complex geometries.

In the dissertation, the term inviscid grid refers to a grid suitable for inviscid, Euler flow

calculations. This is opposed to a viscous grid, which is characterized by fine mesh spacing

in the direction normal to viscous surfaces to resolve the boundary layer. A viscous grid

is employed for Navier-Stokes computations. For two-dimensional applications, the code

AFLR2 [98, 99] was used to generate triangular elements with the advancing-front/local-

reconnection procedure. Three-dimensional problems were solved on tetrahedral grid cells

obtained with VGRIDns [100, 101] using the advancing-front/advancing-layers method. These

codes are well-tested and have been employed successfully by others for comparable studies.

An overview of the methods implemented in those codes is presented in this section.

3.1.1 Two-Dimensional Grids

Grids for Inviscid Calculations

To obtain an inviscid grid with AFLR2, the grid spacing is prescribed on the bodies and on the

far-field boundary. Based on the grid point distribution on the boundaries, a field function

is determined. That function represents the grid spacing at any point in the flowfield. The

curves on the bodies and on the far-field boundary are then discretized into edges to form

the initial front of the mesh. One at a time, new points are added to the field and connected

to the edges of the front. The position of the newly created points is based on the field

function. The front evolves as new triangles are formed. The process of point insertion stops
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when the computational domain is completely discretized in triangles. After this initial node

connectivity is obtained, the grid quality is improved by reconnecting the points based on

the min-max quality criterion. This criterion consists in minimizing the maximum angle

within each cell of the mesh.

Grids for Viscous Calculations

For high Reynolds number viscous computations [99], highly stretched grids are employed

to resolve the thin boundary layer on the bodies. Viscous layers are generated in a direction

normal to the viscous surfaces in a semi-structured fashion. The thickness of the first layer

and the growth rate of subsequent viscous layers are specified. This determines the point

distribution along the normal direction. Two types of normals are used to generate the

viscous layers. The first one consists in computing the normal to each boundary face of the

mesh. The second one is obtained by smoothing the first set of normals. To improve the

mesh quality at sharp corners such as at the trailing edge of an airfoil, more normals are

added in those regions. At first, the nodes are placed along the direction specified by the

unsmoothed normal. The subsequent layers are generated along the normal determined by

a weighted-average of the smoothed and the unsmoothed normals. The creation of viscous

layers continues until one of the following stopping criteria is met:

• The grid spacing of the viscous layer corresponds to the one prescribed for the inviscid

part of the grid;

• Viscous layers from different surfaces collide;

• A point is attempted to be put too close to an existing point, based on a tolerance

specified within AFLR2.

The grid generation then switches to the advancing-front point placement scheme described

above for inviscid grids.
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3.1.2 Three-Dimensional Grids

Grids for Inviscid Calculations

For 3-D applications, several steps are required to obtain the volume grid. Figure 3.1 depicts

a flowchart of the grid generation process. The code GridTool [102] is utilized to define

3- and 4-sided patches to cover the geometry and the boundary faces of the computational

domain. Patches are similar to the block faces employed with structured grids. They are

required to discretize the geometry and let the grid generator know how the various elements

of the geometry are connected together. These patches will later be triangulated individually

by VGRIDns. The shape of the patch has a strong influence on the resulting triangulation.

Square patches generally provide the best surface mesh. Since it is not always possible to

create such patches, it is advisable to try to create low aspect ratio patches with at least

two parallel edges. Patches with highly curved edges should be avoided as much as possible.

Instead, they should be broken down into several smaller triangular or rectangular patches.

In order for VGRIDns to triangulate a patch, it maps it to a 2-D equivalent triangular or

rectangular surface. After the surface is triangulated, it transforms it back to its original

shape. Highly distorted surface triangulation generally arises from the fact that the original

and the transformed versions of the patch are too different from each other. Efforts spent

early on in the definition of “good” patches pay off later in the process. An example of

the patch definition on a wing planform is shown in Figure 3.2. The patches are almost

rectangular along the span. Near the leading edge of the wing, more patches could be

employed if necessary. At the wing tip, smaller patches are employed to provide a better

control over the mesh quality in that region.

Once the patches are defined through the entire computational domain, the grid point

distribution needs to be specified with GridTool. Unlike the 2-D grid generation code

AFLR2, the grid spacing is not specified directly along the body surface or in the far field.

It is achieved through the use of either linear or nodal sources located inside the geometry

and in the flowfield. These sources act like heat sources. In the vicinity of a heat source, the

temperature is very close to the temperature of the heat source. As we move away from the

heat source, the temperature changes gradually towards its freestream value. The same is

true for a grid source. Close to the grid source, the spacing is the same as the one specified

by the source itself. As we get farther away from the source, the grid becomes coarser. For

each grid source, several parameters can be controlled, the most important ones being:
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Figure 3.1: Flowchart of the grid generation process in three dimensions
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Figure 3.2: Patch definition on a wing planform (a) View of the planform (b) Close-up view
of the wing tip

• Grid spacing s of the source;

• Stretching S of the source;

• Strength or intensity an of the source.

The grid spacing s specifies how small the tetrahedra will be next to the source while the

stretching parameter S controls the aspect ratio of the tetrahedra. It is important to bear

in mind that the effect of a grid source is intimately related to its strength an. When an

is reduced, the grid spacing will become coarser very quickly away from the source. The

opposite happens following an increase in an. Therefore, the an of each source has to be

adjusted relative to the others in order to obtain the proper grid point distribution. The

spatial variation of the grid parameters is obtained by solving a Poisson equation based on

the sources distributed in the field.

To obtain a satisfactory unstructured grid, the linear sources are usually placed inside

the geometry of interest to allow control over the grid distribution in the vicinity of the body.

As shown in Figure 3.3, linear sources are used at the leading edge and at the trailing edge

of the wing to enforce the grid spacing there. Stretching can be employed along directions

of small gradients, such as along the spanwise direction of a straight wing. In the far-field,

nodal “corner” sources are located at each corner of the computational box to specify the
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Figure 3.3: Five linear sources located inside the wing

grid spacing there as shown in Figure 3.4. A reduction of the spacing s or an increase of the

strength an of the corner sources is accompanied by an increase in the number of tetrahedral

cells in the mesh. A larger spacing s or a smaller strength an of the corner sources leads to

a reduction of the number of cells in the mesh. In some instances, this can even prevent the

completion of the volume grid generation.

VGRIDns is then utilized to determine the grid point spacing in the field and to triangulate

each patch of the geometry. If no stretching is employed anywhere in the mesh, VGRIDns

provides a quality assessment of the surface grid based on the deviation of each triangle

from acceptable limits. Highly skewed triangles are flagged. Abrupt changes in specified

grid spacing and poorly adjusted source strengths often lead to numerous of those skewed

triangles. It is possible to change the orientation of the patches to obtain a surface mesh

containing fewer or no skewed surface triangles. However, in most instances, the triangulation

in the problematic regions must be improved by going back to GridTool to perform one of

the following:

• Change s, an, or the location of some grid sources;

• Re-define some patches or break existing patches into smaller ones.

The grid generation code VGRIDns is then run to obtain a new surface mesh. It may be

necessary to go back and forth several times between GridTool and VGRIDns in order to
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Figure 3.4: Wing and nodal sources located at the corners of the computational box

obtain a satisfactory mesh. The specification of the source parameters is sometimes more

an art than a science. This is because the spacing can’t be specified directly as in AFLR2. It

requires the careful adjustment of the source parameters with respect to one another.

The quality of the surface grid is determined visually using the code VGRIDns for un-

stretched meshes only. If no stretching is employed in the mesh, there should ideally be no

skewed triangles flagged by VGRIDns on the surface. However, if stretching is utilized, the

option for mesh quality assessment in VGRIDns is automatically turned off to avoid flagging

the vast majority of surface triangles. Generally, it is preferrable to generate an unstretched

mesh, make sure there is no skewed surface triangle, and generate a new grid with stretch-

ing along directions of small gradients only. Once a satisfactory surface grid is obtained,

the mesh needs to be projected onto the original geometry to ensure that the triangles lie

perfectly on the surface of the body. This is especially true when dealing with sharp edges

or with supercritical airfoil sections. In the latter case, the mesh on the upper and lower

surfaces could cross in the region near the trailing edge. In general, there is very little

movement of the mesh as a result of the projection.

The projected mesh is fed back into VGRIDns to obtain the volume grid. The surface

mesh made of triangles is used as the initial front for the grid generation. One by one, nodes

are inserted in the field based on the prescribed grid point distribution. The newly inserted

point is connected to the triangle on the front and a tetrahedral cell is formed. As more
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cells are formed, the front evolves until it collapses onto itself. When no more cells can be

formed in the computational domain, voids or empty pockets can exist. It is then necessary

to use the grid post-processor POSTGRID to complete the volume mesh by local remeshing.

Layers of cells surrounding the voids are removed and attempts are made at completing the

mesh starting from that front. For the case of a wing intersecting a flat wall, regions near

the wing root or near the trailing edge are prone to the formation of voids.

Once the volume grid is completed, a grid quality assessment is conducted for all the

tetrahedra of the mesh. Cells that don’t meet a given quality criterion because of their

aspect ratio or their skewness are identified. It is then possible to improve the overall mesh

quality through local remeshing or mesh smoothing. The former removes some layers of

the grid and employs the local remeshing technique described above. The latter consists in

picturing the edges of the mesh as springs. The nodes of the mesh are then moved with

respect to one another in order for the mesh quality to be improved in that region. If no

stretching were employed in the mesh, this would correspond to trying to get the tetrahedral

cells to be as close as possible to equilateral.

Grids for Viscous Calculations

For viscous flow calculations, highly stretched cells are required near the viscous surfaces

in order to resolve the boundary layer. The viscous layers of cells are generated with the

advancing-layers method. Each layer of tetrahedral cells emanates in a direction normal

to the viscous surface in a semistructured fashion. Each newly generated layer of cells is

stacked on top of the previous one. The normal is computed at viscous boundary faces of

the surface mesh. VGRIDns doesn’t add more normals when a sharp corner is detected as

opposed to AFLR2. The grid obtained in the vicinity of the trailing edge of an airfoil using

AFLR2 and VGRIDns is shown in Figure 3.5. It can be seen that AFLR2 tends to grow the

viscous layers perpendicularly to the surface even very close to the trailing edge. On the

other hand, VGRIDns blends out the existing normals to ensure a smooth transition between

the upper and lower surface of the airfoil.

VGRIDns controls the thickness of the ith viscous layer of cells using the following expres-

sion [101]:

δi = δ1
[
1 + r1(1 + r2)

i−1
]i−1

(3.1)
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Figure 3.5: Influence of the normals on the growth of the viscous layers around a sharp
corner (a) Addition of normals (AFLR2) (b) Use of existing normals only (VGRIDns)

where δ1 is the normal grid spacing at the wall, while r1 and r2 represent the grid growth rates.

The distance δ1 has to be chosen in order to have at least one point in the laminar sublayer

of the boundary layer for turbulent flow calculations. The distance δ1 is approximated using

the relationships for a turbulent boundary layer over a flat plate. After the CFD solution is

obtained, it is important to verify that the first grid point above the body surface is located

within the laminar sublayer of the turbulent boundary layer. Until that condition is met,

new grids have to be generated with gradually smaller values of δ1. For full Navier-Stokes

calculations in which the boundary layer is resolved all the way to the wall without the use

of wall function,

0.2 ≤ r1 ≤ 0.4

and

r2 = 0

are typically used [103]. If wall functions are used instead,

0.4 ≤ r1 ≤ 0.9

and

0.04 ≤ r2 ≤ 0.08

provide a good resolution of the boundary layer [103].
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The viscous layers are stacked on top of each other until a stopping criterion is met.

If two fronts of viscous layers merge or if the local cell aspect ratio approaches unity, the

growth of viscous layers stops locally. The layers continue to grow on other fronts until the

stopping criterion is met everywhere. From then on, the grid generation is performed with

the advancing-front methodology, starting with the final viscous layers as the initial front.

The volume grid generation continues as described above for inviscid meshes. The grid can

be completed in the same fashion. However, grid smoothing should be avoided as a means

of improving the mesh quality. It deteriorates the volume grid and leads to the formation of

cells with negative volume.

3.2 Flow Solver

In this section, the flow solvers FUN2D and FUN3D [104, 105] used for this work are described

in detail. These codes were chosen because our studies were conducted for NASA Langley,

so close cooperation was facilitated. The material presented here is taken in large part from

the work published by Anderson and Bonhaus [104]. The reader is encouraged to consult

this reference for a more complete discussion of the flow solver and the algorithm behind it.

3.2.1 Governing Equations

The flow solvers FUN2D and FUN3D used in this work solve the two- and three-dimensional

Reynolds-averaged Navier-Stokes equations respectively. In this section, the three-dimen-

sional version of the equations will be presented. The equations are non-dimensionalized [104]

with respect to the freestream density ρ̃∞, speed of sound ã∞, temperature T̃∞, viscosity

µ̃∞, thermal conductivity k̃∞, and a reference length L. They can be written as:

V
∂Q

∂t
+
∮
∂Ω
(�Fi · n̂)dS −

∮
∂Ω
(�Fv · n̂)dS = 0 (3.2)

where V is the volume of the control volume, ∂Ω is the surface bounding the control vol-

ume and n̂ is the outward pointing normal of the control volume boundary. The vector of
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conserved variable, Q, is defined as

Q =




ρ
ρu
ρv
ρw
E




(3.3)

where ρ is the density, u, v, w are the Cartesian velocity components, and E is the total

energy per unit volume. The inviscid fluxes, �Fi, are given by

�Fi = f�i+ g�j+ h�k (3.4)

where

f =




ρu
ρu2 + p
ρuv
ρuw

(E + p)u



, g =




ρv
ρvu

ρv2 + p
ρvw

(E + p)v



, and h =




ρw
ρwu
ρwv

ρw2 + p
(E + p)w




(3.5)

where p is the pressure. The viscous flux vector, �Fv, is expressed as

�Fv = fv�i+ gv�j+ hv
�k (3.6)

where

fv =




0
τxx
τxy
τxz

uτxx + vτyx + wτzx − qx




(3.7)

gv =




0
τyx
τyy
τyz

uτxy + vτyy + wτzy − qy




(3.8)

hv =




0
τzx
τzy
τzz

uτxz + vτyz + wτzz − qz




(3.9)
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The viscous stresses τxx, τyy, τzz , τxy, τyx, τxz, τzx, τyz , and τzy can be written as

τxx = (µ+ µt)
M∞

Re

2

3

[
2
∂u

∂x
−
(
∂v

∂y
+
∂w

∂z

)]
(3.10)

τyy = (µ + µt)
M∞

Re

2

3

[
2
∂v

∂y
−
(
∂u

∂x
+
∂w

∂z

)]
(3.11)

τzz = (µ+ µt)
M∞

Re

2

3

[
2
∂w

∂z
−
(
∂u

∂x
+
∂v

∂y

)]
(3.12)

τxy = τyx = (µ + µt)
M∞

Re

(
∂u

∂y
+
∂v

∂x

)
(3.13)

τxz = τzx = (µ+ µt)
M∞

Re

(
∂u

∂z
+
∂w

∂x

)
(3.14)

τyz = τzy = (µ+ µt)
M∞

Re

(
∂v

∂z
+
∂w

∂y

)
(3.15)

The heat flux terms qx, qy, and qz are expressed as

qx = − M∞

Re(γ − 1)

(
µ

Pr
+

µt
Prt

)
∂a2

∂x
(3.16)

qy = − M∞

Re(γ − 1)

(
µ

Pr
+

µt
Prt

)
∂a2

∂y
(3.17)

qz = − M∞

Re(γ − 1)

(
µ

Pr
+

µt
Prt

)
∂a2

∂z
(3.18)

The set of equations makes use of the equation of state for a perfect gas:

p = (γ − 1)

[
E − ρ

(u2 + v2 + w2)

2

]
(3.19)

and the laminar viscosity of the fluid is obtained from Sutherland’s law:

µ =
µ̂

µ̂∞
=

(1 + C∗)(T̂ /T̂∞)3/2

T̂ /T̂∞ + C∗
(3.20)
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where Sutherland’s constant, C∗, is divided by a freestream temperature assumed to be

460oR to yield

C∗ =
198.6

460.0
(3.21)

The set of equation is completed by the determination of the turbulent viscosity µt through

the solution of a partial differential equation presented in the next section. The turbulence

model used is the one developed by Spalart and Allmaras [106].

In this work, results are also presented for the inviscid counterpart of the Navier-Stokes

equations, namely the Euler equations. For that case, the formulation is easily obtained

by setting the vector of viscous fluxes �Fv to zero. There is no need to solve an additional

equation for the turbulence model.

3.2.2 Turbulence Model

The calculations performed in this study made use of the one-equation turbulence model

of Spalart and Allmaras [106] incorporated into the flow solver employed. This model is

well-regarded in the aerodynamics community. It is based on:

Dν̃

Dt
=

M∞

σRe

{
∇ · [(ν + (1 + cb2)ν̃)∇ν̃]− cb2 ν̃∇2ν̃

}

−M∞

Re

[
cw1fw − cb1

κ2
ft2

] (
ν̃

d

)2

+ cb1(1− ft2)S̃ν̃ +
Re

M∞
ft1∆U

2 (3.22)

where

fv1 =
χ3

χ3 + c3v1
(3.23)

χ ≡ ν̃

ν
(3.24)

S̃ ≡ S +
M∞

Re

ν̃

κ2d2
fv2 (3.25)

fv2 = 1− χ

1 + χfv1
(3.26)
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where S is the magnitude of the vorticity and d is the distance to the closest wall. The

remaining factors are:

fw = g

[
1 + c6w3
g6 + cw3

]1/6
(3.27)

g = r + cw2(r
6 − r) (3.28)

r ≡ M∞

Re

ν̃

S̃κ2d2
(3.29)

The transition location is controlled through the last term of Eq. 3.22 which involves the

factors ft1 and ft2 . All the analyses presented in the dissertation were performed for fully

turbulent flow and thus, the expressions for those variables are not provided here. The value

of the constants cb1 , cb2 , cv1 , cw1 , cw2 , and cw3 were omitted for the sake of conciseness. They

are explained in a detailed fashion in Ref. [106].

Eq. 3.22 is solved for ν̃ and the eddy viscosity is then calculated from

µt = ρνt = ρν̃fv1 (3.30)

The turbulent viscosity µt is then used to determine the viscous stresses and the heat flux

terms described in Eqs. 3.10–3.18.

3.2.3 Finite Volume Formulation

The concepts presented in this section are valid for 2-D and 3-D applications. In order to

preserve the generality of the derivations, the equations will be established for the 3-D cases.

However, some concepts may be illustrated with 2-D examples for convenience.

The Reynolds-averaged Navier-Stokes equations are solved using a finite volume formu-

lation. The computational domain is divided into a finite number of elements, triangular for

2-D computations and tetrahedral for 3-D cases. Around each node of the mesh, a control

volume is established by joining the midpoint of each edge to the centroid of the element. The

way the element is partitioned is illustrated in Figures 3.6 and 3.7 for triangular and tetrahe-

dral elements respectively. Around a given node, the individual control volumes within each

cell combine to form a control volume. For 2-D meshes, this is depicted in Figure 3.8 where
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Figure 3.6: One of three individual control volumes within a triangular cell

Figure 3.7: One of four individual control volumes within a tetrahedral cell
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Figure 3.8: Control volume obtained by combining the individual control volumes of the
neighboring cells

the central node is surrounded by a control volume made up of seven individual control

volumes. By a similar procedure, a control volume can be obtained in 3-D.

The Reynold-averaged Navier-Stokes equations are discretized and integrated over each

control volume of the mesh. For a given node and its surrounding control volume V , the

discretized form of the equations can be written as:

V
∆Q

∆t
+
∑
S

(�Fi · n̂)∆S −
∑
S

(�Fv · n̂)∆S = 0 (3.31)

The summation of the inviscid and viscous fluxes is performed over the boundary faces ∆S

of the control volume. At each node, the residual R is calculated by considering the flux

balance terms:

R =
∑
S

(�Fi · n̂)∆S −
∑
S

(�Fv · n̂)∆S (3.32)

The contributions of the inviscid and viscous terms to the residual are calculated sepa-

rately. At each face, the inviscid fluxes are evaluated using Roe’s flux-difference splitting

scheme [107]. This scheme provides an approximate solution to the Riemann problem in

order to represent the fluxes at the control-volume face. The Roe-averaged matrix Â is con-

structed at the face based on averaged quantities for Q. The resulting flux at the interface

becomes:

�Fi =
1

2

{(
�Fi(QR) + �Fi(QL)

)
− |Â| (QR −QL)

}
(3.33)
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whereQR andQL denote the data on the right and left side of the face respectively. Although

QR and QL may be discontinuous at the face, Roe’s scheme ensures that the fluxes will be

continuous across it. The determination of the node on the left and right side of a face is

based on the orientation of the normal to the face. The normal is defined in such a way that

it points from the left side to the right side of the face. When calculating the contribution

from the inviscid fluxes to the residual in Eq. 3.32, a positive contribution (�Fi ·n̂)∆S is added

to the control volume on the left and an equivalent negative contribution (�Fi · (−n̂))∆S is

added to the control volume on the right.

The flow solver allows the use of first- or second-order accurate differencing. For first-

order accurate, this means that the value of QR and QL are taken from the node lying

on either side of the face. It doesn’t make use of the data from a series of neighboring

nodes. Figure 3.9 depicts the control volume surrounding node 0 in 2-D with the left and

right normals n̂L2 and n̂R2 associated with edge 0-2. The normals for the other edges are

analogously defined. In determining the flux contributions for the faces whose normals are

n̂L2 and n̂R2, we take:

QL = Q0

QR = Q2 (3.34)

This procedure is equivalent to considering a Taylor series expansion that keeps only the

leading term, thus producing an approximation with a first-order truncation error.

For second-order accurate differencing, the neighboring nodes are considered in the de-

termination of the Q on either side of the face. It uses a Taylor series expansion where one

more term is kept so that:

Qface = Q0 +∇Q ·�r (3.35)

where �r is the vector joining the node of interest to the middle of the cell edge. This is

illustrated in Figure 3.9 for the case discussed before. This leads to:

QL = Q0 +∇Q ·�r
QR = Q2 +∇Q · (−�r) (3.36)

First-order accurate differencing is typically used in the first iterations of the numerical

procedure to get a first cut at the solution. The second-order differencing yields much more

accurate results and is thus used in order to obtain the final flow solution. However, to find
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Figure 3.9: Control volume and the associated surface normals

QR and QL, the determination of the gradient ∇Q is required. This can be computed with

Green’s theorem or with a least-squares procedure. Anderson and Bonhaus [104] note that

a least-squares procedure generally gives a better representation of the data on stretched

grids. Green’s theorem is used when exact representation of the gradients is required, such

as when computing the viscous flux terms. This will be discussed later in this section.

The least-squares procedure is established based on the information at the nodes con-

necting to the node of interest. It is assumed that the data varies linearly along each edge.

If we knew what ∇Q is at node 0, we could use a truncated Taylor series about that node

to determine Q at a neighboring node i with:

Qi = Q0 +∇Q · (�ri − �r0) (3.37)

where �r0 and �ri are the position vectors of nodes 0 and i:

�ri − �r0 = (xi − x0)�i+ (yi − y0)�j + (zi − z0)�k

= ∆xi�i+∆yi�j+∆zi �k (3.38)

In our case, we don’t know what ∇Q is. But we know Q at the N nodes connecting to

node 0. We can therefore establish a system of N × 3 equations similar in form to Eq. 3.37

to calculate the gradient ∇Q at node 0 based on the information stored at the neighboring
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nodes: 


∆x1 ∆y1 ∆z1
∆x2 ∆y2 ∆z2
...

...
...

∆xN ∆yN ∆zN







∂Q
∂x

∣∣∣
0

∂Q
∂y

∣∣∣
0

∂Q
∂z

∣∣∣
0


 =




Q1 −Q0

Q2 −Q0
...

QN −Q0


 (3.39)

This overdetermined system of equations is solved with the Gram-Schmidt procedure in

order to preserve the accuracy of the gradients even on highly stretched meshes.

We have completed the description of the procedure used in order to compute the inviscid

contribution to the residual. We will now discuss the calculation of the viscous contributions.

The viscous stresses in Eqs. 3.10–3.15 contain partial derivatives of the velocity components.

For example, for τxx, we have:

τxx = (µ+ µt)
M∞

Re

2

3

[
2
∂u

∂x
−
(
∂v

∂y
+
∂w

∂z

)]
(3.40)

Those derivatives are evaluated with Green’s theorem [107]. That theorem relates the gradi-

ent of a function φ in a volume Ω to the value of the function along the boundary ∂Ω. It is

valid if the function φ and its partial derivatives are continuous inside the region Ω. Green’s

theorem can be written as: ∫
Ω
∇φdV =

∮
∂Ω
φn̂ dS (3.41)

This theorem can be applied in a discrete way to calculate the gradient in a cell:

∇φ = 1

V

∑
S

φn̂∆S (3.42)

In the flow solver, the gradient of the velocity is assumed constant within each grid cell and

is calculated with Green’s theorem. For terms such as (µ+ µt) and u(µ+µt) that appear in

�Fv, they are computed as the average of the nodal values. The terms are then combined with

the velocity gradients determined with Green’s theorem to obtain the viscous contribution

to the residual.

The equation for the turbulence model Eq. 3.22 is solved in a finite-volume approach in the

same way as the Reynolds-averaged Navier-Stokes equations. The use of positive operators

and M-type matrices [108] in the solution of the turbulence equation ensures the positivity

of the eddy viscosity µt. When a positive operator is applied to a vector of non-negative

elements, it results in another vector whose elements are non-negative. The main property

of an M-type matrix is that its inverse contains non-negative elements and is therefore a

positive operator [108].
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3.2.4 Boundary Conditions

The boundary conditions need to be prescribed at the boundary of the computational do-

main. For the surface of an inviscid body or for a plane of symmetry, the flow has to remain

tangent to the surface because no flow is allowed to cross the body surface. If we define the

velocity vector as �V = u�i+ v�j + w�k, we can express the boundary condition as:

�V · n̂ = 0 (3.43)

which can be expanded as:

un̂x + vn̂y + wn̂z = 0 (3.44)

where n̂ = n̂x�i + n̂y�j + n̂z�k. This is not enforced at the nodes but rather through the flux

terms in the calculation of the residual. We have:

�Fi · n̂ = f n̂x + gn̂y + hn̂z

�Fi · n̂ =




ρ(un̂x)
ρu(un̂x) + pn̂x

ρv(un̂x)
ρw(un̂x)

(E + p)un̂x



+




ρ(vn̂y)
ρu(vn̂y)

ρv(vn̂y) + pn̂y
ρw(vn̂y)

(E + p)vn̂y



+




ρ(wn̂z)
ρu(wn̂z)
ρv(wn̂z)

ρw(wn̂z) + pn̂z
(E + p)wn̂z




(3.45)

Using the boundary condition in Eq. 3.44, the expression above reduces to:

�Fi · n̂ =




0
pn̂x
pn̂y
pn̂z
0




(3.46)

For the case where the body is a viscous surface, the turbulence model requires that:

ν̃ = 0 (3.47)

In addition, the no-slip condition is applied:

�V = 0 (3.48)

The wall temperature is prescribed as the adiabatic wall temperature:

Twall

T∞
= 1 +

√
Pr

γ − 1

2
M2

∞ (3.49)
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We need to relate Twall to the internal energy E. In non-dimensional form, the temperature

is related to the local speed of sound in a simple fashion:

T = a2 =
γp

ρ
(3.50)

The pressure can be expressed in terms of the internal energy E:

p = (γ − 1)

[
E − ρ

(u2 + v2 + w2)

2

]
(3.51)

But since �V = 0 at the body surface, the expression for the pressure p can be substituted in

Eq. 3.50 to yield the prescribed internal energy at the wall:

E =
Twall

γ(γ − 1)
ρ (3.52)

The treatment of the far-field boundaries requires a more detailed explanation. For one-

dimensional inviscid unsteady flow, there exists characteristic lines along which some flow

properties are constant. Those characteristic lines are referred to as C+ and C−. The slope

of these characteristic lines in the x-t plane is:

dx

dt
=



u+ a on C+ characteristic line

u− a on C− characteristic line
(3.53)

The Riemann invariants R+ and R− are constant along the C+ and C− characteristic lines

respectively. For a calorically perfect gas undergoing an isentropic process, those quantities

are expressed as:

R+ = u+
2a

γ − 1
(3.54)

and

R− = u− 2a

γ − 1
(3.55)

If we know the value of R+ and R− at a point, the local speed of sound a and the velocity

u are obtained easily by solving simultaneously Eqs. 3.54 and 3.55:

a =
γ − 1

4
(R+ −R−) (3.56)

u =
1

2
(R+ +R−) (3.57)
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For two- and three-dimensional CFD calculations, the data is reconstructed at the far-field

boundaries using the Riemann invariants by assuming that the far-field is locally 1-D. The

velocity components normal to the boundary are used to evaluate R+ and R−. For conve-

nience, the normal component of the local velocity is defined as:

Ū ≡ �V · n̂ (3.58)

Similarly, the component of the freestream velocity normal to the boundary is:

Ū∞ ≡ �V∞ · n̂ (3.59)

Let us consider the case where the flow is subsonic with −a ≤ Ū ≤ a. Since Ū + a ≥ 0, R+

is evaluated from the data stored at the node on the outer boundary:

R+ = Ū +
2a

γ − 1
(3.60)

R− is calculated based on the freestream quantities because Ū − a ≤ 0:

R− = Ū∞ − 2a∞
γ − 1

(3.61)

For supersonic flow where Ū > a, R+ is calculated from Eq. 3.60. However, R− is computed

from the interior values as well because Ū − a > 0:

R− = Ū − 2a

γ − 1
(3.62)

Similarly, for supersonic flow where Ū < −a, R− is evaluated from Eq. 3.61. In turn, R+ is

based on the freestream quantities because Ū + a < 0:

R+ = Ū∞ +
2a∞
γ − 1

(3.63)

Once the Riemann invariants are determined, it is easy to obtain the local speed of sound

and the velocity at the boundary from Eqs. 3.56 and 3.57:

aboundary =
γ − 1

4
(R+ −R−) (3.64)

Ūboundary =
1

2
(R+ +R−) (3.65)

If Ūboundary ≥ 0, the flow leaves the computational domain. The velocity on the boundary
�Vboundary is extrapolated from the interior data:

�Vboundary = �V + (Ūboundary − Ū)n̂ (3.66)
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On the other hand, if we have an inflow boundary where Ūboundary < 0, the velocity at the

outer boundary is extrapolated from outside:

�Vboundary = �V∞ + (Ūboundary − Ū∞)n̂ (3.67)

The entropy Sboundary is then calculated from freestream conditions if it is an inflow bound-

ary and from the local nodal values otherwise. The density ρboundary is obtained from the

relationship for an isentropic process:

ρboundary =

(
a2boundary
γSboundary

) 1
γ−1

(3.68)

The flux terms are evaluated based on those quantities and integrated along the outer bound-

ary. The far-field boundary condition is enforced through the flux terms, not by imposing

freestream conditions at the nodes on the boundary.

The treatment of the far-field boundaries is performed in a similar fashion for the turbu-

lence equation. The dependent variable ν̃ is extrapolated from the interior for outflow and

is set to freestream otherwise.

3.2.5 Time Integration

The flow solver integrates the solution in time using the backward-Euler time-stepping

scheme. At each iteration a linear system of equations needs to be solved. If we take

Eq. 3.31:

V
∆Q

∆t
+
∑
S

(�Fi · n̂)∆S −
∑
S

(�Fv · n̂)∆S = 0

And if we use the definition of the residual defined in Eq. 3.32:

R =
∑
S

(�Fi · n̂)∆S −
∑
S

(�Fv · n̂)∆S

We can write:

V
∆Q

∆t
= −R (3.69)

For a given time step n, the implicit Euler scheme takes the form:

(
V

∆t
+
∂R

∂Q

n
)
∆Qn = −Rn (3.70)
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where

∆Qn = Qn+1 −Qn (3.71)

This implicit scheme has the advantage of being stable even for large time steps as opposed

to a simple explicit scheme. The right-hand side of Eq. 3.70 is evaluated at each time step

by adding the contributions of the inviscid and viscous flux terms to the residual. This

procedure was detailed in section 3.2.3. The Jacobian ∂R
∂Q

n
is evaluated by differentiating

the residual R and the flux terms with respect to the vector of dependent variables Q. A

first-order discretization is used.

The system of equations is solved for ∆Qn using the Jacobi iterative scheme and the

nodal values of Q are updated at each step:

Qn+1 = Qn +∆Qn (3.72)

To integrate the solution quickly to steady state, large time steps ∆t are necessary. However,

in order for the system of equations to be solved properly at each iteration, it is important

that it is diagonally dominant. That means that large time steps can have a detrimental

effect on the convergence of the Jacobi iteration. The flow solver uses local time stepping

and the time step is determined from the Courant-Friedrich-Levy (CFL) number through

the following expression:

∆t = CFL
V∫

∂Ω(| �V · n̂ | +a)dS
(3.73)

where V is the volume of the control volume and �V · n̂ represents the velocity component

normal to the control volume surface.

3.2.6 Multigrid

For the two-dimensional calculations, the flow solver allows for the use of multigrid acceler-

ation [105]. This method solves the equations on a series of grids with various coarsening

levels. It interpolates the solution from the fine grid to coarser ones in order to get rid

of the low-frequency numerical errors. The solution is projected back to the finer grids to

improve the accuracy. This results in an improved convergence rate of the solution. More

details about multigrid can be obtained from Briggs [109]. This feature is not available in

the three-dimensional version of the flow solver.



Chapter 4

Aerodynamic Analysis of a
Strut-Braced Wing Aircraft
Using the Euler Equations

The strut-braced wing concept has been introduced to provide a significant improvement over

conventional cantilever designs in the transonic flow regime. The concept adds synergism

between aerodynamics, structures, and propulsion in order to provide a lighter airplane for

commercial transport. The MDO studies performed at Virginia Tech [1, 2, 3] have produced

several derivatives of the strut-braced wing aircraft for cruise at Mach 0.85. The purpose

of this chapter is to provide an insight in the application of CFD capability to one of the

configurations obtained after optimization. For this initial study, an inviscid analysis using

the Euler equations was employed.

In this chapter, the CFD tools used for the flow analysis are presented and validated.

A description of the strut-braced wing concept to be studied will follow. Results obtained

for a wing alone, a wing with a straight strut, and a wing with an arch-shaped strut are

discussed. An equation representing the interference drag penalty in terms of the arch radius

is established.

4.1 Approach

This aerodynamic study of the strut-braced wing concept was performed on inviscid un-

structured grids generated with the program VGRIDns [100]. This code implements an

43
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advancing-front algorithm to generate the tetrahedra in the computational space. To re-

duce the memory required to perform the flow solutions, grid stretching can be employed

along directions of small gradients. A detailed discussion of the grid generation process was

provided in Chapter 3.

The flow solver utilized to solve the Euler equations was USM3D [95, 110]. The latest

version of the code employed in this work can be run on multiple processors. USM3D uses a

tetrahedral, cell-centered, finite-volume formulation. The inviscid fluxes are evaluated using

the flux-difference splitting scheme of Roe [107]. The data reconstruction is second-order

accurate in space. The solution is marched in time using a linearized, backward Euler time

differencing technique.

4.2 Validation

In order to assess the accuracy of the solution obtained with the flow solver, the case of the

ONERA M6 wing [111] in transonic flow was studied. The wing has a round wing tip with a

root chord of 0.8059 m, a half-span of 1.1963 m, and a leading edge sweep of 30 degrees. The

wing has a taper ratio equal to 0.562. The freestream conditions are such that M∞ = 0.84

with an angle of attack α = 3.06o.

The computational box extends 10 root chords to the far-field boundary. The unstruc-

tured grid generated makes use of moderate stretching along the span. A total of 12, 662

triangles were generated on the wing and on the six faces of the computational box. The

total number of tetrahedra in the mesh is equal to 425, 307. The resulting surface grid is

pictured in Figure 4.1.

The CFD solution was obtained after the residual was reduced by three orders of magni-

tude, corresponding to the convergence of the drag coefficient. The Mach number contours

are shown in Figure 4.2. The lambda-shock on the wing surface seems to be resolved accu-

rately.

The pressure distribution is compared with the experimental data in Figure 4.3. In

general, the agreement with the experiment is good except for the shock resolution on the

wing upper surface. For the η = 80% station for instance, the computation misses the

double shock. The reason for that is that the grid is not adequate in the region where the

shocks take place. The viscous effects are not considered in the numerical solution, which
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(b)(a)

Figure 4.1: Surface mesh on the ONERA M6 wing (a) Wing surface and symmetry plane
(b) Triangulation of the symmetry plane
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Figure 4.2: Mach number contours on the ONERA M6 wing surface
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justifies the poor resolution of the separation region at η = 99%. The calculation matches

the data very well for all stations on the wing lower surface. The Euler solution captures

the principal flow features, and is therefore considered appropriate for preliminary design

applications.

4.3 Description of the Airplane

The strut-braced wing concept presented in this section was obtained at an early stage of

development of the MDO tools. Therefore, it would be misleading to compare the configura-

tion directly with the most recent results [2, 3] because more refined analyses are employed in

the latest version of the MDO code. However, it should give a flavor of some of the features

of the strut-braced wing concept.

The concept referred to as SS5was obtained after performing an optimization to minimize

the take-off gross weight while meeting all the aerodynamic and structural constraints. The

airplane is designed to carry 325 passengers and fly at a cruise Mach number of 0.85 to cover

a range of 7,500 nautical miles with a 500-nautical mile reserve. The wing is fixed on top of

the fuselage. The configuration is equipped with engines mounted at the wing tip to provide

some aerodynamic benefits because the tip vortex is swallowed inside the engine. To simplify

the CFD analysis of the configuration, the engines are left off.

The planform geometry is detailed in Table 4.1. The wing span is relatively large com-

pared to conventional cantilever designs. There are two different taper ratios for the inboard

and outboard sections of the wing. The strut intersects the wing near the tip, at the point

where the inboard and outboard sections of the main wing meet. The strut is tapered and

its chord increases from the root to the tip. The sweep of the strut is less than the sweep

of the main wing. The main wing was designed with a supercritical airfoil section, namely

SC(2)-0706 [112]. It has a t/c ratio of 6%. The strut airfoil section is a 3.5%-thick section of

the NACA 65A- family, the NACA 65A003.5 airfoil. These airfoil sections were chosen by

considering the geometric data provided by the MDO process.

In order to obtain the wing twist distribution, the program LAMDES [113, 114] was em-

ployed. Given the geometry of the wing planform and the design lift coefficient, LAMDES cal-

culates the spanload distribution that provides the minimum induced drag. It also computes

the rigid twist distribution assuming linear aerodynamics. The computed twist distribution
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Figure 4.3: Pressure distribution on the ONERA M6 wing (a) η = 20% (b) η = 44%
(c) η = 65% (d) η = 80% (e) η = 90% (f) η = 95% (g) η = 99%
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Table 4.1: Geometry of the strut-braced wing concept SS5
Wing half-span (ft) 99.5
1
4
-chord wing sweep (deg) 27.3

Wing root chord (ft) 27.1
Wing mid chord (ft) 13.7
Wing tip chord (ft) 8.7
Fuselage height (ft) 20.3
Spanwise position of wing-strut
intersection, (% of half-span) 87.5
Spanwise position of chord
breakpoint, (% of half-span) 87.5
1
4
-chord strut sweep (deg) 17.7

Strut root chord (ft) 4.5
Strut tip chord (ft) 5.8
Reference area (ft2) 3828.7
Cruise lift coefficient 0.5191

is depicted in Figure 4.4. It is imposed on the wing by rotating the airfoil about its leading

edge. More considerations are usually involved in determining the location of the axis of

rotation. The location of the flap devices is one constraint that usually needs to be taken

into account. The airfoil section chosen for the main wing is aligned with the streamwise

direction.

4.4 Analysis of the Wing Alone

To begin the study of the aerodynamics of the strut-braced wing configuration, the wing

alone was first analyzed. A symmetry plane is employed at the wing root and the far-

field boundary is located 10 root chords away from the wing. An inviscid unstructured

grid containing 24,276 surface triangles and 941,932 tetrahedral cells was generated with

moderate stretching along the span. The surface mesh on the wing upper and lower surfaces

is depicted in Figure 4.5.

The flow solver USM3D was employed to calculate the transonic flow over the wing. The

freestream Mach number chosen corresponds to the cruise Mach number of the airplane,

namely M∞ = 0.85. Since the incidence angle of the wing is not known a priori, the flow
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Figure 4.4: Wing twist distribution for the strut-braced wing (CL = 0.5191)
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Figure 4.5: Surface grid on the SS5 wing (a) Wing upper surface (b) Wing lower surface
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Figure 4.6: Convergence history, M∞ = 0.85, αroot = 2.36o (α = − 3.97o) (a) Lift
coefficient and residual (b) Drag coefficient and residual

solver determines iteratively the angle of attack that will provide the required lift coefficient.

A cruise lift coefficientCL of 0.5253 was achieved using an angle of attack α = −3.97o. Since

the wing was pre-twisted based on the results of LAMDES, this angle of attack is equivalent

to an incidence αroot = 2.36o at the wing root. The drag coefficient calculated by USM3D for

the wing is equal to 0.0121.

The flow solution was converged three orders of magnitude. The convergence history is

pictured in Figure 4.6. The flow solver is run with first order spatial discretization the first

95 iterations. The sudden change in residual after that point corresponds to a change in

discretization to second order in space. When the residual has been decreased three orders

of magnitude, there is no change in the lift and drag coefficients. This convergence criterion

is applied to all the calculations presented in this chapter.

In order to determine if the grid resolution was sufficient on the wing surface, a grid

convergence study was conducted. In addition to the fine grid dicussed already, a medium,

a coarse, and a very coarse grids were generated. The surface mesh on the wing upper

surface is shown for all grids in Figure 4.7. The characteristics of the grids are listed in

Table 4.2. The flow solutions obtained on the medium and coarse grids produced lift and

drag coefficients that are comparable with the results on the fine grid. The lift coefficient

depends less upon the mesh size than the drag coefficient. The data presented in Table 4.2

is depicted in terms of the inverse of the number of cells in Figure 4.8. Both curves seem
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Table 4.2: Grid convergence study for the wing alone,M∞ = 0.85, αroot = 2.36o (α = −3.97o)
Grid Number of surface Total number CL CD

triangles of cells

Very coarse 1,948 29,061 0.4867 0.0144
Coarse 6,660 147,537 0.5187 0.0133
Medium 11,490 317,601 0.5229 0.0126
Fine 24,276 941,932 0.5253 0.0121

to be reaching as asymptotic value for the lift and drag coefficients on the fine grid. That

grid was judged satisfactory for the purpose of this work and its grid point distribution was

employed for the cases presented later in this chapter.

The principle of Richardson extrapolation [115] is applied to determine the error in the

lift and drag coefficients on the finest mesh. Theoretically, that method should be used for

sets of grids that are refined in a consistent fashion. Such is not the case here because the

unstructured grid methodology used doesn’t provide an easy way to achieve that. However,

the results will give an estimate of the magnitude of the error on the fine mesh. Taking

the grid refinement ratio r as the ratio of the total number of nodes on the fine grid to the

number of nodes on the medium grid, the exact value of the lift and drag coefficients CLexact

and CDexact can be approximated as:

CLexact ≈ CLfine
+
CLfine

− CLmedium

r2 − 1
(4.1)

CDexact ≈ CDfine
+
CDfine

− CDmedium

r2 − 1
(4.2)

From these equations, CLexact = 0.5256 and CDexact = 0.0120 are computed. On the fine

mesh, the error is small for both cases: 0.0003 for the lift coefficient and 6 × 10−5 for the

drag coefficient.

For the fine grid, the Mach number contours on the wing surface are pictured in Fig-

ure 4.9. The contour lines coalesce near the trailing edge where the shock forms. The

spanload distribution obtained by integrating the pressure on the wing surface at several

span stations is shown in Figure 4.10. The load follows an elliptic distribution with some

small variations. The variations are most likely due to the fact that the load is computed at

discrete locations along the wing span.
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Figure 4.7: Mesh on the wing upper surface (a) Very coarse grid (b) Coarse grid (c) Medium
grid (d) Fine grid
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Figure 4.8: Effect of the grid refinement on the lift and drag coefficients for the wing alone,
M∞ = 0.85, αroot = 2.36o (α = − 3.97o) (a) Variation of the lift coefficient (b) Variation
of the drag coefficient
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Figure 4.9: Mach number contours on the SS5 clean wing, M∞ = 0.85, αroot = 2.36o

(α = − 3.97o) (a) Wing upper surface (b) Wing lower surface
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Figure 4.10: Influence of the strut on the spanload distribution of the SS5 strut-braced wing
design, M∞ = 0.85, αroot = 2.36o (α = − 3.97o)

The pressure distributions at several stations along the wing span are shown in Figure 4.16

for all grids. It can be noticed that the pressure on the upper surface is very flat except

at the wing root. A shock is located between x/c = 0.85 and 0.95 along the chord. The

sudden variation in pressure in the vicinity of the trailing edge can be explained by the slight

mismatch between the design Mach number and the design lift coefficient of the airfoil. The

wing sections would require some modifications to achieve a better design.

4.5 Analysis of the Strut-Braced Wing

The details of the strut-braced wing configuration provided in Table 4.1 do not specify the

shape of the strut to be employed. Two alternatives have been studied in this project: a

straight strut or a strut shaped like an arch in the region where it intersects the wing. The

straight strut offers the advantage of simplicity, but is accompanied by a substantial drag

penalty near the junction because of the sharp angle made by the strut and the wing. The

constrained flow channel formed near the junction causes disruptions in the flow on the wing

surface. The arch-shaped strut is designed to curve near its tip in order to intersect the wing

surface perpendicularly. That way, the angle made by the wing and the strut is optimum
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Figure 4.11: Effect of the grid refinement on the pressure distribution for the wing alone,
M∞ = 0.85, αroot = 2.36o (α = − 3.97o) (a) η = 0% (b) η = 25% (c) η = 50%
(d) η = 70% (e) η = 75% (f) η = 80% (g) η = 85% (h) η = 90% (i) η = 95%
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(a) (b)

Figure 4.12: Strut-braced wing designs (a) With straight strut (b) With arch-shaped strut

and the increased distance between them alleviates the flowfield disruption in the vicinity of

the junction. Strut-braced wing designs employing a straight strut and an arch-shaped strut

are depicted in Figure 4.12.

To evaluate and compare the various possibilities for the shape of the strut, configurations

employing a straight strut and an arch-shaped strut with a radius of 1, 2, 3, and 4 ft were

studied. For structural considerations, loading the strut should be avoided as much as

possible. Hence, a twist distribution should be employed on the strut to obtain zero load

everywhere along its length. As a first cut to obtain zero loading, the strut was rotated

about its leading edge with the same twist angle everywhere. That rotation angle was taken

to be −3.97o since this is the angle of attack of the freestream determined in Section 4.4.

The configuration is enclosed by a computational box extending 10 wing root chords to

the far-field boundaries from the main wing. A symmetry boundary condition was used at

the plane where the wing and the strut connect with the fuselage. The grid point distribution

used on the main wing is based on the fine mesh generated for the grid convergence study

presented in Figure 4.8. For all strut arrangements, similar inviscid grids employingmoderate

stretching along the wing and strut spans were generated. The surface grid for the strut-

braced wing design with a straight strut is portrayed in Figure 4.13. The grid characteristics

are detailed in Table 4.3 for each configuration as well as the clean wing case discussed in

Section 4.4.

The freestream conditions were set to the values employed for the clean wing: M∞ = 0.85,

αroot = 2.36o (α = − 3.97o). The Mach number contours for the strut-braced wing with

a straight strut are shown in Figure 4.14 and for an arch-shaped strut with a 4-ft radius

in Figure 4.15. The upper wing surface of both configurations doesn’t show any disruption

due to the presence of the strut underneath. One can hardly distinguish them from the
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Figure 4.13: Surface grid on the SS5 strut-braced wing with a straight strut (a) Wing upper
surface (b) Wing and strut lower surfaces (c) Close-up view of the wing-strut junction

Table 4.3: Grid characteristics for the various SS5 strut-braced wing configurations
Configuration Number of surface Total number

triangles of cells

Clean wing 24,276 941,932
Arch with R = 0 ft (straight strut) 55,546 1,647,086
Arch with R = 1 ft 46,824 1,708,717
Arch with R = 2 ft 48,796 1,842,099
Arch with R = 3 ft 50,440 1,879,482
Arch with R = 4 ft 49,724 1,923,555
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Figure 4.14: Mach number contours on the SS5 strut-braced wing with a straight strut,
M∞ = 0.85, αroot = 2.36o (α = − 3.97o) (a) Wing upper surface (b) Wing lower surface
(the strut has been removed from the figure to show the contours on the wing surface)

contours on the upper surface of the clean wing shown in Figure 4.9. However, on the lower

surface, the straight strut has a more dramatic effect on the flow than the arch-shaped strut.

A region of high speed flow extends far inboard of the straight strut. This is due to the

restricted channel flow near the junction and the low wing-strut intersection angle, but also

to the footprint of the junction. The footprint is highly cambered even though a symmetric

airfoil section was used for the strut. The flow accelerates very rapidly along the strut sur-

face in the vicinity of the junction. For the arch-shaped strut arrangement, such is not the

case. The footprint of the intersection is a symmetric airfoil. The flow on the wing is barely

disturbed by the presence of the strut and the flow is not accelerated too dramatically along

the strut surface.

The spanload distribution for the various strut arrangements is presented in Figure 4.10

compared to the spanload of the wing alone. The lift distribution for the wing of the SS5

design deviates significantly from the elliptic distribution in the vicinity of the wing-strut

junction. The presence of the strut disrupts the flowfield and causes a reduction of the lift

locally. As the arch radius is increased, the distance between the wing and the strut is

increased and the load becomes closer to the lift distribution of the clean wing. Outboard of

the wing-strut junction, all the lift distributions are similar. On the strut, the load is small

between η = 0% and η = 50%. The curves for the various cases fall on top of each other.

An interesting thing to note is that the strut is negatively loaded in that range. As we move

closer to the junction, the distance between the strut and the wing is reduced. The fluid
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Figure 4.15: Mach number contours on the SS5 strut-braced wing with a 4-ft arch,
M∞ = 0.85, αroot = 2.36o (α = − 3.97o) (a) Wing upper surface (b) Wing lower
surface (the strut has been removed from the figure to show the contours on the wing sur-
face)

particles are accelerated in the channel, causing the pressure to drop. Therefore, the load is

increased on the strut and reduced on the wing. The load is positive on the strut in that

region.

The pressure distribution on the main wing is shown in Figure 4.16. Between η = 0%

and η = 50%, there is no obvious difference between the pressure on the clean wing and

on the wing of any of the SS5 designs. A similar observation can be made of the flow

characteristics outboard of the junction. However, the influence of the strut can be observed

clearly between η = 70% and η = 85%. The straight strut perturbs the flow a little more

than the other cases. As noted earlier, the acceleration of the particles in the channel is

accompanied by a drop in the pressure coefficient. Matters get worse as we get closer to the

wing-strut junction. At η = 85%, the case of the straight strut has a very strong shock at

x/c = 0.30 and a weaker one at x/c = 0.60. This is in no way comparable to the other

cases which exhibit only one shock at x/c = 0.45.

The pressure distributions on the strut are pictured in Figure 4.17. At span stations up to

and including η = 50%, the strut is negatively loaded. When we get closer to the junction,

the lift on the strut increases progressively. The incidence of the fluid particles on the strut

is increased. The strut-braced wing with a straight strut is the only configuration to exhibit

a shock for the span station η = 75%. Right in the vicinity of the intersection, the shock for

all cases gains strength. Again, the case with a straight strut shows a significant disturbance
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Figure 4.16: Influence of the strut on the wing pressure distribution for the SS5 strut-braced
wing design, M∞ = 0.85, αroot = 2.36o (α = − 3.97o) (a) η = 0% (b) η = 25%
(c) η = 50% (d) η = 70% (e) η = 75% (f) η = 80% (g) η = 85% (h) η = 90%
(i) η = 95%
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Figure 4.17: Pressure distribution on the strut of the SS5 strut-braced wing design,
M∞ = 0.85, αroot = 2.36o (α = − 3.97o) (a) η = 25% (b) η = 50% (c) η = 70%
(d) η = 75% (e) η = 80% (f) η = 85%

of the flowfield compared to the other cases. From these plots, it can be concluded that an

arch with a radius of 1 ft only has already some advantages over the straight strut because

its influence on the flowfield is weaker.

The lift and drag coefficients for the various configurations are listed in Table 4.4. The

drag increment ∆CD of each configuration compared to the clean wing is shown in the last

column of the table. This is obtained by subtracting the drag coefficient of the wing alone

from the drag coefficient of the strut-braced wing design. That quantity gives an indication

of how the drag penalty varies when the arch radius changes.

Despite the fact that the strut was rotated in order to have negligible incidence with

respect to the flow, the strut carries some lift and changes the flow pattern on the wing

surface. That explains why the lift coefficient is not constant for all cases in Table 4.4.
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Table 4.4: Lift and drag coefficients of the SS5 strut-braced wing configurations,M∞ = 0.85,
αroot = 2.36o (α = − 3.97o)

Configuration CL CD ∆CD

Clean wing 0.5253 0.0121 0.0000
Arch with R = 0 ft (straight strut) 0.5396 0.0152 0.0031
Arch with R = 1 ft 0.5330 0.0147 0.0026
Arch with R = 2 ft 0.5308 0.0141 0.0021
Arch with R = 3 ft 0.5300 0.0137 0.0017
Arch with R = 4 ft 0.5282 0.0133 0.0013

The drag coefficient is reduced steadily when the arch radius is increased from R = 0 ft

(straight strut) to R = 4 ft. The presence of the strut for the case where R = 0 ft

produces an increment of 26% of the drag coefficient compared to the clean wing. This could

be anticipated from the strong shocks observed in the pressure distributions in Figures 4.16

and 4.17. The configuration with R = 4 ft has 11% more drag than the clean wing

case. This corresponds to a reduction of 59% of the drag increment ∆CD compared to the

strut-braced wing with R = 0 ft.

The drag penalty ∆CD captured by the CFD solutions can be used as a design tool for

MDO studies of the strut-braced wing designs. It is convenient to represent the drag penalty

by fitting a curve in terms of the arch radius. A quadratic response surface can be obtained

with the statistical software JMP [116] by employing a standard least-squares procedure:

∆CD = 0.00315 − 0.000586R + 0.0000293R2 (4.3)

where R is in feet. The response surface has a coefficient of determination of 0.9991 and a

root mean square error of 3.1 × 10−5. The curve-fit is represented in Figure 4.18 with the

data points from Table 4.4. As one can see, the response surface is in very good agreement

with the CFD data.

4.6 Concluding Remarks

The use of inviscid CFD tools to study the aerodynamics of the strut-braced wing designs

was successful in providing an estimate of the drag penalty associated with the presence of

a straight or arch-shaped strut without any local shaping to reduce the interference drag.
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Figure 4.18: Interference drag penalty ∆CD in terms of the arch radius, M∞ = 0.85,
αroot = 2.36o

The response surface developed gives a good estimate of the drag increment compared to

the clean wing in terms of the arch radius. However, such a study is not complete because

the effect of the viscosity, and variations in the strut chord, the intersection angle, and the

thickness of the strut were not taken into account. A study focusing on those aspects for

a more general configuration is presented in Chapter 5. It will be shown that the viscous

effects have a favorable influence on the flow in most instances, because they alleviate the

strength of the shocks near the intersection. In addition, no attempt was made at using

fairings near the wing-strut and wing-wall intersections. In subsonic flow, Hoerner [24] notes

that the employment of fairings can reduce the interference drag of a junction to 10% or less

of its unfaired value. Thus, the results in Eq. 4.3 and in Figure 4.18 should be viewed as

pessimistic and, therefore, conservative from an MDO perspective.



Chapter 5

Analysis of the Interference Drag of a
Strut Inclined to a Surface Using
Euler and Navier-Stokes Equations

This chapter provides a methodology to predict the interference drag produced by a stream-

lined strut intersecting a flat surface in transonic flow. This is a generic case employed to

simulate the flowfield in the vicinity of wing-strut, wing-pylon, and wing-body junctions. For

a complete aircraft configuration, the accurate resolution of the flow near junctures would

require thousands of nodes and a lot of computational resources. However, by considering

the simplified strut-wall geometry, it is possible to use a very fine grid in the region near the

junction and stay within acceptable limits in terms of computational cost.

In this chapter, the impact of the thickness to chord ratio of the strut, the Reynolds

number, and the effect of the angle made by the strut with the wall are studied. First,

the CFD tools employed are validated with experimental wind tunnel data. The strut-

wall problem is then described and the approach to calculate the interference drag for such

configurations is detailed. The general conceptual method employed is similar to the one

used by Hoerner [24] for experimental data in subsonic flow. Results are presented for viscous

and inviscid calculations performed on several strut-wall arrangements. A response surface

to estimate the interference drag is presented. Finally, the flowfield is investigated with

pressure contours and streamtraces.

64
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5.1 Modeling of the Problem

To study the phenomenon at hand, unstructured grids were obtained with the grid generation

programs AFLR2 [98, 99] and VGRIDns [100, 101]. The implicit, upwind, finite-volume flow

solvers FUN2D and FUN3D [104, 105] from NASA Langley were used. These codes can solve

the Euler and the Reynolds-averaged Navier-Stokes equations for compressible flows. They

have been thoroughly tested, so they are suitable for use in the numerical “experiments”

here. None of the calculations presented in this chapter employed a limiter to improve the

convergence rate. For the viscous flows, the turbulence model of Spalart and Allmaras [106]

is resolved to the wall without the use of wall functions because those lack accuracy in

computing juncture flows. Since the main focus of this chapter is about the flow around

strut-wall intersections, it makes sense to utilize a turbulence model that is integrated to the

wall. The grid generation and flow solver tools were described at length in Chapter 3.

5.2 Validation

Since we are interested in studying the flow around a strut-wall configuration, we need to

assess the accuracy of the three-dimensional flow solution methods to be used for such a

case. An experiment was performed by Bartelheimer et al. [46] on a strut perpendicular to

the walls of a wind tunnel. Pressure measurements were made along the span of the strut.

Although no force measurements were made, the sectional normal force coefficient Cn was

computed at each span station, possibly by integrating the measured pressure distribution.

The axial force coefficient was not available. The boundary layer characteristics were also

determined along the walls to help reproduce the test conditions. It should be noted that

the data is suitable only for “in-tunnel” CFD validation because the strut was enclosed by

solid wind tunnel walls above, below and on the sides. The data was not corrected for the

effect of blockage. The strut has a span b = 340 mm and a chord c = 200 mm. The walls

above and below the model are located symmetrically a distance of 300 mm away.

The numerical calculations were performed on a grid that takes advantage of the sym-

metry of the configuration. The strut was modeled with a span of 170 mm only, with a

symmetry boundary condition applied to one of the side walls. The no-slip condition was

enforced on the other walls and on the strut surface. The inflow plane is located 3000 mm

upstream of the model in order to obtain a side wall boundary layer comparable to the one
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measured in the experiment. Downstream, the far-field boundary extends 2000 mm from

the strut trailing edge. The first grid point is located 0.002 mm above the viscous surfaces

to provide at least one grid point within the laminar sublayer. The grid point distribution

employed was based on similar fine grids generated in Section 5.5. The final grid contains

23, 082 surface nodes, 300, 843 viscous nodes, and a total of 367, 516 nodes. The surface

nodes represent all the nodes lying on the strut and on the faces of the computational box.

The viscous nodes are the nodes generated in the viscous layers with the advancing-layers

methodology [101].

The freestream Mach number is 0.73, and the Reynolds number is Rec = 6× 106. The

airfoil makes an angle of 1.5o with respect to the incoming freestream velocity. The entire

flowfield is considered as fully turbulent. The side wall boundary layer displacement thick-

ness, δ∗, and momentum thickness, θ, are compared with the experimental values 1050 mm

upstream of the strut leading edge in Table 5.1. There are three experimental sets of values

because the boundary layer characteristics were measured during three series of wind tunnel

tests. To compute δ∗ and θ from the CFD solution at that streamwise location, the velocity

and density profiles were extracted along a line midway between the top and bottom walls

of the wind tunnel. The integration was then performed in a direction normal to the wall,

from the wall surface to the centerline of the test section. The following definitions for δ∗

and θ were employed:

δ∗ =
∫ center

0

(
1− ρU

ρeUe

)
dy (5.1)

θ =
∫ center
0

ρU

ρeUe

(
1− ρU

ρeUe

)
dy (5.2)

where Ue represents the edge velocity and ρe denotes the edge density. The predicted values

of δ∗ and θ are 16% lower than the measurements. This can be explained by the fact that

the grid spacing on the side walls is the same all the way from the inflow plane to the outflow

plane. There was no attempt to have finer normal grid spacing near the inflow plane where

the boundary layer is much thinner than further downstream. The growth of the boundary

layer is, therefore, not captured precisely.

The calculated pressure distributions are shown compared to experimental measurements

in Figure 5.1. It should be noted that the pressure distribution at η = 0.6% is located

within the side wall boundary layer. For all locations, the agreement is good everywhere

except on the upper surface near the shock. The shock is predicted too far from the leading
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Table 5.1: Side wall boundary layer dimensions 1050 mm upstream of the strut
M∞ Rec δ∗ (mm) θ (mm)

Calculation 0.730 6× 106 2.75 2.16
0.730 5.86× 106 3.17 2.25

Experiment 0.729 5.83× 106 3.21 2.50
0.729 6.09× 106 3.19 2.48

Table 5.2: Normal force coefficient Cn along the wing span
Station Calculation Experiment

y = 2 mm (η = 0.6%) 0.6974 0.6651
y = 10 mm (η = 2.9%) 0.7074 0.6830
y = 20 mm (η = 5.9%) 0.7186 0.6885
y = 40 mm (η = 11.8%) 0.7298 0.7127
y = 80 mm (η = 23.5%) 0.7346 0.7186
y = 170 mm (η = 50.0%) 0.7382 0.7205

edge of the strut. For all cases, the pressure on the strut lower surface is in almost perfect

agreement with the experimental data. In light of these quite favorable results, we can be

confident in applying the proposed tools to the modeling of the flow near the junction.

The normal force coefficientCn computed at each span station along the wing is compared

against the experimental data in Table 5.2. Because the flow solution did not predict the

shock at the same location as in the experiment, that discrepancy causes the calculation to

overestimate the experimental value of the normal force coefficient. However, the agreement

is generally good. The experimental data shows that the value of the normal force coefficient

increases with the distance from the side wall. That trend is captured by the CFD solution

as well.

5.3 Problem Description

The objective of the study at hand is to determine the interference drag of simple intersections

in transonic flow. To simulate the effect of a wing-strut or a wing-pylon junction, the case

of the flow around a strut between parallel walls was analyzed. Figure 5.2 depicts the

configuration of interest. The strut is enclosed between two side walls, and the other faces
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Figure 5.1: Cp distribution for the AGARD test case,M∞ = 0.73, α = 1.5o, Rec = 6×106

(a) y = 2 mm (η = 0.6%) (b) y = 10 mm (η = 2.9%) (c) y = 20 mm (η = 5.9%)
(d) y = 40 mm (η = 11.8%) (e) y = 80 mm (η = 23.5%) (f) y = 170 mm (η = 50.0%)
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Figure 5.2: Strut between parallel walls in transonic flow

of the computational box are open to the air. The domain extends 10 strut chords to the

far-field boundary. The distance between the parallel walls is set to b90 = 5 strut chords to

achieve two-dimensional flow at mid span. The angle φ made by the strut with the adjacent

wall was varied from 90o to 60o and 30o.

The configurations were analyzed for a freestream Mach number of M∞ = 0.85 and an

altitude of 40, 000 ft, which are typical cruise conditions for a civil transport airplane. These

yield a Reynolds number per meter of 5.3× 106. For typical strut chords of 1 and 2 meters,

the corresponding Reynolds numbers are 5.3×106 and 10.6×106. The strut section makes an

angle of attack α = 0o with respect to the freestream flow for all the calculations. To avoid

loading the strut as much as possible and to assess the effect of varying the thickness of the

strut, symmetric airfoil sections with t/c of 5% and 7.5% were studied. The strut sections

were obtained from the airfoil generation code LADSON [117] for the NACA 64A- series. The

airfoil denomination NACA 64A005 and NACA 64A007.5 will be used to identify the two

sections.

5.4 Calculation of the Interference Drag

The approach to determining the interference drag is to make use of the CFD tools as if one

were performing an experiment in a wind tunnel. First, solve the three-dimensional Navier-
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Stokes equations for the flow around a given strut-wall (S + W ) arrangement to determine

CLS+W
and CDS+W

defined as:

CLS+W
=
LS+W
q∞Sref

(5.3)

CDS+W
=
DS+W
q∞Sref

(5.4)

where the dynamic pressure is q∞ = γ
2
p∞M2

∞. We obtain CLS+W
and CDS+W

by integrating

the pressure and skin friction over the strut surface only. The wall surface is not considered

in the integration of the viscous forces.

The reference area used to non-dimensionalize the coefficients is determined in terms of

the chord and the total length of the strut. Since the distance between the walls is set to 5

chords, it follows from Figure 5.2 that:

Sref =
5c2

sin φ
(5.5)

Hence, the definitions of the lift and drag coefficients become:

CLS+W
=
LS+W
q∞

(
sinφ

5c2

)
(5.6)

CDS+W
=
DS+W
q∞

(
sinφ

5c2

)
(5.7)

A second Navier-Stokes analysis is performed to determine the lift and drag coefficients of

the strut alone without the effect of the walls, namely CLS
and CDS

. This can be achieved

using the flow solver in one of two ways:

1. Solve the two-dimensional equations for the flow around the 2-D airfoil section of the

strut

2. Consider the strut-wall arrangement with φ = 90o and apply the no-penetration, slip

condition on the side walls, rather than the no-slip condition. The configuration will be

equivalent to a strut with symmetry planes at both ends. Hence, the strut is considered

as having an infinite span in this case, just like when the analysis is performed on a

2-D airfoil.

The second alternative yields:

CDS
=
DS
q∞

(
1

5c2

)
(5.8)
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Twice the interference drag is calculated as the difference between the drag of the strut

with the two walls and the drag of the strut without the effect of the walls. The result is non-

dimensionalized with respect to a conveniently chosen reference area to yield the interference

drag coefficient, CDinterf
. Early work by Hoerner [24] in the field of interference drag of struts

suggests several possibilities for the choice of the reference area such as Sref = t2 or Sref = c2

where t and c are the thickness and the chord of the strut respectively. In this study, we

opted for the latter expression.

Since the configuration depicted in Figure 5.2 contains two wall-strut intersections, we

will have to take one half of the drag difference:

Dinterf =
1

2
(DS+W −DS) (5.9)

The interference drag coefficient for one junction becomes:

CDinterf
=
Dinterf

q∞c2
=

1

2

(
DS+W −DS

q∞c2

)
(5.10)

It should be noted that since the analyses are performed at α = 0o on symmetric airfoil

sections, the numerical results should be such that CLS+W
≈ 0 and CLS

≈ 0.

As mentioned before, CDS
of the strut without the wall effect can be determined from a

two-dimensional or a three-dimensional flow solution. Because of the large memory required

for 3-D calculations compared to their 2-D counterparts, it is desirable to use a reduced

number of mesh points. However, this comes with the price of a loss of accuracy of the

solution. This penalty can be assessed by first solving the flow on a very fine grid around a

2-D airfoil. Then, using a 3-D grid with a more realistic number of nodes, the flow is solved

for a strut with the same section placed perpendicularly between inviscid side walls. The

solutions can be compared to evaluate the magnitude of the discretization error. The result

of using this approach will be shown in the next section.

5.5 Results and Discussion

In this section, the results are presented for three-dimensional analyses performed on com-

plete strut-wall configurations. The effects of the strut thickness t/c, the strut-wall angle

φ, and the Reynolds number Rec on the interference drag are determined from first Euler

and then Navier-Stokes calculations. Pressure distributions are used to highlight the most

important features of the flow.
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Table 5.3: Grid characteristics
Inviscid grid Viscous grid

NACA Intersection angle φ Number of Total Number of Number of Total
airfoil surface number surface viscous number

nodes of nodes nodes nodes of nodes
2-D 576 9,905 576 N/A 27,615

90o (inviscid side walls) 26,024 257,903 32,544 405,863 588,829
64A005 90o 26,024 257,903 30,780 505,866 682,195

60o 41,815 485,486 45,085 990,585 1,327,931
30o 62,107 487,793 61,819 1,377,022 1,616,997

2-D 576 9,873 576 N/A 27,735
90o (inviscid side walls) 20,721 189,377 26,205 325,852 453,215

64A007.5 90o 20,721 189,377 25,022 408,515 529,717
60o 32,543 351,674 35,753 780,657 1,015,709
30o 47,086 392,929 41,076 922,279 1,071,661

5.5.1 Euler Calculations

For each strut-wall angle φ, the Euler equations were solved on inviscid grids generated for

the NACA 64A005 and NACA 64A007.5 airfoil sections. For each strut section, although the

geometries are different, a similar grid point distribution was used to make sure the results

are consistent. Grid stretching along the length of the strut was used more extensively away

from the wall. The case where φ = 90o can be compared with the results of a 2-D analysis

performed on the same airfoil section. The number of surface nodes and the total number

of nodes for each case are presented in Table 5.3. The surface nodes for the two-dimensional

cases represent the number of nodes on the complete airfoil and on the far-field boundary.

For the φ = 90o case, the 3-D model has a span of only 2.5 chords because of the symmetry

of the geometry.

In Chapter 4, the flow solutions obtained with USM3D were stopped after the residual had

been reduced by three orders of magnitude, corresponding to the convergence of the lift and

drag coefficients. However, FUN2D and FUN3D employ a different finite-volume formulation

and it is necessary to do this exercise again to find the convergence criterion that is most

suitable to the solutions obtained with those codes. The convergence criterion employed for

the Euler calculations presented in this section is based on the convergence history for the

NACA 64A007.5 strut section with φ = 30o. This case was chosen because it is the most

difficult configuration to analyze with the flow solver and it is likely to have more difficulty

reaching convergence. The convergence history for that case is shown in Figure 5.3. The
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Figure 5.3: Convergence History NACA 64A007.5 - φ = 30o, M∞ = 0.85, α = 0o (Euler
solution) – Residual (left axis) and total drag coefficient (right axis)

drag coefficient doesn’t vary much after the residual is reduced by four orders of magnitude.

This convergence criterion is applied to all the Euler results shown in this section. The same

criterion will be found satisfactory for the Navier-Stokes solutions in Section 5.5.2.

The pressure distributions along cross sections parallel to the walls are portrayed in

Figure 5.4 for the NACA 64A005 section and in Figure 5.5 for the NACA 64A007.5 section.

For the NACA 64A005 section, the flow is severely disrupted near the wall for φ = 60o and

φ = 30o. The proximity of the side wall creates a channel that forces the fluid to reach

higher a velocity compared to the φ = 90o case. Although the pressure distribution for

φ = 90o doesn’t exhibit a shock, there is a strong shock for the φ = 60o and φ = 30o

cases. The influence of the wall decays rapidly away from the wall. It is barely noticeable

at η = 50% where the Cp curves almost fall on top of the φ = 90o curves.

For the NACA 64A007.5 section, the reduction of the strut-wall angle φ severely disrupts

the flowfield in the region near the wall. The shock for φ = 60o and φ = 30o is a

lot stronger than for φ = 90o. Its effect can also be felt a large distance away from the

wall. Even at η = 50%, the disturbance can be seen as the pressure distributions deviate

significantly from the reference curve φ = 90o.

The spanload distribution on the strut is pictured in Figure 5.6. The strut is highly

loaded in the vicinity of the junction with the wall. The load distribution is antisymmetric

with respect to mid span, at which point it is zero. The effect of the thickness is obvious
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Figure 5.4: Cp distribution for the NACA 64A005 strut, M∞ = 0.85, α = 0o (Euler
solution) (a) η = 0% (b) η = 10% (c) η = 20% (d) η = 30% (e) η = 40% (f) η = 50%
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as the NACA 64A007.5 section shows a higher load than the NACA 64A005 over the span

range. The load for φ = 90o is negligible. It goes from η = 0% to η = 50% only because

half the configuration was modeled due to symmetry. The effect of reducing the strut-wall

angle φ from 90o to 60o and 30o is accompanied by a variation of the lift locally. Near the

root where the load is positive, the lift increases, whereas at the strut tip, the strut becomes

more negatively loaded.

The drag coefficients obtained for the two-dimensional and the three-dimensional analyses

are shown in Table 5.4. For all cases, the magnitude of the lift coefficient is less than 3×10−4.

The drag comes out to be very close for the 2-D and the 3-D analyses for φ = 90o. For the

NACA 64A005 section, the drag is very small for φ = 90o because there is no shock along

the strut surface. When the angle is reduced to φ = 60o, the shock near the root observed

in the pressure distribution in Figure 5.4 is responsible for increasing the drag coefficient

slightly compared to the φ = 90o configuration. For φ = 30o, the pressure distribution

indicated the presence of a much stronger shock than for the φ = 60o case. The large

increase in drag can be explained by the fact that the shock persists over almost 20% of the

strut span, although rendered much weaker as the distance from the wall increases. For the

NACA 64A007.5 strut section, the φ = 90o arrangement has a large drag penalty because
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Table 5.4: Drag coefficients at M∞ = 0.85

NACA Intersection angle φ Euler Rec = 5.3× 106 Rec = 10.6× 106

airfoil CDtot CDp CDv CDtot CDp CDv CDtot

2-D 0.0001 0.0012 0.0060 0.0072 0.0011 0.0055 0.0066

90o (inviscid side walls) 0.0002 0.0014 0.0058 0.0072 0.0013 0.0053 0.0066
64A005 90o 0.0002 0.0015 0.0059 0.0075 0.0014 0.0054 0.0069

60o 0.0004 0.0016 0.0060 0.0075 0.0016 0.0051 0.0067

30o 0.0039 0.0023 0.0060 0.0084 0.0023 0.0052 0.0075

2-D 0.0041 0.0056 0.0058 0.0114 0.0054 0.0053 0.0107

90o (inviscid side walls) 0.0041 0.0058 0.0056 0.0114 0.0057 0.0051 0.0108
64A007.5 90o 0.0041 0.0052 0.0057 0.0110 0.0051 0.0052 0.0103

60o 0.0072 0.0069 0.0057 0.0126 0.0067 0.0049 0.0117
30o 0.0168 0.0110 0.0056 0.0166 0.0103 0.0049 0.0151

of the shock located at x/c = 0.60, as seen in Figure 5.5. The reduction of the strut-wall

angle to φ = 60o is accompanied by a stronger shock. That shock persists over 40% of

the strut span and explains the jump in the drag coefficient. The case with φ = 30o has a

much stronger shock near the root than the one observed for φ = 60o. That shock doesn’t

dissipate quickly away from the wall. The strength of the shock and its extent along the

wing span explain the significant drag coefficient calculated for that case. The numerical

results show the influence of the strut thickness on the interference drag. For example, for

φ = 30o, the NACA 64A007.5 section produces a drag penalty more than four times higher

than the equivalent arrangement for the thinner NACA 64A005 section.

5.5.2 Navier-Stokes Calculations

For the viscous calculations, the grids generated are based on a grid point distribution similar

to the one used for the inviscid grids. However, the growth rate of the viscous layers in the

direction normal to a viscous surface can be controlled through the following equation [101]:

δi = δ1
[
1 + r1(1 + r2)

i−1
]i−1

(5.11)

This means that the normal grid spacing of the ith viscous layer δi is a function of the initial

spacing at the wall δ1 and the growth rates r1 and r2. The growth rate r1 is set to 0.15 and

0.40 for 2-D and 3-D calculations respectively. For full Navier-Stokes computations like the

one at hand, it is recommended to use r2 = 0 [103]. For the computations in the range of
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Figure 5.7: Variation of y+ for the first grid point from the NACA 64A007.5 airfoil surface,
M∞ = 0.85, α = 0o, Rec = 10.6× 106 (Navier-Stokes solution)

Rec = 5.3 × 106 to 10.6 × 106, a grid spacing at the wall δ1 = 1 × 10−5 per unit chord

allows for at least one point in the laminar sublayer of the turbulent boundary layer. For

the NACA 64A007.5 airfoil with Rec = 10.6× 106, the corresponding value of y+ along the

airfoil surface is shown in Figure 5.7. Over the entire range, the first grid point is within the

laminar sublayer whose limit is at y+ ≈ 8.

To evaluate the sensitivity of the drag coefficient to these parameters, sample 2-D cal-

culations were performed on the NACA 64A007.5 airfoil section at α = 0o. They revealed

that reducing the wall spacing δ1 even by a factor of 10 changes Cd by less than 1%, thus

confirming the adequate choice of δ1 = 1 × 10−5 chord for the initial grid spacing at the

wall. On the other hand, decreasing r1 from 0.40 to 0.15 increases the predicted Cd by less

than 2% at the expense of a grid size that increases by 61%. The cost of using r1 = 0.15

for 3-D computations is too prohibitive in terms of memory requirements. For that reason,

r1 = 0.40 was used for all 3-D analyses here.

The characteristics of the viscous grids generated for all strut-wall arrangements are

provided in Table 5.3. The number of viscous nodes represent the number of nodes generated

by VGRIDns using the advancing-layers methodology [101]. The mesh size is also given for the

two-dimensional airfoil sections. The surface grid for the three-dimensional NACA 64A007.5

strut section at φ = 90o between parallel inviscid side walls is shown in Figures 5.8 and 5.9.
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Figure 5.8: Fine viscous surface grid at the end plane of the NACA 64A007.5 strut - φ = 90o

In Figure 5.9, there is more grid stretching along the span near the symmetry plane than

near the side wall. For the configuration between inviscid side walls, constant stretching

could have been employed along the entire span since the flow is essentially two-dimensional.

But for the case between viscous side walls, spanwise stretching should be avoided near the

side wall. Instead of having two different sets of distributed grid sources (one with stretching

across the span and the other with stretching limited to the region away from the side wall),

the grid sources distributed in the field are identical for both cases. This was done in order

to facilitate the grid generation for cases between viscous side walls and inviscid side walls.

The only difference is the boundary condition specified on the side wall: no-penetration

condition only for inviscid side wall and no-slip condition for viscous side wall. If the no-slip

condition is imposed, VGRIDns generates viscous layers on that wall for accurate resolution

of the boundary layer.

To assess the quality of the viscous grids generated for the NACA airfoil sections, a grid

convergence study was performed for the 7.5%-thick section perpendicular to two viscous

side walls. Because of the symmetry of the geometry with respect to the mid span section,

only half the configuration was modeled with one of the side walls now being a symmetry

plane. Three grids were generated, ranging from coarse to fine in terms of grid resolution.

The overall grid characteristics are presented in Table 5.5.

The Navier-Stokes flow solutions were obtained for these configurations for M∞ = 0.85,
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side wall symmetry plane

Figure 5.9: Upper surface triangulation of the NACA 64A007.5 strut - φ = 90o (inviscid
side walls)

Table 5.5: Grid convergence for the NACA 64A007.5 strut - φ = 90o,M∞ = 0.85, α = 0o,
Rec = 5.3× 106

Grid Number of Number of Total number CDp CDv CDtot

surface nodes viscous nodes of nodes
Coarse 10,988 177,287 205,175 0.0059 0.0057 0.0116
Medium 15,321 244,364 299,862 0.0055 0.0057 0.0112
Fine 25,022 408,515 529,717 0.0052 0.0057 0.0110



Chapter 5. Analysis of the Interference Drag of a Strut Inclined to a Surface 81

x/c
0 0.25 0.5 0.75 1

(c)

x/c
0 0.25 0.5 0.75 1

(f)
x/c

C
p

0 0.25 0.5 0.75 1

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

(d)

x/c

C
p

0 0.25 0.5 0.75 1

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Coarse grid
Medium grid
Fine grid

(a)
x/c

0 0.25 0.5 0.75 1

(b)

x/c
0 0.25 0.5 0.75 1

(e)

Figure 5.10: Effects of grid refinement on Cp distribution for the NACA 64A007.5 strut -
φ = 90o, M∞ = 0.85, α = 0o, Rec = 5.3× 106 (Navier-Stokes solution) (a) η = 0%
(b) η = 10% (c) η = 20% (d) η = 30% (e) η = 40% (f) η = 50%

α = 0o, and Rec = 5.3 × 106. The pressure distributions are provided in Figure 5.10

for several cross sections along the span of the strut. The major difference among these

plots is the resolution of the shock at midchord. The finest grid provides the best result for

resolving the shock. Another aspect worth mentioning, even if it is barely noticeable, is the

presence of a sudden decrease in Cp right at the trailing edge of the strut for the coarse grid.

This very common phenomenon happens when the grid is not refined enough at the trailing

edge thus leading to the formation of skewed cells there. This topic is discussed in detail in

Section 6.3.

The magnitude of the lift coefficient is less than 6× 10−4 for all grids although it should

be zero. These inaccuracies are due to the grid. The drag coefficients are presented in

Table 5.5 and illustrated in Figure 5.11. The pressure drag CDp varies quite significantly

with grid refinement because of the poor shock resolution on the coarser grids. Despite that,
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the skin friction drag CDv is almost constant for each case, resulting in an overall effect that

depends mostly on the pressure drag. When the number of nodes is increased, the total drag

coefficient seems to be reaching an asymptotic value. Therefore, the grid point distribution

used for the fine mesh presented here was used throughout the viscous analyses shown later.

Richardson extrapolation [115] can be employed to estimate the exact value of the drag

coefficient based on the results presented in Table 5.5. The approach is applied in a heuristic

way rather than a rigorous one since the unstructured grids are not refined in a consistent

fashion. In the viscous layers for instance, all grids use the same growth rates and spacing

at the wall. Thus, in the direction normal to the viscous surfaces, all grids have the same

grid point distribution. Taking the grid refinement ratio r as the ratio of the total number

of nodes on the fine grid to the number of nodes on the medium grid, the exact value of the

drag coefficient CD is approximated with the following equation:

CDexact ≈ CDfine
+
CDfine

− CDmedium

r2 − 1
(5.12)

This yields a value of CDexact = 0.0108, a difference in drag coefficient of 0.0002 compared

to the value obtained on the fine grid. This gives a measure of the discretization error on

the fine grid used for the viscous calculations.

Another source of error is the criterion employed to determine the convergence of the

CFD solution. The convergence history for the NACA 64A007.5 case with φ = 30o is

shown in Figure 5.12. The residual decreases four orders of magnitude steadily. The largest
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Figure 5.12: Convergence history for the NACA 64A007.5 strut – φ = 30o, M∞ = 0.85,
α = 0o, Rec = 5.3× 106 (Navier-Stokes solution) – Residual (left axis) and components
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variation of the pressure drag CDp and the skin friction drag CDv occurs during the first

200 iterations. Between iteration 400 and 600, both components of the drag coefficient have

reached an asymptotic value. The total drag CDtot can be considered converged when the

solution reaches the point where the residual has been reduced four orders of magnitude,

which is a commonly used criterion in the CFD community. This criterion is applied to

all the viscous calculations presented in this chapter. Since the other configurations have

a convergence history similar to this one, this ensures that the results obtained for each

arrangement are comparable with one another.

Because there is little difference between the pressure plots at the two Reynolds numbers

chosen for this study, only the pressure distributions for Rec = 5.3 × 106 are presented

here. For the NACA 64A005 section results in Figure 5.13, it can be observed that the

pressure distribution behaves nicely near the wall compared to the inviscid case. The vis-

cosity dissipates the strong shock at the strut-wall junction very effectively. And, the effect

of the wall disappears very quickly as we move away from it. At a station η = 30%, the

perturbation in the pressure distributions is gone. This is accomplished more quickly than

for the inviscid solution. The pressure distribution on the NACA 64A007.5 strut section is

depicted in Figure 5.14. As can be seen, there is a more dramatic influence of the wall in

the vicinity of the junction. The flow separates at about x/c = 0.65 on the upper surface

of the strut for the φ = 30o case. But, from the other cross sections, we can see that the
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Figure 5.13: Cp distribution for the NACA 64A005 strut,M∞ = 0.85, α = 0o, Rec = 5.3×
106 (Navier-Stokes solution) (a) η = 0% (b) η = 10% (c) η = 20% (d) η = 30%
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effect of the wall again dissipates rapidly as the distance along the span increases.

The load distribution on the strut is depicted in Figure 5.15. The lift distribution for

the NACA 64A005 strut section is similar for both Reynolds numbers studied. There is

an increase in the loading near the root and the tip of the strut as the angle φ is reduced.

However, as opposed to the Euler calculations, there is approximately 50% of the span

that carries negligible load between η = 25% and 75%. Because of its higher thickness,

the NACA 64A007.5 strut shows more effect on the load near the side walls. As opposed

to the case of the NACA 64A005 strut section, the charts for NACA 64A007.5 are not

antisymmetric with respect to mid span for φ = 30o. As dicussed before, that case has a

region of separated flow near the root and the tip. The discrepancy could be explained by

the fact that the grid may not be identical near each junction, thus having an impact on the

determination of the region of separated flow. Despite that, it should be noted that the lift
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Rec = 5.3 × 106 (Navier-Stokes solution) (a) η = 0% (b) η = 10% (c) η = 20%
(d) η = 30% (e) η = 40% (f) η = 50%



Chapter 5. Analysis of the Interference Drag of a Strut Inclined to a Surface 86

coefficient is small for that case. Also, since we consider two junctions instead of just one,

this averages the trends in the results.

The lift coefficient is less than 0.005 in magnitude for all the cases analyzed. The drag

coefficients for Rec = 5.3× 106 and Rec = 10.6 × 106 are listed in Table 5.4. For both

strut thicknesses, two sets of results for φ = 90o are presented, one involving viscous side

walls (no-slip condition) and the other one representing the case for inviscid side walls (no-

penetration, slip condition). The latter is used as a basis for comparing with an equivalent 2-

D airfoil calculation done at the same conditions on a very fine grid. According to the results

presented here, the calculation performed on a strut between parallel inviscid surfaces agrees

well with its 2-D counterpart. The 2-D prediction gives a somewhat lower pressure drag

coefficient CDp while providing the solution with a somewhat higher viscous drag component

CDv . Overall, the effects tend to cancel out to yield a maximum discrepancy of about 0.0001

for the NACA 64A007.5 section at Rec = 10.6× 106.

For the NACA 64A007.5 section at φ = 90o, the presence of the viscous side walls

alleviates the drag penalty obtained for the same strut between inviscid surfaces. This

was observed by the shock rendered much weaker in the vicinity of the wall, as shown

in Figure 5.14. On the other hand, the NACA 64A005 section doesn’t exhibit favorable

interference. In fact, the adjacent viscous walls cause the overall drag to increase by a

few counts. This interesting phenomenon can be explained by the fact that, as opposed to

inviscid Euler calculations which predict a sharp shock provided the grid is fine enough, the

Navier-Stokes computations add viscous dissipation that smears the shock. Near the side

wall, the strut gets even more relief because the flow is inside the side wall boundary layer.

Hence, the shock for the NACA 64A007.5 section almost vanishes, leading to a reduction in

the drag compared to the case where inviscid side walls are employed. On the other hand,

the NACA 64A005 case doesn’t exhibit a shock when it is analyzed between inviscid side

walls, and the presence of a viscous side wall doesn’t provide a big relief like for the thicker

strut.

For the NACA 64A005 strut section, the change of φ from 90o to 60o is accompanied

by a negligible increase in drag because the strut section is still shockless. As opposed to

the φ = 60o case, the arrangement with φ = 30o has a shock near the root, causing a

net increase in the pressure drag. The drag coefficient for the NACA 64A007.5 strut shows

a more rapid increase than the NACA 64A005 section as the strut-wall angle φ is reduced.

When going from φ = 90o to φ = 60o, the shock strength near the side wall is amplified
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Figure 5.15: Spanload distribution, M∞ = 0.85, α = 0o (Navier-Stokes solution)
(a) NACA 64A005 with Rec = 5.3 × 106 (b) NACA 64A007.5 with Rec = 5.3 × 106

(c) NACA 64A005 with Rec = 10.6× 106 (d) NACA 64A007.5 with Rec = 10.6× 106
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and leads to an increase in the pressure drag coefficient. The increase in the drag coefficient

for φ = 30o can be explained by the strong shock and the large region of separated flow

in the vicinity of the strut-wall junction. This is reflected in the pressure drag coefficient.

Despite the presence of a region of separated flow near the intersection of the strut with the

wall for φ = 30o, the pressure drag coefficient and even the overall drag coefficient are less

than the drag coefficient predicted by the Euler computations in Table 5.4. This confirms

that the viscous effects can contribute favorably to the drag of the strut by alleviating the

strength of the shock near the wall and by dissipating its effect rapidly in the flowfield.

All the results presented in Table 5.4, can be interpreted in the form described by Eq. 5.10.

For the Euler calculations, the case for which φ = 90o was used as the reference CDS
. For

the Navier-Stokes analyses, the reference value for CDS
is chosen as the value calculated for

φ = 90o between inviscid side walls. The results are listed in Table 5.6. The interference

drag numbers highlight how dramatic the increase in drag is if the viscous effects are not

considered. The NACA 64A007.5 airfoil with φ = 90o exhibits favorable interference

as the negative interference drag numbers suggest. One thing to note is that no fairing

or contouring was applied near the junction of the strut with the wall. In the subsonic

flow range, Hoerner [24] observed that a junction with fairing has at least 10 times less

interference drag than an unfaired one. Thus, the numbers presented in Table 5.6 could be

reduced significantly with the use of fairings.

The statistical software JMP [116] was employed to fit a quadratic response surface to

the interference drag coefficient using a standard least-squares procedure. Only the Navier-

Stokes results were considered in this analysis. The equation can be included in MDO

studies to account for the interference drag penalty of wing-strut junctions or other related

configurations. The response surface can be written as:

CDinterf
= 0.1112 − 0.2572 sin φ+ 3.440(t/c) − 0.02097 log10Rec + 0.09009 sin2 φ

− 2.549(t/c) sin φ+ 0.03010 log10Rec sinφ− 0.1462(t/c) log10Rec (5.13)

where t/c is 0.05 for a 5%-thick airfoil. The response surface has a coefficient of determination

R2 = 0.9987 with a root mean square (RMS) error of 0.001177. The curve is shown in

Figure 5.16 for Rec = 5.3× 106.

The comparison of the original interference drag data from Table 5.6 with the prediction

of the response surface is shown in Figure 5.17. The response surface is in good agree-

ment with the data over the range of φ and correctly predicts favorable interference for the
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Table 5.6: Interference drag coefficients

NACA φ CDinterf
= Dinterf

q∞c2

airfoil Euler Rec = 5.3× 106 Rec = 10.6× 106

90o 0.0000 0.0006 0.0006
64A005 60o 0.0007 0.0038 0.0028

30o 0.0188 0.0238 0.0207

90o 0.0000 -0.0010 -0.0011
64A007.5 60o 0.0105 0.0080 0.0067

30o 0.0739 0.0547 0.0487

NACA 64A007.5 section with φ = 90o. In general, the fact that the highest Reynolds

number produces less interference drag is captured correctly except for the NACA 64A005

section with 70o < φ ≤ 90o. Over that range, the curves of the response surface cross each

other. However, the maximum difference between them is small.

5.6 Flowfield Details

Pressure contour plots and streamtraces will now be used to better understand the behavior

of the flow for the strut-wall configuration. The NACA 64A005 strut section will be shown

first, and that will be followed by the presentation of the NACA 64A007.5 case. A discussion
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Figure 5.17: Comparison of the response surface with the CFD data for M∞ = 0.85,
α = 0o, and Rec = 5.3× 106 and 10.6× 106

will then focus on the two-dimensionality of the flow at the mid span of the strut for both

strut sections.

5.6.1 Flowfield Around the NACA 64A005 Strut Section

The contours for the NACA 64A005 strut section are shown in Figure 5.18. The figure

depicts the Euler and Navier-Stokes solutions for the flowfield a distance 1 × 10−5 chord

(η = 0.0002%) from the side wall. The flow is from left to right and the strut intersects

the plane of the page coming down from above.

Let us consider the Euler solutions first. For φ = 90o, the pressure contours are limited

to a region close to the strut section. The contours are symmetric as could be expected from

the symmetry of the geometry analyzed. The stagnation point is located right at the leading

edge of the strut. Upstream of that point, the fluid is decelerated as shown by the contours

of increasing pressure in the vicinity of the leading edge. The airfoil section employed for

the strut is thin and no shock wave is present on the surface. Fluid particles follow the strut

surface and leave smoothly at the trailing edge.

When the strut-wall angle is reduced from φ = 90o to 60o, the region between the strut

upper surface and the nearby wall is narrow and forms a channel that accelerates the flow.
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(d) Navier-Stokes, 90o

(inviscid side walls)
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Figure 5.18: Pressure contours with streamtraces at η = 0.0002% for NACA 64A005,
M∞ = 0.85, α = 0o, Rec = 5.3 × 106 – Euler solution: (a) φ = 90o (b) φ = 60o

(c) φ = 30o – Navier-Stokes solution: (d) φ = 90o (inviscid side walls) (e) φ = 90o

(f) φ = 60o (g) φ = 30o
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The fluid particles upstream of the strut come to rest at the stagnation point which is located

a short distance downstream of the leading edge on the strut upper surface. The acceleration

of the particles on the upper surface leads to the formation of a shock at x/c = 0.60. On

the lower surface, however, the flow is almost undisturbed by the presence of the strut.

Further reduction of the strut-wall angle to φ = 30o produces even more effect in the

flowfield. The pressure gradient upstream of the strut leading edge extends over a wider

region than for the cases previously discussed. The stagnation point also moves downstream

on the upper surface. The fluid particles are accelerated quite rapidly on the strut upper

surface due to the constrained flow channel. A very strong shock is then formed close to the

trailing edge. It is interesting to note how far in the flowfield the disturbances due to the

strut propagate. The lower surface again shows almost no sign of the presence of the strut.

Consider now the viscous Navier-Stokes results for Rec = 5.3× 106. The case with the

strut perpendicular to the inviscid side walls shows pressure contours and streamtraces that

are very similar to the Euler results for the φ = 90o case. After decelerating upstream of

the strut, the fluid particles are accelerated very slightly along the strut upper and lower

surfaces. Note also the symmetry in the pressure contours and the stagnation point right at

the strut leading edge.

If we impose the no-slip condition on the side walls, the side wall boundary layer that

is allowed to develop blends away some of the pressure variations encountered for the case

between inviscid side walls. The deceleration of the particles upstream of the strut leading

edge is not as important because the flow is within the wall boundary layer and is, therefore,

slow. The particles accelerate slightly as they reach midchord. They go back to freestream

conditions smoothly after.

If we change the strut-wall angle φ to 60o, the presence of the nearby side wall produces

some effect, although not as dramatic as for the inviscid calculations for the same case.

The particles do accelerate as they follow the strut surface, but not enough to lead to the

formation of a shock. Instead, the particles slowly return to freestream conditions. The

viscous forces are shown to have a beneficial effect on the flow because, compared to the

inviscid results for φ = 60o, the pressure contours are attenuated enough to get rid of the

shock completely.

Finally, reducing the strut-wall angle to φ = 30o is accompanied by more disruption

of the flowfield. There is no separation, however, because the strut is thin compared to the
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NACA 64A007.5 section. But, we can clearly see the displacement of the stagnation point

downstream of the leading edge. We barely see any change in velocity on the strut lower

surface. The upper surface shows contours that extend far above the strut. The viscosity

alleviates some of those disturbances, but they propagate a significant distance from the

strut anyway. The velocity of the particles following the upper surface changes quite rapidly

as the short distance separating the pressure contours shows. The fluid reaches its maximum

velocity at mid chord before decelerating to the freestream conditions.

We will now consider the flowfield a distance equivalent to 0.50 chord (η = 10%) away

from the side wall. The cross sections are represented in Figure 5.19. We will compare the

results with the ones depicted in Figure 5.18 for η = 0.0002%.

For the Euler computations, the case where φ = 90o is no different than the same

case at the η = 0.0002% cross section. This is what should be expected since the flow

everywhere along the strut is two-dimensional. Reducing the strut-wall angle to φ = 60o

creates more disruption of the flowfield. However, the strength of the shock on the strut is

weakened due to the increased distance from the side wall. This is because the flow is not

constrained by the side wall anymore. We can also notice the fact that the pressure contours

in the vicinity of the leading and trailing edges tend to be symmetric with respect to the

chord of the airfoil. On the strut lower surface, we can see more variation in the pressure

distribution because the flow becomes closer to two dimensional. The same conclusions can

be drawn for the φ = 30o case. In the vicinity of the wall, the shock was very strong and

the pressure contours extended far in the flowfield. As the distance away from the wall is

increased, the shock becomes weaker on the upper surface while more disturbances emanate

from the lower surface. Near the leading and trailing edges, the pressure contours are close

to being symmetric.

If we now look closely at the Navier-Stokes solutions, we can see the consequences of

increasing the distance with the side wall. As expected, the case of the strut perpendicular

to two inviscid side walls is identical to the cross section made at η = 0.0002%. For

φ = 90o between viscous walls, the effect of the neighboring wall has dissipated and the

pressure distribution in the field looks more like the case between inviscid side walls. There is

a larger region of high speed flow on the upper and lower strut surfaces than for η = 0.0002%.

The disturbances around the strut are also more significant. When the strut-wall angle is

further reduced to φ = 60o and φ = 30o, the flowfield shows a substantial reduction of the

pressure gradient on the strut upper surface. On the lower surface, the extent of the pressure
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(d) Navier-Stokes, 90o
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Figure 5.19: Pressure contours with streamtraces at η = 10% for NACA 64A005,
M∞ = 0.85, α = 0o, Rec = 5.3 × 106 – Euler solution: (a) φ = 90o (b) φ = 60o

(c) φ = 30o – Navier-Stokes solution: (d) φ = 90o (inviscid side walls) (e) φ = 90o

(f) φ = 60o (g) φ = 30o

contours is greater. It can also be noted that the flow near the leading and trailing edges

is symmetric with respect to the strut chord. The flow slowly returns to a two-dimensional

state.

5.6.2 Flowfield Around the NACA 64A007.5 Strut Section

We will now discuss the case of the NACA 64A007.5 section a distance of 1 × 10−5 chord

(η = 0.0002%) from the side wall. The pressure contours and streamtraces are depicted

in Figure 5.20. The Euler results are presented first. For φ = 90o, the symmetric strut

section creates a symmetry in the pressure contours as well. The stagnation point is located

at the leading edge of the strut. The particles decelerate from the freestream velocity when

they get in the region near the leading edge, as shown by the contours of increasing pressure.

They accelerate along the surface past the sonic conditions, accompanied by a decrease in
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Figure 5.20: Pressure contours with streamtraces at η = 0.0002% for NACA 64A007.5,
M∞ = 0.85, α = 0o, Rec = 5.3 × 106 – Euler solution: (a) φ = 90o (b) φ = 60o

(c) φ = 30o – Navier-Stokes solution: (d) φ = 90o (inviscid side walls) (e) φ = 90o

(f) φ = 60o (g) φ = 30o

the pressure. At x/c = 0.60, the pressure increases sharply as a consequence of the presence

of a shock wave at that location. It then returns to its freestream value.

The φ = 60o case shows the channel effect as the strut is tilted towards the side wall.

The upper surface of the strut is located in that region. The stagnation point moves a short

distance away from the leading edge on the upper surface. It should also be noted that the

pressure contours upstream of the strut leading edge extend farther away from it than for

the φ = 90o case. On the upper surface, the particles are accelerated quickly as a result of

the curvature of the strut surface and the proximity of the side wall. This can be seen from

the pressure contours that get closer to each other in the region between the leading edge

and mid chord. There is a large region of supersonic flow on the strut that culminates with

a strong shock at x/c = 0.75. The flow slowly returns to the freestream conditions some

distance downstream of the trailing edge. Overall, the presence of a tilted strut produces

a lot of disturbance of the flowfield in the channel region. This is depicted by the pressure
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contours that extend in the flowfield a large distance above the strut. On the other hand, in

the vicinity of the lower surface, the effect of the wall and the strut have a weaker effect in

the flowfield than for φ = 90o. The particles accelerate at a slow pace on the lower surface

and return back smoothly to the freestream conditions.

The configuration with φ = 30o amplifies all the trends already highlighted for φ = 60o.

The stagnation point moves downstream on the strut upper surface. The side wall is much

closer to the strut upper surface, thus the flow accelerates dramatically as depicted by the

rapid variation in the pressure contours. The high-speed flow region ends at x/c = 0.90

as the pressure lines collapse onto each other to form a very strong shock. The flow goes

from a very low pressure back to almost the freestream condition over a very short distance.

This produces a severe perturbation of the entire flowfield more than 1.5 chord above the

strut. Upstream of the leading edge, the contours go beyond what the φ = 60o case showed.

This is also due to the fact that the cross sections presented here are made parallel to the

side walls, not perpendicular to the strut planform. Care should, therefore, be taken in

interpreting distances on these contour plots. On the lower surface of the strut, the contours

are considerably weaker than for φ = 90o and φ = 60o as the flow acceleration and

deceleration back to freestream conditions are very smooth.

The Navier-Stokes results are shown for all angles, including the case where φ = 90o

with inviscid side walls. Since that case is two-dimensional by nature, it allows a preliminary

interpretation of the addition of viscous effects to the flow. The pressure contours are

symmetric on both sides of the strut with the stagnation point located at the leading edge of

the strut. The flow decelerates from the freestream conditions as it gets in the vicinity of the

leading edge. The particles accelerate as they follow the strut surface until there is a sudden

jump in pressure due to the presence of a shock at x/c = 0.60. The shock is smeared due

to the viscous forces acting on the flow. This is confirmed by the fact that there is some

distance between the pressure contours in the region of the shock. It is a weaker shock than

the one obtained from the Euler calculation on the same configuration. The flow slows down

as it moves toward the trailing edge.

The contour plots for the cases remaining to be discussed all make use of results employing

the no-slip condition on the side walls as opposed to the case just presented. The cross

sections are located within the side wall boundary layer. The φ = 90o case exhibits

symmetry in its pressure contours. As shown by the pressure contours confined to a small

region upstream of the strut leading edge, the deceleration of the particles is small as they
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get to the stagnation point because they are within the side wall boundary layer. After

reaching that point, they accelerate and then decelerate slowly towards the trailing edge.

The variations in the flowfield are small because of the presence of the viscous side wall.

This effect is beneficial because the shock displayed by the φ = 90o case between inviscid

side walls disappeared completely. The extent of the pressure contours in the flowfield is

also made weaker by the viscous forces of the side wall boundary layer.

For φ = 60o, the flow decelerates upstream of the strut and reaches the stagnation point

a short distance from the leading edge along the upper surface. In the channel region, the

fluid particles’ acceleration is accompanied by a drop in the pressure. Towards the trailing

edge, the flow goes through a shock, but the adverse pressure gradient is not strong enough

to cause the flow to separate. Compared to the Euler solution for the same configuration,

the Navier-Stokes results show a shock made much weaker by the action of the viscous

forces. The shock is located a significant distance upstream of the position predicted by the

Euler solution. And, because of the dissipative mechanism of the viscous forces, the pressure

contours die out more quickly away from the strut. The strut doesn’t perturb the flowfield

as strongly as anticipated for that reason. On the lower surface of the strut, the variations

of the velocity are very small and the absence of a shock there allows for a smooth pressure

distribution. The streamtraces show more curvature around the strut compared to their

Euler counterparts. The boundary layers that develop on the strut and the adjacent side

wall combine to deflect the particles away from the low speed flow regions adjacent to the

strut surface.

The configuration for φ = 30o exhibits the most interesting features because of the

much stronger interactions in the channel formed by the strut and the adjacent side wall.

The fluid particles coming from upstream are deviated sharply away from the channel region

as they decelerate towards the strut. This is due to the presence of the boundary layer that

develops on the strut and the side wall. As mentioned before, the reduced space between

the strut and the wall produces a rapid increase in the velocity of the fluid particles that

ends with a shock standing at x/c = 0.60. That smeared shock is weaker and upstream

of the one predicted by the Euler solution due to the dissipative viscous effects. However,

as a result of the severe adverse pressure gradient produced by the shock, the flow separates

downstream. The streamtraces show a large region of recirculating flow in the vicinity of

the strut trailing edge. The fluid particles are deviated away from that vortex. The lower

surface of the strut shows small variations in the pressure. Compared to the Euler solution,
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Figure 5.21: Recirculation vortex at η = 0.0002% for NACA 64A007.5 with φ = 30o,
M∞ = 0.85, α = 0o, Rec = 5.3× 106 (Navier-Stokes solution)

the pressure contours don’t extend very far away from the strut. The viscous mechanisms

dampen the perturbations induced by the presence of the strut.

The streamlines and Mach number contours for that case are shown in greater detail in

Figure 5.21. The recirculation region covers half of the airfoil upper surface and extends

almost 0.4 chord in radius. The streamlines coalesce slightly upstream of the vortex, indi-

cating the separation line. It is also interesting to note the formation of another separation

line 0.50 chord above the vortex. As a result of the restricted channel formed by the upper

strut surface and the neighboring wall, the fluid particles are pushed down, away from the

junction, along the strut lower surface. They follow a common path as can be seen by the

coalescence of the streamlines there.
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Figure 5.22: Dissipation of the recirculation vortex for NACA 64A007.5 with φ = 30o,
M∞ = 0.85, α = 0o, Rec = 5.3 × 106 (Navier-Stokes solution) (a) η = 0.0002%
(b) η = 0.2% (c) η = 1% (d) η = 5%

Results in Figure 5.22 show the dissipation of the recirculation vortex as the distance

away from the side wall increases. Although the recirculation region is clearly apparent for

the η = 0.0002% and the η = 0.2% stations, it becomes very small at η = 1%. A small

portion of the fluid particles are deviated in the vicinity of the trailing edge as a result of

the presence of the vortex. At η = 5%, the recirculation region is completely gone.

We will now do the same exercise as for the NACA 64A005 section by looking at the

flowfield around the NACA 64A007.5 strut at η = 10%. First, for the Euler solutions, the

cross section for φ = 90o is identical to the one made at η = 0.0002% as expected since

the flow is two dimensional for that configuration. The reduction of the strut-wall angle to

φ = 60o is acompanied by an alleviation of the shock on the upper surface compared to

the η = 0.0002% cross section. And on the lower surface, increasing the distance with the

side wall contributes to form a shock and create more pressure disturbances in the flowfield.

Close to the leading and trailing edges, the contours tend to be symmetric with respect to

the chord of the airfoil. The same can be said about the leading edge region for φ = 30o, but

not for the trailing edge, because the shock on the upper surface highly disturbs the flowfield

there. As mentioned for the φ = 60o case, the distance with the wall plays a central role in

the decay of the shock strength on the upper strut surface and in the formation of a shock

on the lower surface.

The Navier-Stokes solutions show similar effects as we move away from the side wall. The

φ = 90o case between viscous side walls shows how quickly the influence of the side wall
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(d) Navier-Stokes, 90o
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Figure 5.23: Pressure contours with streamtraces at η = 10% for NACA 64A007.5,
M∞ = 0.85, α = 0o, Rec = 5.3 × 106 – Euler solution: (a) φ = 90o (b) φ = 60o

(c) φ = 30o – Navier-Stokes solution: (d) φ = 90o (inviscid side walls) (e) φ = 90o

(f) φ = 60o (g) φ = 30o

boundary layer dissipates. The pressure distribution in the flowfield looks already similar

to the one for the case between inviscid side walls. The shock on both surfaces is already

established. For φ = 60o, the benefits of the presence of the side wall boundary layer go

away as the shock becomes sharper on the upper surface and the disturbnaces become more

significant on the lower surface. The φ = 30o case shows no sign of the recirculation vortex

that was present in the cross section made at η = 0.0002%. Instead, the fluid particles

are only slightly deviated as they pass near the strut. The shocks on the upper and lower

surfaces are apparent.

5.6.3 Two-Dimensionality of the Flow

The distance between the walls was chosen to ensure that the flow would be almost two-

dimensional at the strut mid span. As depicted in the pressure distributions presented in
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Figures 5.4, 5.5, 5.13, and 5.14, the pressure curves on the top and bottom surface of the

strut don’t lie on top of each other at η = 50%. They are very close however, especially for

the viscous cases. In order to have a better idea of how close to two-dimensional the results

are at mid span, contour plots are made at sections perpendicular to the strut planform

instead of making them parallel to the side walls. The pressure contours can be compared

in that plane with the results for φ = 90o between inviscid walls for the Navier-Stokes

calculations and for φ = 90o for the Euler solutions.

For convenience, the coordinate system x-z′ is introduced, where x is in the streamwise

direction as always, and z′ is normal to the wing planform. The origin of the axes is lo-

cated at the leading edge of the strut where the cross section is made. The results of this

exercise for the Euler and Navier-Stokes solutions are shown in Figure 5.24 and 5.25 for the

NACA 64A005 and 64A007.5 sections respectively.

For the NACA 64A005 strut section, the Euler solutions are not quite two-dimensional

at mid span. This can be noticed for the case with φ = 30o where there is a larger region of

high speed flow on the strut upper and lower surfaces than for the φ = 90o configuration.

The Navier-Stokes calculations show the same trend but to a smaller degree. For the cases

where φ = 90o and 60o, there is a very small difference with the case where the strut is

perpendicular to inviscid walls.

If we consider the NACA 64A007.5 section, the Euler solutions for φ = 60o and 30o are

not quite two-dimensional at mid span. The contours extend too far away from the strut.

The shock appear to be at the same location for all three solutions. Because of the effect

of the viscous dissipation, the Navier-Stokes results tend to follow more closely the pattern

of the φ = 90o case between inviscid side walls. There is no difference between the two

φ = 90o solutions. The other cases for φ = 60o and 30o show pressure contours that

extend further away than for the φ = 90o configurations. For the strut-wall angle of 30o,

the shock is not as sharp as for the other cases.

Based on these observations, it appears that for the strut-wall angles considered in this

study a distance of 5 chords between the parallel walls is satisfactory although a larger

distance would provide a flowfield that would be closer to 2-D at mid span. However, this

should not have a big impact on the results, particularly for the Navier-Stokes solutions.
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Figure 5.24: Pressure contours in a plane perpendicular to the strut planform at η = 50%
for NACA 64A005, M∞ = 0.85, α = 0o, Rec = 5.3× 106 – Euler solution: (a) φ = 90o

(b) φ = 60o (c) φ = 30o – Navier-Stokes solution: (d) φ = 90o (inviscid side walls)
(e) φ = 90o (f) φ = 60o (g) φ = 30o
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Figure 5.25: Pressure contours in a plane perpendicular to the strut planform at η = 50%
for NACA 64A007.5, M∞ = 0.85, α = 0o, Rec = 5.3×106 – Euler solution: (a) φ = 90o

(b) φ = 60o (c) φ = 30o – Navier-Stokes solution: (d) φ = 90o (inviscid side walls)
(e) φ = 90o (f) φ = 60o (g) φ = 30o



Chapter 6

Challenges in Computational Fluid
Dynamics

The field of CFD has seen major developments in recent years. However, some practical

issues remain to be addressed in terms of geometry definition (trailing edge closure), grid

generation (presence of slivers and impossibility to close the volume grid), and solution

accuracy (grid convergence studies and effect of grid refinement near the leading and trailing

edge of airfoil sections). In this chapter, some guidelines and advice developed based on

experience in the current study are presented for each of them.

6.1 Trailing edge closure

Consider the case of an airfoil with a finite thickness at the trailing edge in transonic flow. The

flow expansion around the sharp corner causes a sharp variation in the pressure distribution.

This is particularly apparent for Euler calculations. To capture this feature of the flow,

the grid has to be refined in that region. In three dimensions, the cost of adding several

nodes along the trailing edge can be prohibitive. In addition, the tetrahedral cells along the

thickness of the trailing edge tend to be very skewed. For supercritical airfoils, a lot of voids

tend to form near the trailing edge region and prevent the volume grid from being completed

in some cases. Therefore, it would be nice to find a way to close the trailing edge of the

airfoil without affecting too much the value of the aerodynamic coefficients computed. As

depicted in Figure 6.1, this can be achieved in several ways:

104
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1. Insert the trailing edge point at the intersection of the extrapolated upper and lower

airfoil surfaces (Figure 6.1b). The chord of the airfoil is not preserved and this has to

be taken into account in calculating the aerodynamic coefficients such as Cl, Cd, and

Cm. For some supercritical airfoils, the extrapolated upper and lower surfaces coincide

at a point located too far from the airfoil. This is due to the fact that the surfaces

are almost parallel near the trailing edge. Thus, an extension of those surfaces could

potentially go to infinity.

2. Combine the last point on the upper and lower surfaces and replace them by a point

located midway between them (Figure 6.1c).

3. Join the next to last point on the lower surface to the last point on the upper surface.

Drop the last point on the lower surface also (Figure 6.1d).

4. Join the next to last point on the upper surface to the last point on the lower surface.

Drop the last point on the upper surface also (Figure 6.1e).

5. Move the upper and lower airfoil surfaces towards each other in such a way that they

coincide at a point at the trailing edge (Figure 6.1f). In order to preserve the camber

line, the displacement of the surfaces can be done linearly with x as:

z′i =



zi − 1

2

(
t
c

)
(xi − xLE) for i = 1, 2, ...nupper on upper surface

zi +
1
2

(
t
c

)
(xi − xLE) for i = 1, 2, ...nlower on lower surface

where z′i and zi represent the new and old airfoil ordinates respectively, xi the abscissa

of each point on the airfoil surface, t the thickness of the airfoil at the trailing edge,

and xLE the abscissa of the leading edge of the airfoil (xLE = 0 usually). The upper

and lower surfaces are represented by nupper and nlower points respectively.

Rivers and Wahls [118] discussed some of the alternatives presented above for closing the

trailing edge.

In the analysis of the interference drag of a strut intersecting a flat wall presented in

Chapter 5, the flow past airfoils of the NACA 64A- family was analyzed. To assess the

effect of the trailing edge closure methods on the pressure distribution and the aerodynamic

coefficients, we solved the transonic flow past the NACA 64A007.5 airfoil. The airfoil is

symmetric and has a t/c of 7.5%. The next to last point is located at x/c = 0.99. The
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Figure 6.1: Methods to close the trailing edge (a) Original airfoil (b) Method 1: Extrapolation
of the upper and lower surfaces (c) Method 2: Midpoint (d) Method 3: Removal of the last
point on the lower surface (e) Method 4: Removal of the last point on the upper surface
(f) Method 5: Displacement of the upper and lower surfaces using a linear variation
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freestream conditions are set toM∞ = 0.85 with an angle of attack α = 0o and a Reynolds

number Rec = 5.3 × 106. Since the airfoil is symmetric, Methods 3 and 4 are equivalent.

The generated unstructured grids use the same number of grid points on the surface of the

airfoil for all cases. However, for the case of the original airfoil with a finite thickness at the

trailing edge, grid points are added along the segment forming the flat trailing edge.

The pressure distributions are shown in Figure 6.2 for the solution of the inviscid Euler

equations. The original airfoil shape exhibits a strong shock at x/c = 0.55. As the flow

goes around the corner at the trailing edge, the pressure decreases sharply. When applying

Method 1, the shock is predicted at the same location. However, the pressure at the trailing

edge increases as the flow smoothly leaves the airfoil surface. The result obtained with

Method 2 is consistent with Method 1 except for the bump in the pressure distribution

around x/c = 0.99. This is caused by the abrupt change of the surface slope in that region,

thus forcing the flow to expand. The worst flow characteristics happen with Methods 3 and 4

where the shock location varies over a range of 20% of the chord length. This asymmetry

in the pressure produces unwanted lift. Method 5 predicts the shock upstream of the shock

location for the original airfoil. The flow leaves smoothly the airfoil surface at the trailing

edge as in the case of the Method 2.

The Navier-Stokes solutions for the same airfoil geometries are pictured in Figure 6.3.

As opposed to the Euler results, the calculations generally show a better agreement with

the pressure distribution of the original airfoil shape. The viscous forces act at the trailing

edge to blend away the sharp pressure variations. This mechanism is responsible for the

improvement in the results for Methods 3 and 4. However, the asymmetry between the

upper and lower surface is still responsible for a non-negligible lift force for those cases.

The lift and drag coefficients are presented in Table 6.1 for the Euler and Navier-Stokes

computations. The results for Method 1 are corrected to take into account the fact that

the extrapolation of the upper and lower surfaces causes the airfoil chord to increase by 1%.

The lift coefficient Cl should be zero for all cases because the airfoil is symmetric and the

freestream is at an angle of attack α = 0o. Of all the methods shown, Method 5 predicts

a lift coefficient that is closest to zero. The remaining difference can be explained by the

grid itself. There are some inaccuracies when the forces are determined by integration. If we

don’t consider the results of Method 2, the Euler calculations yield a drag coefficient within

0.0002 of each other. For the Navier-Stokes solutions, the skin friction drag component

is constant for all cases. The variation in the pressure drag among the methods can be
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Figure 6.2: Pressure distribution with trailing edge closure for the NACA 64A007.5 airfoil,
M∞ = 0.85, α = 0o (Euler solution) (a) Original airfoil (b) Method 1: Extrapolation of
the upper and lower surfaces (c) Method 2: Midpoint (d) Method 3: Removal of the last
point on the lower surface (e) Method 4: Removal of the last point on the upper surface
(f) Method 5: Displacement of the upper and lower surfaces using a linear variation
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Figure 6.3: Pressure distribution with trailing edge closure for the NACA 64A007.5 air-
foil, M∞ = 0.85, α = 0o, Rec = 5.3 × 106 (Navier-Stokes solution) (a) Original air-
foil (b) Method 1: Extrapolation of the upper and lower surfaces (c) Method 2: Midpoint
(d) Method 3: Removal of the last point on the lower surface (e) Method 4: Removal of the
last point on the upper surface (f) Method 5: Displacement of the upper and lower surfaces
using a linear variation
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Table 6.1: Lift and drag coefficients for various trailing edge closure methods
Case Euler Navier-Stokes

Cl Cd Cl Cdp Cdv Cdtot
Original −4.65× 10−4 0.0043 −7.88× 10−4 0.0058 0.0058 0.0116
Method 1 −5.35× 10−4 0.0041 −8.27× 10−4 0.0056 0.0058 0.0114
Method 2 −1.36× 10−3 0.0042 −5.02× 10−4 0.0057 0.0058 0.0115

Methods 3-4 −0.195 0.0065 −5.74× 10−2 0.0060 0.0058 0.0118
Method 5 4.34× 10−5 0.0041 −2.61× 10−4 0.0056 0.0058 0.0114

explained by the differences in the shock location. Overall, the Navier-Stokes results agree

within 0.0004 for the total drag coefficient. Finally, Methods 3 and 4 yield the worst results

because of their relatively high lift coefficients. As opposed to the Euler calculations, the

Navier-Stokes computations for those methods yield a drag coefficient that is closer to the

one of the original airfoil because the prediction of the shock location was improved.

No definite conclusion can be made about these approaches because only one set of

freestream conditions was tested and no extensive analyses were made about other airfoil

shapes. However, it appears that Methods 3 and 4 should be avoided. For the computations

performed on the strut-braced wing airplane in Chaper 4, the airfoil sections were closed with

Method 2 because the airfoil sections employed had upper and lower surfaces that were very

close to each other near the trailing edge. For the interference drag analyses of strut-wall

configurations presented in Chapter 5, Method 5 was employed to close the trailing edge of

the strut sections.

6.2 Grid convergence studies

Unstructured grid methodology provides a lot of flexibility in analyzing complex configu-

rations. However, it has some drawbacks in terms of the accuracy of the flow solution,

especially if no mesh adaptivity is used. It is difficult to perform grid convergence studies

for a given problem. A grid convergence study consists in computing the flow solutions on

systematically finer grids. Typically, the lift and drag coefficients are plotted in terms of the

inverse of the total number of mesh points. As the grid becomes finer, it is expected that

the aerodynamic coefficients will reach an asymptotic value. This strategy is employed to

determine what level of grid refinement is necessary to achieve a certain level of accuracy.
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This method is easily applicable to structured grids as coarser grids can be obtained from a

very fine grid by ignoring every other point in each direction. For unstructured grids, this

approach is not feasible. Independent sets of grids have to be generated and it is often hard

to derive coarser grids that are consistent with an existing fine grid.

In two dimensions, AFLR2 allows the generation of coarser grids relatively easily because

the number of points on the airfoil surface and on the far-field boundary can be specified

directly. However, in three dimensions with VGRIDns, the approach is not as straightforward,

because both the spacing s and the strength an of a grid source can be adjusted. For inviscid

meshes such as the ones employed in Chapter 4, the spacing is doubled for every source in

the mesh for each level of mesh coarsening. For viscous grids, VGRIDns is sometimes not

able to find a suitable unstructured grid to meet the prescribed grid point distribution. The

strength of the sources need to be adjusted to ensure a smooth growth of the mesh in the

field. In this research, the approach that was most often preferred for viscous grids was to

increase the strength of the corner sources until a desired number of mesh points on the

surface of the body was obtained. Since the spacing of the corner sources in the far-field is

usually large, making those sources stronger propagates their effect farther in the far-field

and thus coarsens the grid even on the surface of the body. The only disadvantage of this

method is that the spacing in the far-field is not changed. Over the long run, this method

proved to be more robust than any other in terms of grid generation for viscous grids.

To make life easier, one could think of using an extension to AFLR2 in three dimensions.

Such a package exists to generate inviscid and viscous grids and contains the graphical user

interface SolidMesh [119] and the grid generation code AFLR3. Both codes were developed at

Mississippi State University. SolidMesh allows the definition of points, curves, and surfaces

on 2-D and 3-D geometries. The grid spacing is specified in the field and the unstructured grid

is generated by AFLR3 using the advancing-front/local-reconnection methodology [98, 99].

Right now, one of the disadvantages of this product is that it doesn’t have the capability to

allow grid stretching along directions of small gradients as opposed to VGRIDns. This causes

the size of the grids obtained with SolidMesh and AFLR3 to be very large in comparison with

similar grids generated with VGRIDns.
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Figure 6.4: Forces acting on a 2-D airfoil

6.3 Grid generation in the vicinity of the leading edge

and the trailing edge

The development of CFD tools has allowed an improvement in the computation of the

flowfield and the associated aerodynamic coefficients. In general, the lift coefficient is a

quantity that is predicted accurately by current methods. However, it can sometimes be

very difficult to obtain good agreement of the drag coefficient with experimental data. On

the one hand, this can be due to the experiment itself: blockage effect, side wall boundary

layers, accuracy of the measurement system, etc. On the other hand, poor predictions can

be a result of the grid quality, the turbulence model employed, etc. In this section, we will

look at some of the issues that can have a noticeable impact on the pressure distributions

and thus the determination of the drag.

Let us review how the lift and drag coefficients are calculated. This will help to under-

stand the subsequent discussion better. Consider an airfoil with a chord c at an angle of

attack α as shown in Figure 6.4. The forces acting on the airfoil in the axial and normal

directions are denoted by a and n respectively. To transform those components into the

usual lift l and drag d forces, the following rotation is performed [120]:
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l = n cosα − a sinα (6.1)

d = n sinα+ a cosα (6.2)

These quantities are non-dimensionalized with respect to a reference area Sref = c× 1 and

a reference dynamic pressure q∞ = 1
2
ρ∞U2

∞ to get Cl and Cd. In terms of the pressure

coefficient on the upper surface Cp,u and on the lower surface Cp,l, the contribution of the

pressure to the lift and drag coefficients is determined by integrating the difference in pressure

coefficients along the airfoil surface from the leading edge LE to the trailing edge TE. Using

Eq. 6.1 and 6.2, we get from Ref. [120]:

Cl =
1

c

[(∫ TE
LE

(Cp,l − Cp,u) dx

)
cosα−

(∫ TE
LE

(Cp,u −Cp,l) dz

)
sinα

]
(6.3)

Cd =
1

c

[(∫ TE
LE

(Cp,l − Cp,u) dx

)
sinα +

(∫ TE
LE

(Cp,u − Cp,l) dz

)
cosα

]
(6.4)

If the airfoil is at an angle of attack α = 0o, the above equations reduce to:

Cl = Cn =
1

c

∫ TE

LE
(Cp,l −Cp,u) dx (6.5)

Cd = Ca =
1

c

∫ TE

LE
(Cp,u − Cp,l) dz (6.6)

Consider the case of the symmetric NACA 64A007.5 airfoil discussed in Section 6.1. The

freestream conditions are taken as M∞ = 0.85 and α = 0o. Two inviscid grids are

generated with AFLR2 with 512 points along the airfoil surface. For the fine grid, the grid

spacing at the leading edge is specified as 1.2 × 10−3 chord and the mesh contains a total

of 9968 nodes. The spacing at the leading edge for the coarse grid is 3× 10−3 and the grid

contains 9808 nodes. The grids are pictured in Figure 6.5.

The Euler equations are solved using the flow solver FUN2D and the pressure distribution

for both cases is depicted in Figure 6.6. The lift and drag coefficients are displayed in

Table 6.2. The lift coefficient is very close to zero as expected. However, the drag coefficient

on the coarse grid overpredicts the value on the fine grid by as much as 7%. Looking at the

pressure distribution in Figure 6.6a, there is no apparent difference between the two curves.

How can the difference in drag be explained? The answer lies in the definition of the pressure

drag coefficient from Eq. 6.6:

Cd =
1

c

∫ TE

LE
(Cp,u − Cp,l) dz
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Figure 6.5: Refinement of the inviscid grid at the leading edge of the NACA 64A007.5 airfoil
(a) Fine grid with close-up view (b) Coarse grid with close-up view

Table 6.2: Lift and drag coefficients for various grid refinements at the leading edge of the
NACA 64A007.5 airfoil, M∞ = 0.85, α = 0o

Case Cl Cd

Fine grid −7.48× 10−4 0.0041
Coarse grid −6.41× 10−4 0.0044
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Figure 6.6: Effect of the grid refinement at the leading edge of the NACA 64A007.5 air-
foil, M∞ = 0.85, α = 0o (Euler solution) (a) Pressure coefficient as a function of the
coordinate x/c (b) Pressure coefficient as a function of the coordinate z/c

The pressure drag is obtained by integrating along the height of the airfoil. At the leading

edge, where the pressure varies rapidly, the airfoil z-coordinate also changes rapidly. It is

necessary to resolve that region very well because it has a significant impact on the final

value of Cd. Figure 6.6b shows the pressure distributions in an unconventional way, the

horizontal axis being the z-coordinate of the airfoil surface. This plot is called a “thrust

loop”. The computation of the area enclosed by a curve yields the drag coefficient for the

corresponding mesh. Looking closely at the pressure distributions in the vicinity of the airfoil

leading edge, it is obvious that there is a slight difference in the Cp curves for the coarse and

fine grids. This can explain the difference in drag noted earlier. The shock appears to be

resolved accurately with the grids employed here.

For the sake of discussion, consider the points on the airfoil surface where z/c = 0.01.

Those points correspond to x/c = 0.015 and x/c = 0.865. To be able to capture

accurately the suction peak and its effect on the drag coefficient, this means that there has

to be about as many grid points in the region where 0 ≤ x/c ≤ 0.015 as in the region where

0.865 ≤ x/c ≤ 1. The conclusion to this exercise is that the leading edge region is of primary

importance in the calculation of the drag coefficient. Poor discretization of the geometry in

that vicinity can have a detrimental impact on the results.

There is another interesting phenomenon related to how fine the grid is near the leading

edge. Consider an airfoil of the NACA 64A family with t/c = 5%, thus corresponding to the

name NACA 64A005. Grids can be generated for that airfoil section using VGRIDns. VGRIDns

is a three-dimensional grid generator but it can be employed to obtain two-dimensional grids
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Figure 6.7: Generation of a 2-D grid with VGRIDns

in a simple fashion. As shown in Figure 6.7, a wing with a given span is enclosed between

the walls of the computational box. The mesh on the symmetry plane can be extracted and

transformed to a two-dimensional grid suitable for the flow solver FUN2D. That way, some

features of the grid can be tested quickly rather than having to analyze a three-dimensional

case.

For the NACA 64A005 airfoil, two viscous grids are generated with VGRIDns. Figure 6.8a

shows the finest grid which has 189 points along the airfoil surface and a total of 9215 nodes

in the field. The mesh depicted in Figure 6.8b is coarser, with 171 points along the airfoil

surface and a total of 7856 nodes. The spacing prescribed for each grid source is the same

for both grids. The viscous grids have identical parameters for the growth of the viscous

layers. The only difference in the parameters used to obtain these grids is the strength an of

the source located at the leading edge of the airfoil. For the finest grid, an is twice as large

as it is for the coarser mesh.

The freestream conditions for this analysis are M∞ = 0.85, α = 0o with a Reynolds

number of Rec = 5.3 × 106. The Reynolds-averaged Navier-Stokes equations are solved

using FUN2D. The lift and drag coefficients computed for each solution are shown in Table 6.3.

The lift coefficient is negligible as expected. The total drag coefficient is almost identical for

both cases, the main difference arising from the integration of the pressure to calculate the

pressure drag. This becomes clearer when looking at the pressure distribution presented in
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Figure 6.8: Grid refinement at the leading edge of the NACA 64A005 airfoil (a) Fine grid
(b) Coarse grid

Table 6.3: Lift and drag coefficients for various grid refinements at the leading edge of the
NACA 64A005 airfoil, M∞ = 0.85, α = 0o, Rec = 5.3× 106

Case Cl Cdp Cdv Cdtot
Fine grid −3.57× 10−4 0.0013 0.0057 0.0071
Coarse grid −3.95× 10−5 0.0015 0.0057 0.0072

Figure 6.9. The close-up view of the pressure near the leading edge of the airfoil shows a very

strange variation in the Cp coefficient. This bump is present in the solution on the fine grid,

but with a much smaller amplitude. Although not shown here, the thicker NACA 64A007.5

section has the same problem, but to a smaller degree. The grids generated with AFLR2

don’t exhibit that behavior. The current state of the art flow solver requires that careful

attention be paid to generating suitable grids, otherwise the solution process might diverge

or the solution might be inaccurate.

For viscous grids, it is very important that the viscous layers be generated perpendicularly

to the airfoil surface to ensure an accurate computation of the flow solution. Looking closely

at the grids in the vicinity of the leading edge in Figure 6.8, it appears that the grid lines

that are supposed to be normal to the airfoil surface deviate significantly from the normal

direction as we move closer to x/c = 0. This phenomenon is more obvious in the case
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Figure 6.9: Effect of the grid refinement at the leading edge of the NACA 64A005 airfoil,
M∞ = 0.85, α = 0o, Rec = 5.3× 106 (Navier-Stokes solution) (a) Pressure distribution
on the airfoil surface (b) Close-up view in the vicinity of the leading edge

of the coarse grid. VGRIDns computes the surface normals, smoothes them, before finally

generating the viscous layers. More points along the surface means more normals. More

normals improves the grid quality in regions where there is a sharp corner such as at the

trailing edge of an airfoil. It is also true here because the airfoil is thin and has a rather

sharp leading edge. More normals gives more flexibility to the grid generation code to handle

abrupt variations in the body surface. The normal grid lines are thus more perpendicular

to the body surface. As opposed to VGRIDns, the grid generation code AFLR2 adds more

normals to the existing ones when a sharp corner is detected.

An extension of the discussion presented above will now focus on the grid refinement at

the trailing edge of the airfoil. This time, the airfoil section considered is the NACA 64A007.5

section employed before. As shown in Figure 6.10, two viscous grids are obtained with

VGRIDns in the same fashion as for the previous case. The only difference between them is

the spacing s at the trailing edge: it is set to 0.001 for the finer grid and to 0.004 for the

coarser one. For the finer mesh, the airfoil surface is discretized with 135 points and the

total number of nodes in the field is 6,292. The coarser grid has 129 nodes on the surface

and 6,101 total nodes.

The flow solver FUN2D solves the Reynolds-averaged Navier-Stokes equations for the
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Figure 6.10: Grid refinement at the trailing edge (a) Fine grid (b) Coarse grid

Table 6.4: Lift and drag coefficients for various grid refinements at the trailing edge of the
NACA 64A007.5 airfoil, M∞ = 0.85, α = 0o, Rec = 5.3× 106

Case Cl Cdp Cdv Cdtot
Fine grid 4.17× 10−4 0.0059 0.0055 0.0114
Coarse grid 3.19× 10−4 0.0059 0.0055 0.0114

freestream conditions set as M∞ = 0.85, α = 0o, and Rec = 5.3 × 106. In Ta-

ble 6.4, the lift coefficient is very small and the drag coefficient for both analyses is identical.

However, there is a difference in the pressure distributions pictured in Figure 6.11. In the

region near the trailing edge, the pressure suddenly decreases. This is more dramatic in the

case of the coarser mesh. Again, looking at the viscous layers in Figure 6.10, we can see that

the normal grid lines are not perpendicular to the surface as we get closer to the trailing

edge. For the finer mesh, they are better than for the coarser mesh but not perfect. This

could explain the variation in the pressure in the vicinity of the airfoil trailing edge.

6.4 Impossibility to Close the Volume Grid

As mentioned in Section 3.1.2, it is sometimes impossible to complete the unstructured

volume grid because the corner sources have a grid spacing that is too coarse or they are too
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Figure 6.11: Effect of the grid refinement at the trailing edge of the NACA 64A007.5 airfoil,
M∞ = 0.85, α = 0o, Rec = 5.3× 106 (Navier-Stokes solution) (a) Pressure distribution
on the airfoil surface (b) Close-up view in the vicinity of the trailing edge

strong. In that case, the only way out is to go back to the GridTool files and specify new

grid parameters for the sources.

There are other instances where the problem is not due to those parameters. There can

be grid crossing in the mesh. In order to generate the unstructured volume grid, VGRIDns

takes the patches defined by the user and transforms them to a planar surface. The surface

triangulation is performed on the transformed patch. Once that step is done, the patches are

mapped back to their original shape. However, there is no guarantee that the triangulated

patch follows the original geometry perfectly. It is often necessary to project the triangulated

patches back onto the original geometry to ensure that all the triangles lie on the surface.

In some instances, such as for the case of a wing with a cusped and thin trailing edge,

that projection step is mandatory. Otherwise, there is a risk of seeing the upper and lower

triangulated surfaces cross. This is depicted in Figure 6.12. If there is such an overlap,

the volume grid generation will fail because VGRIDns will try to grow some cells inside the

geometry. The projection ensures the integrity of the mesh.

However, projecting the triangulated patches is sometimes not enough. Often, more

points need to be added to the curves bounding each patch. By adding more points, the

curves can’t deviate as much from the original geometry when they get splined by VGRIDns.
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Figure 6.12: Grid crossing problem (a) Triangulation of a wing planform (b) Comparison of
the original and the discretized geometries at the trailing edge

The trailing edge, especially in the vicinity of the wing tip, is a region where this approach

likely needs to be applied.

Another possible source of problem is the machine accuracy. When generating viscous

grids, the distance between the viscous layers is controlled by the following equation [101]:

δi = δ1
[
1 + r1(1 + r2)

i−1
]i−1

(6.7)

where δ1 is the grid spacing at the wall. Consider the configurations discussed in Chapter 5.

If the distance δ1 is a too small value such as 1× 10−6 chord instead of the value of 1× 10−5

chord utilized, VGRIDns can’t complete the mesh because it seems to run into limitations

with the accuracy of the computer. This is the main reason why δ1 = 1 × 10−5 chord was

employed instead of 1× 10−6 chord for the three-dimensional meshes.

Finally, another possibility related to the impossibility of closing the volume grid is the

memory allocated for the grid generation by VGRIDns. The bulk of memory is allocated

during run time based on the maximum number of nodes the user specifies. However, some

internal arrays used for the grid generation seem to have dimensions independent of the

number of nodes specified by the user. For large grids, this can cause the program to break

down. For some configurations such as for the strut at 30 or 60 degrees between parallel

walls, the volume grid generation was successful in less than 10% of the runs.
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Figure 6.13: A sliver next to a normal cell (a) Perspective view (b) View where the sliver
has negligible thickness

6.5 Slivers

As discussed in the previous sections, the level of grid refinement of the mesh in regions

of strong gradients has a significant impact on the accuracy of the results computed. But

another factor, the poor grid quality, can introduce inaccuracies in the solution and create

convergence problems for the flow solver employed.

The presence of “slivers” among the thousands of tetrahedral cells can in some instances

prevent the solution from reaching convergence. Slivers are degenerated flat cells that occur

in the field when grids are generated for viscous flow solutions in particular. A sliver is

compared to a normal cell in Figure 6.13. The thickness of the slivers is so small that the

gradients necessary to evaluate the viscous terms are computed erroneously in those cells.

This in turn corrupts the CFD solution and causes the flow solver to stop unexpectedly. The

employment of a limiter in the flow solver doesn’t prevent the problem from occurring.

As described at length in Section 3.2.5, the implicit Euler scheme implemented in the

flow solver can be written as: (
V

∆t
+
∂R

∂Q

n
)
∆Qn = −Rn (6.8)

where V is the volume of the cell,R is the residual,Q is the vector of conserved variables, and
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∂R
∂Q

n
is the Jacobian. The problem with slivers is that their large angles produce inaccuracies

in the evaluation of the gradients for the viscous terms. The gradients of the inviscid terms

are computed with a least-squares procedure, but for the viscous terms, Green’s theorem is

employed. Consider the utilization of Green’s theorem to compute the gradient of φ:

∇φ = 1

V

∑
S

φn̂∆S (6.9)

where V is the volume of the tetrahedral element, n̂ is the normal to the face, and ∆S is

the face area. For a sliver, the main problem is that the volume V of the element tends to a

very small quantity. In that case, ∇φ will become a very large number or be undetermined.

There are several ways to evaluate the quality of an unstructured grid. Marcum [99] used

a sliver quality measure Q1 given by:

Q1 = 6
√
2
V

L3
(6.10)

where L is the average edge length of the cell and V is the cell volume. Q1 is zero for a

completely flat cell. The skewness quality measure Q2 is defined as:

Q2 =
9
√
3

8

V

R3
(6.11)

where R is the radius of the circumsphere of the cell. The circumsphere is the sphere of

smallest radius in which the cell can be enclosed. In that case, all the vertices of the cell lie

on the surface of the circumsphere. Q2 is sensitive to skewed elements whereas Q1 is able to

detect sliver cells effectively.

Another way of detecting slivers consists in calculating the internal angles inside tetra-

hedral elements [108]. Consider the tetrahedron depicted in Figure 6.14 with the normals

associated with each face of the cell. For a sliver such as the one shown in Figure 6.13, at

least one pair of normals will have their direction almost coincide with each other. The dot

product of those vectors will be very close to one. We can use the dot product to calculate

the interior angle γ made by two faces of the cell in the following way:

γ = 180o − cos−1(n̂i · n̂j) (6.12)

where γ is in degrees.

Consider the case of a strut with a thickness-to-chord ratio t/c = 7.5% at an angle

of 60o with respect to two parallel walls. The results for that configuration were presented



Chapter 6. Challenges in Computational Fluid Dynamics 124

1

2

3

4

n3

n2

n1

n4

^

^

^

^

Figure 6.14: Tetrahedral cell and the normal associated with each face

in Chapter 5. An inviscid grid with 1, 980, 185 cells (351, 674 nodes) and a viscous grid

containing 5, 965, 997 cells (1, 015, 709 nodes) were generated for that configuration. For

the viscous grid, the side walls and the strut were considered as viscous surfaces where the

no-slip condition was applied.

For each grid, the maximum interior angle within each cell of the mesh was computed.

All the cells with one interior angle greater or equal to 178 degrees were flagged. The location

of the flagged cells is shown in Figure 6.15. The inviscid grid contains only 143 slivers. They

are located near the leading edge of the strut. Those cells never caused any problem to the

CFD code because the grid was not employed to compute viscous flows. The viscous grid has

a total of 5, 678 slivers located primarily near the trailing edge of the strut. Although few

slivers are near the wall-strut junction, monitoring the convergence of the flow solution [108]

reveals that they are responsible for the breakdown of the flow solver.

We can look at the distribution of the tetrahedral cells according to the sliver quality

measure Q1, the skewness quality measure Q2, and the maximum angle within each cell. The

results are shown in Figure 6.16 for the inviscid grid described above and in Figure 6.17 for

the viscous grid. To explain the meaning of these charts, we will consider the inviscid grid

first. The bar charts for Q1 and Q2 indicate the fraction of cells with a given value of the

grid quality measure in 0.05 increments. For example, the bar chart for Q1 highlights the
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Figure 6.15: Location of the slivers in the grid for a strut inclined 60o with respect to two
flat walls (a) Inviscid grid (143 slivers): entire computational domain and close-up view of
the strut (b) Viscous grid (5, 678 slivers): entire computational domain and close-up view of
the strut
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Figure 6.16: Distribution and cumulative distribution of the grid quality criteria for the
inviscid grid (a) Sliver quality measure Q1 (b) Skewness quality measure Q2 (c) Maximum
angle

fact that nearly 10% of the cells have a value of Q1 between 0.75 and 0.80. The solid curve

is the cumulative distribution of the cells. That curve reveals that a little more than 46%

of the cells have a value of Q1 between 0 and 0.75. The plot for the maximum angle within

each cell works in the same fashion except that the distribution of the maximum angle is

provided in 10-degree increments.

From the plots for Q1 and the maximum angle presented in Figure 6.16, we can conclude

that there are few potential slivers in the inviscid grid. Nearly 4% of the cells have a value

of Q1 between 0 and 0.05. But, this number becomes very small when we look at the

interior angle: less than 0.4% of the cells have a maximum interior angle between 170 and

180 degrees. The majority of cells have values of Q1 of at least 0.5 and an interior angle

between 80 and 130 degrees. If we look at the skewness measure Q2, the chart shows that

almost 12% of the cells are very skewed with 0 < Q2 < 0.05. This is due to the stretching

we employ along the strut spanwise direction.

If we now consider the plot for the viscous grid statistics in Figure 6.17, there is a dramatic

difference with the charts for the inviscid grid: a proportion of cells equivalent to 57% of the

cells have a value of the skewness factor Q2 between 0 and 0.05. This should not come as

a surprise since the cells generated within the viscous layers are highly stretched. And we

employ stretching along the strut span as well. For the sliver quality measure, 48% of the

total number of cells could be considered as slivers with 0 < Q1 < 0.05. However, the bar

chart for the maximum interior angle reveals that less than 2% of the cells have very large
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Figure 6.17: Distribution and cumulative distribution of the grid quality criteria for the
viscous grid (a) Sliver quality measure Q1 (b) Skewness quality measure Q2 (c) Maximum
angle

interior angles between 170 and 180 degrees. A large number of cells have angles around 90

degrees. This can be explained by the fact that the viscous layers are generated as close as

possible to a direction perpendicular to the body surface.

One question that arises from this discussion is whether or not it is possible to do some-

thing about the slivers. Several options are available. One of them consists in removing

those cells from the mesh and inserting new points in the field. This avenue is not successful

with VGRIDns. The grid generation scheme is designed in such a way that even if the slivers

are removed, new ones are introduced when the grid is remeshed. In many instances, more

bad cells are created than there were in the original grid prior to remeshing. Another alter-

native consists in combining those slivers with the neighboring cells [108]. Prismatic cells are

created that way. One drawback of that approach is that the flow solver has to be modified

in order to accomodate for prisms in addition to the tetrahedra in the flowfield.

The method employed in this work is due to Anderson [108]. In calculating the residual

and the Jacobian, the contributions of the viscous terms were neglected for the cells that

have a maximum interior angle greater or equal to 178 degrees. This results in a numerical

scheme that is not corrupted by the slivers and converges steadily without any problem.

Since there are few slivers compared to the total number of cells in the mesh, the CFD

solution is not really affected. The aerodynamic coefficients and the pressure distributions

are consistent with the results obtained with the original flow solver.

In this section, the advancing-layers/advancing-front methodology implemented in the
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code VGRIDnswas shown to be prone to the formation of slivers in the field. This problem oc-

curs also for the Delaunay triangulation [121] and for the advancing-front/local-reconnection

method [99, 122] for three-dimensional applications.

The Delaunay triangulation has to be constrained in order to preserve the surface integrity

of the body [121]. Otherwise, grid points will be inserted inside the geometry and the surface

triangulation will not correspond to the original geometry. The constraint imposed on the

Delaunay triangulation leads to the creation of numerous slivers in the field. If the formation

of slivers is prevented during the grid generation process, Baker [121] notes that the overall

grid quality of the final mesh is usually worse. The best approach is to post-process the mesh

in two steps. The first step consists in identifying the slivers and applying an edge-swapping

technique to remove as many slivers as possible. Swapping the edges of the tetrahedral

elements changes the connectivity between the existing nodes. When applied in the vicinity

of a sliver, this method often gets rid of it. However, to remove the remaining slivers, a

second step is required in which the grid is smoothed. The grid points that are not on the

boundaries are moved in order to achieve a better grid quality. The two steps presented

above can be combined in an iterative process as well.

For three-dimensional grids obtained with the advancing-front/advancing-layers approach,

Marcum [99, 122] reports the formation of sliver elements in regions where high-aspect-ratio

tetrahedra are present. This is true for viscous regions where highly stretched cells are em-

ployed. To solve the problem [122], new points are inserted in the field and connected to

the existing nodes. The high-aspect ratio elements are then combined to form 6-node hex-

ahedrons in viscous regions or 5-node pentahedrons where the viscous and inviscid regions

meet. As mentioned before, this approach has the disadvantage of requiring the flow solver

to handle those new elements in addition to the regular tetrahedral cells.
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Conclusion

In the context of the development of a transonic strut-braced wing aircraft, the minimization

of the interference drag is a key to the success of the concept. It is also a topic of primary

importance in the design of wing-pylon and wing-fuselage combinations. This dissertation

presents the application of CFD tools to the study of some of the parameters influencing the

interference drag in the transonic speed range.

The inviscid analysis of a strut-braced wing airplane with the flow solver USM3D high-

lighted some important trends about the design of the strut. The MDO tools provided the

planform of the airplane, but not the airfoil sections nor the twist distribution to be used

for the wing and the strut. Hence, the airfoils were chosen and the wing was designed with

a twist distribution which minimizes the induced drag. After validating the flow solver with

the ONERA M6 wing test case, USM3D was applied to the clean wing of the strut-braced wing

design. The lift distribution on the wing was close to elliptic. The pressure distributions

at several span stations showed regions of constant pressure on most of the chord and the

presence of a shock at the trailing edge.

The addition of the strut to the clean wing allowed an evaluation of the benefits of

employing an arch-shaped strut as opposed to a straight strut. The arch-shaped strut has

the advantage of increasing the distance between the wing and the strut, thus alleviating the

channel effect that occurs near the junction of the wing with the strut. Also, it allows the

strut to intersect the wing perpendicularly, hence minimizing the strong interference effects

of small junction angles. The analysis of configurations with varying arch radius showed a

significant drag reduction when the arch radius is increased. When the drag of the clean wing

129
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is subtracted from the total drag of the wing-strut combination, the resulting interference

drag decreases significantly with an increase of the radius. An equation was fitted to the

interference drag results for use in MDO studies. However, the expression developed for

the interference drag doesn’t take into account the effect of the thickness of the strut, the

Reynolds number of the flow, or the intersection angle between the wing and the strut.

In order to evaluate the effect of these variables on the interference drag, the more

general case of a strut at an angle between parallel walls was analyzed with both Euler

and Navier-Stokes formulations. The approach was validated successfully with experimental

data for the case of a wing perpendicular to the walls of a wind tunnel. Calculations were

performed for symmetrical struts of the NACA 64A- family at Mach 0.85 for combinations

of strut thicknesses (t/c = 5% and 7.5%), cruise Reynolds numbers (Rec = 5.3× 106 and

10.6× 106), and strut-wall angles (φ = 30o, 60o, and 90o). Observations made based on the

pressure distributions at several cross sections along the strut span and streamline patterns

some distance away from the side wall surface showed the strong disturbance produced by

the presence of the wall on the flowfield, causing in some instance the flow to separate. The

viscous forces tended to alleviate the strength of the shock induced near the junction of the

strut with the wall compared to predictions based on the inviscid, Euler equations. For the

thicker strut perpendicular to the wall, the presence of the neighboring viscous side walls

created favorable interference. The disruption of the flowfield due to the influence of the

side wall was stronger for the thicker strut section than for the thinner one. The strut-wall

angle exhibited a strong correlation with the drag penalty as well. The effect of inclining the

strut towards the wall increased the drag by a large factor compared to the case where the

strut is perpendicular to the wall. A response surface for the interference drag coefficient

was developed to take into account all these effects and help in the design of junctions.

Some of the challenges and weaknesses of flow solutions on unstructured grids for prob-

lems of this type were presented. To prevent the formation of very skewed cells and voids

at the wing trailing edge, alternatives were presented to close the trailing edge of airfoil

sections. The results obtained with the midpoint method, the linear displacement of the

upper and lower airfoil surfaces and the extrapolation of the surfaces at the trailing edge

compared well with the ones computed for the original airfoil shape. Issues related to grid

convergence highlighted the difficulty of obtaining finer grids from a baseline grid in a con-

sistent fashion. The small spacing at the airfoil leading edge had a significant impact on the

computed drag coefficient. A fine mesh near the trailing edge prevented the appearance of a
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peculiar variation in the pressure distribution in that region. The difficulties in obtaining a

complete three-dimensional unstructured grid were explained with emphasis on surface grid

crossing, memory problems, and machine precision. The presence of slivers in tetrahedral

grids was shown to have a huge impact on the convergence of the flow solution. A method

to circumvent the problem was described, in which the erroneous contributions of the slivers

were not taken into account by the flow solver.

Future Work

There are some interesting possibilities for future work in the area presented in this disser-

tation:

• For the strut-wall configurations presented in Chapter 5, the effect of the angle of at-

tack and the sweep angle on the value of the interference drag could be investigated.

On the strut-braced wing airplane, the strut is designed to carry negligible aerody-

namic load along its span, but maneuvers and wind gusts can cause the flow to have

an incidence angle on the strut. The consideration of that parameter would provide a

better understanding of how dramatic its influence can be on the flow near the junc-

tion and on the interference drag penalty in particular. The sweep of the strut was

determined to have an important effect in subsonic flow by Hoerner [24]. In transonic

flow, it would provide some relief for the strut in a fashion similar to employing a swept

wing on a transonic transport aircraft.

• The range of applicability of the response surface developed for the interference drag

of strut-wall arrangements could be broadened by the analysis of thicker strut sections

and for a wider range of Reynolds numbers than the one considered for the application

to the strut-braced wing transonic transport in Chapter 5.

• The strut-braced wing design in Chapter 4 was analyzed by solving the Euler equations.

However, in light of the Navier-Stokes results obtained for a series of strut-wall com-

binations, it appears that the viscosity has a positive effect on the pressure drag and

the strength of the shocks near the junction. The application of a Reynolds-averaged

Navier-Stokes flow solver to the analysis of a complete strut-braced wing design would

show the impact on the interference drag and on the flow near the junction.
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• The area ruling of the wing-strut combination would surely show a reduction in the

pressure drag of the strut-braced wing. Also, in the vicinity of the junction, the

application of shape optimization subject to the aircraft manufacturer’s constraints

would be beneficial to alleviate some of the strong interference effects between the

wing and the strut.

• The aerodynamic performance of the airplane could potentially be improved with the

use of tip-mounted engines because the wing tip vortex is swallowed inside the engine.

The flow solver USM3D has the capability of modeling aircraft engines. A study of the

strut-braced wing including the propulsive effects could be valuable in assessing the

real impact of having the engines located at the wing tip.

The evaluation of all these effects takes time and money. However, the best way to do

that at once is to actually build such a strut-braced wing airplane and fly it. Possibilities

loom in the near future and it is hoped that they will materialize. To revolutionize the field

of aeronautics, the strut-braced wing aircraft is the perfect pioneer.
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