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Abstract

A grid generation and 
ow solution algorithm for the Euler equations

on unstructured grids is presented. The grid generation scheme, which

utilizes Delaunay triangulation, generates the �eld points for the mesh

based on cell aspect ratios and allows clustering of grid points near solid

surfaces. The 
ow solution method is an implicit algorithm in which the

linear set of equations arising at each time step is solved using a Gauss-

Seidel procedure that is completely vectorizable. In addition, a study

is conducted to examine the number of subiterations required for good

convergence of the overall algorithm. Grid generation results are shown

in two dimensions for an NACA 0012 airfoil as well as a two-element

con�guration. Flow solution results are shown for a two-dimensional


ow over the NACA 0012 airfoil and for a two-element con�guration

in which the solution has been obtained through an adaptation procedure

and compared with an exact solution. Preliminary three-dimensional

results also are shown in which the subsonic 
ow over a business jet is

computed.

Introduction

The use of unstructured grids for a solution of the
Euler equations o�ers several advantages over the use
of structured grids. These advantages include the
ease with which adaptive methodology can be incor-
porated into the 
ow solvers and the relatively short
time to generate grids about complex con�gurations.
Although the overall time to generate grids about
complex con�gurations is much shorter for unstruc-
tured grids compared with that of block-structured
grids, the computer time required for the unstruc-
tured 
ow solvers historically has been much longer
than that of structured grids. Although unstruc-
tured 
ow solvers will continue to require longer com-
puter times than those of structured grids because
of indirect addressing, recent advances (refs. 1 and
2) make three-dimensional computations on unstruc-
tured grids more competitive with those of structured
grids.

As mentioned, the success of unstructured grids
mainly is due to the relative ease at which grids
can be obtained over complex con�gurations. Two
dominant methods of generating unstructured grids
currently exist. The �rst of these techniques is the
advancing-front method in which the cells that make
up the interior of the mesh are computed by marching
away from the domain boundaries (refs. 3 and 4).
This method has been used with success to generate
grids about many complex con�gurations (ref. 5).
Further details of this technique can be found in
references 3 to 6 and the references contained therein.

The other method commonly used for genera-
tion of unstructured grids is Delaunay triangulation

(refs. 7 and 8), which is emphasized in the current
study. This approach triangulates a given set of
points in a unique way so that the minimum angle
of each triangle in the mesh is maximized. The ad-
vantage of this technique is that the resulting meshes
are optimal for the given point distribution because
they do not usually contain many extremely skewed
cells.

The �eld points for generating grids using the
Delaunay triangulation approach usually are speci-
�ed a priori by generating points about individual
components with structured grids (ref. 9), by sub-
dividing existing quadrilateral cells using a quadtree
encoding method (ref. 6), or by embedding the ge-
ometry into a Cartesian grid (ref. 10). A novel ap-
proach to the generation of �eld points is given by
Holmes and Snyder (ref. 11); in this approach, the
�eld points are generated as the triangulation pro-
ceeds based on the aspect ratio and cell area of cur-
rent triangles. This technique generates grids that
are not highly skewed because new points are intro-
duced to continually reduce the cell aspect ratios.
Unfortunately, grids generated in this manner gener-
ally are too coarse to be used for obtaining accurate

ow-�eld solutions without adaptation.

In the present study, an approach similar to that
of Holmes and Snyder is used, and an extension is
incorporated which automatically adds new nodes
to cluster points in the regions of interest. Using
the new generator, grids that are suitable for com-
putations are e�ciently generated around complex,
multibody con�gurations.
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Many advances also have been made in 
ow
solvers for obtaining 
ow-�eld solutions on unstruc-
tured grids. Impressive results, in which solutions are
found for a wing con�guration using a node-based,
central-di�erencing scheme with multigrid to achieve
rapid convergence, have been obtained by Mavriplis
(ref. 2). In this reference, solutions on a three-
dimensional grid consisting of more than 2 million
cells are obtained in approximately 1 hour.

For upwind solvers, Frink et al. (ref. 1) have gen-
erated results for many steady-state applications us-
ing a cell-centered, multistage time-stepping scheme
and Roe's approximate Riemann solver (ref. 12). For
unsteady applications, Batina (ref. 13) has developed
both explicit and implicit algorithms for obtaining
aeroelastic applications, and Rausch et al. (ref. 14)
have coupled some of these methods with adaptive
mesh re�nement.

In this study, an implicit algorithm for solving the
Euler equations is described. This method, along
with the work in references 13 and 15, is based on
the backward-Euler time-di�erencing scheme, but it
is formulated in a manner that permits full vectoriza-
tion. In addition, the number of subiterations nec-
essary to su�ciently solve the linear problem and to
obtain the best convergence rate is examined. Re-
sults are shown for both two- and three-dimensional
calculations.

The author acknowledges Daryl Bonhaus for
generating the grid around the business jet.

Symbols

A matrix

A area of cell

a speed of sound

body conditions on body

CFL Courant-Friedrichs-Lewy number

Cp pressure coe�cient

c chord length

D diagonal components of A

d distance to nearest surface node

E total energy per unit volume

F 
uxes of mass, momentum, and
energy

bF 
uxes normal to cell face

bF� split 
uxes

f function used for clustering grid
points

I identity matrix

li length of cell face i

M components of A below diagonal

Mn Mach number normal to cell face

M1 free-stream Mach number

N components of A above diagonal

N total number of cells

n̂ unit normal

n number of edges meeting at node

n̂x; n̂y x and y components of unit normal

O all o�-diagonal components of A

p pressure

Q conserved state vector,

Q = [� �u �v E]T

q primitive state vector,

q = [� u v p]T

R residual for cell

R� Riemann invariants

r vector from center of cell to center
of edge

ref reference condition

S entropy

t time

U velocity normal to cell face

u; v Cartesian velocities in x and y
directions

x; y Cartesian coordinates

� angle of attack

� parameter used for grid clustering


 ratio of speci�c heats, taken as 1.4

� percent of spanwise location on
wing

� density

� standard deviation of �

� function used for grid clustering

�� average value of �


 boundary of cell

! relaxation factor
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Two-Dimensional Grid Generation

Delaunay Triangulation

The foundation of the proposed grid generation
procedure is the Delaunay triangulation method de-
scribed in detail in reference 7. In this technique, a
set of points is triangulated by inserting each point,
one at a time, into a current triangulation so that
no vertex from one triangle lies within the circumcir-
cle of any other triangle. The procedure is initiated
by �rst identifying all the cells that have a circum-
circle enclosing the point to be inserted. An exam-
ple is shown in �gure 1; in this �gure, the point to
be inserted lies within the circumcircle of two trian-
gles. The Delaunay cavity, shown in �gure 2, then
is formed from the union of all the triangles identi-
�ed previously. At this stage, a new triangulation
is made by simply connecting the new point to each
of the nodes lying on the boundary of the Delaunay
cavity, as depicted in �gure 3.

Figure 1. Identifying cells broken by introducing new point.

To generate grids about arbitrary two-
dimensional con�gurations, an initial triangulation
consisting of a square divided into two triangles is
formed �rst. This square has four corner points lo-
cated a su�cient distance from all solid surfaces. The
points that de�ne the solid surfaces then are inserted
using Bowyer's algorithm (ref. 7), followed by a pre-
determined number of far-�eld points that are lo-
cated in a circular pattern which is a speci�ed radius
from the center of the bodies. The cells that make up
the interior of the body then are identi�ed according

Figure 2. Delaunay cavity.

Figure 3. Reconnection of grid after inserting new point.

to whether the center of each cell is located inside or
outside one of the bodies.

After this initial phase of the process, a loop is
conducted over all the cells, and a new point is imme-
diately introduced at the center of the circumcircle of
any triangle that has an aspect ratio (de�ned as the
ratio of the circumcircle radius to twice the in-circle
radius) exceeding a predetermined tolerance of ap-
proximately 1.5. The surface integrity is maintained
by rejecting any point that would result in breaking
the cells that make up the airfoil interior (ref. 8).
Note that when a cell aspect ratio is larger than the
tolerance, the new point is immediately added into
the existing triangulation. This addition prevents
duplicate points from being added when two triangles
have points that de�ne the same circumcircle.
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Immediately adding points in this manner elim-
inates the searching that is otherwise necessary to
identify the �rst triangle, which is broken by the ad-
dition of the current point. The elimination is possi-
ble because the cell that has an aspect ratio greater
than the tolerance will also correspond to one of the
triangles which forms the Delaunay cavity. Because
no searching is required, the computer time necessary
to generate the �eld points in this manner is small.
This addition of new points is similar to that of the
method used in reference 11 in which new points are
introduced based on both the cell area and the aspect
ratio.

An example of this process is shown in �gures 4
through 9 for a sample grid around an NACA 0012
airfoil. The airfoil surface is de�ned with 200 points
along the surface and 32 points placed around the
outer boundary. Note that the outer boundary is
placed close to the airfoil for illustrative purposes,
thus allowing the entire grid to be seen. Figure 4
shows the initial triangulation in which only the
surface points and the outer boundary points have
been included; this triangulation has cells with aspect
ratios as high as 160.

Figure 4. Initial sample grid around NACA 0012.

New points now are introduced at the center of
the circumcircle of any cell that has an aspect ratio
exceeding 1.5. Figures 5 to 8 show a few of the
intermediate triangulations after inserting the �rst,
second, third, and fourth points, respectively.

Figure 5. Sample grid around NACA 0012 after inserting one
point.

Figure 6. Sample grid around NACA 0012 after inserting two

points.

The �nal grid obtained by adding �eld points in
this manner is shown in �gure 9. This grid, which
consists of 1328 nodes, 3748 faces, and 2420 cells,
has a maximum aspect ratio of 1.495. Although all
the resulting cells are nearly equilateral, the grids
generated with this technique are coarse a short
distance from the airfoil and are not su�cient for
accurate computations. Therefore, increasing the
grid density in the vicinity of the airfoil is necessary.
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Figure 7. Sample grid around NACA 0012 after inserting

three points.

Figure 8. Sample grid around NACA 0012 after inserting four

points.

Extensions for Clustering Mesh Points

To add new points in the vicinity of the airfoil,
a value is �rst assigned to each existing cell; this
value is the product of the cell area and a weighting
function that decreases as the distance from the cell
center to a solid surface increases:

�(A; d) = A� f(d) (1)

In this equation, d is the distance from the cell center
to the nearest node that lies on a solid boundary.

Figure 9. Final sample grid around NACA 0012 with all
aspect ratios <1.5.

This variable will be used to add subsequent points
in cells in which the deviation of � from the average is
larger than the standard deviation. For this reason,
the average and standard deviations of this variable
are �rst computed:

�� =
1

N

NX
i=1

�i (2)

� =

vuuut NP
i=1

(��� �i)
2

N
(3)

A list of new points that will be inserted into the ex-
isting grid then is constructed from the cell centers
of all triangles in which the local value of �(A; d)
exceeds that of the average plus the standard devi-
ation, i.e., whenever �i � �� + �. This list of new
points then is introduced as before, using Bowyer's
algorithm. By adding new points in this manner, the
function � tends to be evenly distributed over the
grid, and new points are added �rst at larger cells
near the body. Few, if any, new points are introduced
far from the solid surfaces.

The weighting function used in the current study
is given by

f(d) =
1

1 + e�(d�d0)
(4)

In this equation, d0 is a distance that is measured
from the airfoil surface; clustering will occur
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predominantly in regions where the distance to the
airfoil surface is less than d0. A plot of this func-
tion is shown in �gure 10 for several values of �
and d0 = 0:5. As seen, the transition of this func-
tion at d = 0:5 steepens as � increases, and the value
decreases as the distance from the airfoil increases.
Thus, the transition between clustered and nonclus-
tered regions can be made smoothly, and the dis-
tance away from the airfoil in which clustering occurs
is also controlled. Note that because this procedure
only adds one point at the center of each triangle, the
amount of clustering for the �nal grid (i.e., how many
new points are introduced) is increased by repeat-
ing this procedure several times. In practice, three
or four repetitions in which � is gradually increased
lead to grids with good clustering near the surface
of the airfoils, and a reasonably smooth transition
region between the clustered and nonclustered areas
is obtained. Further enhancements to this procedure
may be achieved by varying the weighting function.

1.6

1.2

.8

.4

0 .4 .8 1.2 1.6
d

f

β = 5
β = 10
β = 20

Figure 10. Weighting function for several values of � and

d0 = 0:5.

The �nal step is to smooth the grid with a simple
Laplacian-type procedure as given in reference 16.
This process is achieved by repositioning the mesh
points according to

xn+1i = xni +
!
n

nP
k=1

(xk � xi)

yn+1i = yni +
!
n

nP
k=1

(yk � yi)

9>>>=
>>>;

(5)

where ! is a relaxation factor and the sum is obtained
over all edges meeting at node i. For the current

study, a relaxation factor of 0.2 is typically used, and
100 to 200 iterations of smoothing are performed.

The �nal sample grid for the NACA 0012 airfoil
is shown in �gure 11. This grid, which demonstrates
the success of the clustering procedure, is a clear
improvement to the grid previously shown in �gure 9.

Figure 11. Final sample grid around NACA 0012.

Although the techniques just outlined currently
have not been implemented in three dimensions, no
readily apparent implementation obstacle exists.

Euler Solver

The Euler 
ow solver is an implicit, cell-centered,
upwind-di�erencing code in which the 
uxes on the
cell faces are obtained using the Van Leer 
ux-
vector splitting technique (ref. 17). The solution
at each time step is updated using an implicit algo-
rithm that uses the linearized, backward-Euler, time-
di�erencing scheme. At each time step, the linear
system of equations is solved with a subiterative pro-
cedure in which the mesh cells are divided into groups
(or colors) so that no two cells in a given group share
a common edge. For each subiteration, the solution
is obtained by solving all the unknowns in a given
color before proceeding to the next color. Because
the solution of the unknowns in each group depends
on those from previous groups, a Gauss-Seidel-type
procedure that is completely vectorizable is obtained.

Governing Equations

The governing equations are the time-dependent
Euler equations, which express the conservation of
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mass, momentum, and energy for an inviscid gas.
The equations are given by

@Q

@t
+

1

A

I



!

F � n̂ d
 = 0 (6)

where the state vector Q and the 
ux vectors
!

F � n̂
are given as

Q =

2
64
�
�u
�v
E

3
75 (7)

!

F � n̂ = bF =

2
64

�U
�Uu+ n̂xp
�Uv + n̂yp
(E + p)U

3
75 (8)

and U is the velocity in the direction of the outward
pointing unit normal to a cell face

U = n̂xu+ n̂yv (9)

The equations are closed with the equation of state
for a perfect gas

p = (
 � 1)
h
E � �

�
u2 + v2

�
=2
i

(10)

Flux-Vector and Residual Calculation

For the computations shown in this report, the

ux vectors in equation (8) are upwind di�erenced
using the 
ux-vector splitting technique of Van Leer
(ref. 17). These 
ux vectors are given in terms of
the Mach number normal to the cell face, de�ned as
Mn = U=a. For supersonic 
ow in the direction of a
face normal (Mn � 1)

bF+ =

�
!

F � n̂

�+
= F bF� =

�
!

F � n̂

�
�

= 0 (11)

whereas for supersonic 
ow in the opposite direction
of the face normal (Mn � �1)

bF� =

�
!

F � n̂

�
�

= F bF+ =

�
!

F � n̂

�+
= 0 (12)

For subsonic 
ow (jMnj < 1), the 
uxes are split

into two contributions, bF+ and bF�, such that the

Jacobian matrix of bF+ has positive eigenvalues and

the Jacobian matrix of bF� has negative eigenvalues.
The split 
uxes are given by

bF� =

�
!

F � n̂

�
�

=

8>>>><
>>>>:

f�mass

f�mass f[n̂x (�U � 2a)=
] + ug

f�mass

��
n̂y (�U � 2a)=


�
+ v
	

f�energy

9>>>>=
>>>>;

(13)

where

f�mass = ��a (Mn � 1)2 =4 (14)

and

f�energy = f�mass

�
(1� 
)U2 � 2 (
 � 1)Ua + 2a2


2 � 1
+

u2 + v2

2

�
(15)

The steady-state residual, given by

R = �

I



!

F � n̂ d
 (16)

is calculated using a trapezoidal integration by sum-
ming the 
uxes over each of the faces that make up
the control volume. For example, the residual in a
triangular cell is calculated as

R = �

I



!

F � n̂ d
 = �

i=3X
i=1

�bF+ �Q�
i

�
+ bF� �Q+

i

��
li (17)

Here bF�(Q�) represents the split 
uxes on the cell
faces formed from an upwind interpolation of the
data to each face. For �rst-order accurate di�erenc-
ing, the data on the face are obtained from the data
in the cells that lie on each side of the cell face. For
higher order di�erencing, the primitive variables are
extrapolated to the cell faces using a Taylor series ex-
pansion about the center of the cell so that the data
on the face are given by

qface = qcenter+5q � r (18)

where r is the vector extending from the center of
the cell to the center of the cell face.

For evaluating the gradient 5q, the data �rst
are interpolated to the nodes using inverse distance
weighting, and the gradient then is evaluated using
Green's theorem. This interpolation method is fur-
ther discussed in reference 18. Note that obtaining
the data at the nodes also has been accomplished
using a linear least-squares �t of the data in the sur-
rounding cells with no apparent di�erences observed
in the solutions obtained with either method.
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Boundary Conditions

The boundary conditions on the body are set ac-
cording to characteristic-type boundary conditions
similar to those in reference 19. The density, pres-
sure, and velocity components on the body are
determined according to

pbody = pref + �refaref
�
n̂xu+ n̂yv

�
(19)

�body = �ref +
�
pbody� pref

�
=a2ref (20)

ubody = uref � n̂x
�
n̂xu+ n̂yv

�
ref (21)

vbody = vref � n̂y
�
n̂xu+ n̂yv

�
ref

(22)

from which the energy is set using the equation of
state given in equation (10). The reference conditions
for equations (19) through (22) are taken from the
�rst cell in the grid interior.

Because an implicit scheme is used in this study,
implicit boundary conditions are implemented by
assuming that

��body = ��ref (23)

�(�u)body = �(�u)ref � n̂x
�
n̂x�(�u) + n̂y�(�v)

�
ref

(24)

�(�v)body = �(�v)ref � n̂y
�
n̂x�(�u) + n̂y�(�v)

�
ref

(25)

�Ebody = �Eref (26)

In this manner, the matrix entries that correspond
to cells lying adjacent to a solid surface can be easily
modi�ed to include the boundary in
uence.

For the far �eld, explicit boundary conditions are
used in which the velocity and speed of sound are
obtained from two locally one-dimensional Riemann
invariants given by

R� = U �
2a


 � 1
(27)

These invariants are considered constant along char-
acteristics that are de�ned normal to the outer
boundary. For subsonic conditions at the bound-
ary, R� can be evaluated locally from free-stream
conditions outside the computational domain, and
R+ is evaluated locally from the interior of the do-
main. The local normal velocity and speed of sound
on the boundary are calculated using the Riemann
invariants as

Uboundary =
1

2

�
R+ +R�

�
(28)

aboundary =

 � 1

4

�
R+ � R�

�
(29)

The Cartesian velocities are determined on the
outer boundary by decomposing the normal and
tangential velocity vectors into components that
yield

uboundary = uref + n̂x
�
Uboundary� Uref

�
vboundary = vref + n̂y

�
Uboundary� Uref

�
)

(30)

where the subscript ref represents values obtained
from one point outside the domain for in
ow and
from one point inside the domain for out
ow.

The entropy is determined by using the value
from either outside or inside the domain, depending
on whether the boundary is an in
ow or out
ow
boundary. Once the entropy is known, the density on
the far-�eld boundary is calculated from the entropy
and speed of sound as

�boundary =

 
a2boundary


Sboundary

! 1

�1

(31)

The energy then is calculated from the equation of
state.

Time Advancement Schemes

Implicit algorithms. The starting point for
the time advancement algorithm is the linearized,
backward-Euler, time-di�erencing scheme that yields
a system of linear equations for the solution at each
step given by

[A]n f�Qgn = fRgn (32)

where

[A]n =
A

�t
I+

@Rn

@Q
(33)

The solution of equation (32) can, in principle, be
obtained by a direct inversion of [A]n; this solution
has the advantage of a resulting scheme that becomes
a Newton iteration in the limit as the time step
approaches in�nity if the exact linearization of Rn

is used in forming [A]n. Although this technique
is quite successful in two dimensions (ref. 20), the
solution at each time step requires a great deal of
memory to store the components of [A]n as well
as extensive computer time to perform the matrix
inversions. This approach, therefore, is currently
not very feasible for practical calculations in three
dimensions.

Because the number of operations required to
invert a matrix depends on the matrix bandwidth,

8



�rst-order accurate approximations on the left-hand
side of equation (32) are often utilized to reduce
both required storage and computer time. With this
simpli�cation, the consistency between the left- and
right-hand sides of equation (32) requires that �rst-
order approximations also be used on the right-hand
side to achieve quadratic convergence. However, with
�rst-order approximations on the left-hand (implicit)
side and second-order approximations on the right-
hand side, this scheme remains stable for large time
steps. First-order di�erencing of the left-hand side
with higher order di�erencing on the right-hand side,
therefore, is considered in the present study.

A sample con�guration of triangles in which the
cells are randomly ordered is shown in �gure 12. The
corresponding form of the matrix [A]n is shown in
�gure 13; in this �gure a circle represents the nonzero
entries.

9
2

5
11

4

12

8

1

3

7

10

6

Figure 12. Sample cell con�guration.

Figure 13. Form of matrix for cells in �gure 12.

Although the solution of the system of equations
may be obtained through a direct inversion of [A]n,
as previously mentioned, the need for large memory
can be circumvented through the use of a variety of
relaxation schemes. In these schemes, the solution
of equation (32) is obtained through a sequence
of iterations in which an approximation of �Q is
continually re�ned.

To facilitate the derivation of these schemes, [A]n

is �rst written as a linear combination of three

matrices representing the diagonal, subdiagonal, and
superdiagonal terms, that is

[A]n = [D]n + [M]n + [N]n (34)

The simplest iterative scheme for obtaining a solu-
tion to the linear system of equations is a Jacobi-
type method in which all the o�-diagonal terms of
[A]nf�Qg (i.e., [M]nf�Qg+ [N]nf�Qg) are taken
to the right-hand side of equation (32) and are eval-

uated using the values of f�Qgi from the previous
subiteration level i. This scheme can be represented
as

[D]n f�Qgi+1 =
h
fRgn � [M+N]n f�Qgi

i

=
h
fRgn � [O]n f�Qgi

i
(35)

The disadvantage of this scheme is that the se-
quence of Jacobi iterations may converge slowly. To
accelerate the convergence, a Gauss-Seidel procedure
may be employed in which values of f�Qg are used
on the right-hand side of equation (35) as soon as
they are available. An example of this scheme can
be written as

[D] f�Qgi+1 =
�
fRgn � [M]n f�Qgi+1 � [N]n f�Qgi

�
(36)

where the latest values of f�Qg from the subdiag-
onal terms are immediately used on the right-hand
side of the iteration equation. A slight modi�cation
to this algorithm in which the latest values of f�Qg
from the superdiagonal terms are used results in a
similar scheme that is given by

[D] f�Qgi+1 =
�
fRgn � [M]n f�Qgi � [N]n f�Qgi+1

�
(37)

Another variation of this algorithm can be obtained
by alternating the use of equation (36) with equa-
tion (37) so that a symmetric Gauss-Seidel-type
procedure is obtained.

Note that the algorithms given by equations (36)
and (37) can both be implemented by sweeping se-
quentially through each mesh cell and simply using
the latest values of f�Qg for all the o�-diagonal
terms that have been taken to the right-hand side.
This procedure can be represented as

[D] f�Qgi+1 =

"
fRgn � [O]n f�Qg

i+1
i

#
(38)

where Q
i+1
i is the most recent value of Q; this term

will be at the subiteration level i+ 1 for the cells that
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have been previously updated and at the level i for
the cells that remain to be updated. The distinc-
tion between the algorithms in equations (36) and
(37) comes from sweeping forward through the cells
(eq. (36)) or backward through the cells (eq. (37)).

Two disadvantages of this scheme exist. The
�rst disadvantage is that this process is not easily
vectorized because the solution of each point must
be obtained before proceeding to the next point.
The second disadvantage is that although the o�-
diagonal terms may be updated and immediately
used on the right-hand side, the solution of the
next unknown may or may not depend on previously
determined quantities. For example, as can be seen
from �gure 12, when solving for the second unknown
using equation (36), the updated value of the solution
at point 1 is not used; therefore, the solution for point
2 remains a Jacobi step.

Note that for structured grids in which the cells
are ordered in a natural manner (e.g., left to right
and top to bottom), the latest information will im-
mediately be used for the calculation of the next un-
known. This occurs because the ordering of the cells
produces a banded matrix with terms grouped along
the diagonal. The fact that the latest-obtained data
are not necessarily used for updating information in
unstructured grids is because of the random ordering
of the cells.

An improvement to the scheme just described,
therefore, can be obtained by simply renumbering the
cells to group terms along the diagonal of the matrix.
In this manner, the solution of each point will tend
to ensure that previously updated information from
the surrounding cells is used as soon as it is available.
An example of this is shown in �gure 14 where the
same cells used in �gure 12 are simply renumbered
from bottom to top and left to right. The resulting
form of the matrix, shown in �gure 15, shows that
the grouping along the diagonal is greatly improved.
The ordering of the cells in this way should result in
faster convergence of the linear problem than a ran-
dom ordering of cells. Although the ordering of the
cells in this example groups unknowns along the di-
agonal, other procedures such as the Cuthill-McKee
method described in reference 21 are more e�ective
for general con�gurations. Again, note that several
variations of this scheme can be obtained by using
various combinations of equations (36) and (37). An
important disadvantage of this scheme, however, is
that the contribution of the o�-diagonal terms to
the right-hand side of equation (38) still cannot be
vectorized.

4
3

2
1

8

5

7

6

12

9

11

10

Figure 14. Sample cells.

Figure 15. Form of matrix for cells in �gure 14.

The Jacobi, Gauss-Seidel, and symmetric Gauss-
Seidel schemes just described have all been used
in practice by various researchers. An example of
research that used these schemes to solve the Euler
equations for transonic 
ow over a circular arc in a
channel is given in reference 15. In this reference,
the symmetric Gauss-Seidel scheme was shown to
exhibit the fastest convergence rate of the three
schemes. The successful use of a symmetric Gauss-
Seidel algorithm for transonic 
ow over airfoils is
described in reference 22; in this work, grouping the
unknowns along the diagonal is enhanced by sorting
them according to the x-coordinate direction.

Vectorization of Gauss-Seidel. The number-
ing of cells used in the current study is shown in
�gure 16. The ordering is obtained by grouping cells
so that no two cells in a given group share a common
edge. The resulting matrix form for [A] is given in
�gure 17. Note that for this example, only two groups
are formed; in practice, at most, four groups will
be formed for two-dimensional calculations and �ve
groups are formed for three-dimensional calculations.
The �rst group for the present example consists of the
cells numbered 1 through 6, and the second group
contains cells numbered 7 through 12.

The solution scheme, which can be written as
before using equation (38), is implemented by solving

10
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Figure 16. Sample cells.

Figure 17. Form of matrix for cells in �gure 16.

for all the unknowns in a group at a time. The
cells in the �rst group are solved using a Jacobi-type
iteration, and the cells in all the subsequent groups
are obtained by using the most recently updated
values of f�Qg from the o�-diagonal contributions.
In this way, a Gauss-Seidel-type scheme is obtained
which is easily implemented and is fully vectorized.
Note that a symmetric Gauss-Seidel-type procedure
is not necessary and is not used; stability is achieved
as long as the matrix [A] maintains block diagonal
dominance that occurs when �rst-order di�erencing
is used on the implicit side of the equation (ref. 23).

In these discussions, the exact number of sub-
iterations required to su�ciently converge the linear
problem (eq. (32)) has not been speci�ed. The num-
ber of subiterations used for each global time step
has been determined through numerical experiments
that are presented in the results.

Time Step Calculation

To enhance the convergence to a steady state,
local time stepping is used. The time step calculation
for each cell is given by

�t = CFL
L

p
u2 + v2 + a

(39)

where L is a length scale for the cell. This length
scale is de�ned as the area of the cell divided by the
perimeter.

Results

Flow-�eld calculations for several demonstration
cases are presented. The �rst case is for an
NACA 0012 airfoil at a free-stream Mach num-
ber of 0.8 and an angle of attack of 1.25�. The
grid has an outer boundary placed approximately
50 chord lengths away from the body; this grid con-
sists of 3624 nodes, 7012 cells, and 10 636 faces. A
near-�eld view of the grid is shown in �gure 18.

Figure 18. Near-�eld view of grid around NACA 0012 airfoil.

The pressure coe�cient distribution along the
airfoil surface is shown in �gure 19. As seen, a
moderately strong shock is captured on the upper
surface of the airfoil, and a weaker shock is captured
on the lower surface. Also, note that because a 
ux
limiter has not been used for the present calculation,
an \overshoot" is evident ahead of the upper-surface
shock. The corresponding Mach number contours for
this case are shown in �gure 20.

For this calculation, the residual of the continu-
ity equation has been reduced to \machine zero" in
approximately 400 global iterations, as seen in �g-
ure 21. The CFL number began at 50 and was
linearly ramped to 200 throughout 100 iterations.
The CFL numbers used for the current calculation
may not be optimal for the present case, but they
give reasonably good convergence for a wide range
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Figure 19. Pressure distribution for NACA 0012 airfoil.

M1 = 0:8;� = 1:25�.

Figure 20. Mach number contours for NACA 0012 airfoil.

M1 = 0:8;� = 1:25�.

of test problems and grid densities. The memory re-
quired corresponds to approximately 180 words per
cell. For each global iteration, 20 subiterations have
been used to solve the linear system each time. This
process results in a computational rate of approx-
imately 60 �sec per cell per global time step on a
CRAY YMP using a single processor. This compu-
tational rate, however, depends on the number of

subiterations performed. For the current research,
this number is based on results of a numerical study
in which the number of subiterations has been var-
ied for a wide variety of CFL numbers. A typi-
cal plot of the computer time required to obtain a
four-order-of-magnitude reduction in the residual is
shown in �gure 22. This plot clearly indicates that
15 to 20 subiterations for each global iteration pro-
duce the fastest convergence rate. A similar study
has been conducted on other grids and other cases
with similar results. For this reason, between 15 to
20 sub- iterations are used for all cases shown in this
report. Although this number of subiterations has
proved adequate for the current work, further work
in optimizing this parameter may prove bene�cial.

4
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log R

Figure 21. Convergence history for NACA 0012 airfoil.

M1 = 0:8;� = 1:25�.

A comparison of convergence rates obtained with
both implicit and explicit boundary conditions on the
airfoil surface is shown in �gure 23. As seen, the use
of implicit boundary conditions improves the rate of
convergence through the �rst several orders of mag-
nitude. In addition, the use of explicit boundary con-
ditions impedes the convergence past approximately
seven orders of magnitude. This behavior has been
observed for a variety of other cases that are not pre-
sented. Note that the use of explicit boundary con-
ditions seems to lead to a more robust code because
ramping of the CFL number has not been necessary
when explicit boundary conditions have been used.
For most calculations in this study, implicit bound-
ary conditions have been used after �ve iterations,
and the CFL is ramped from 50 to 200.
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Figure 22. Computer time for four-order-of-magnitude re-

duction in residual for NACA 0012 airfoil. M1 = 0:8;
� = 1:25�.
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Figure 23. Comparison of convergence rates for implicit

and explicit boundary conditions for NACA 0012 airfoil.

M1 = 0:8; � = 1:25�.

The next case presented is for a two-element air-
foil in which an exact incompressible solution exists
(ref. 24). The initial grid used for this calculation is
shown in �gure 24; this grid consists of 1556 points,
2882 cells, and 4439 faces. The main element and 
ap
have 100 points each along the surface. Note that for
this calculation, no clustering of cells has been per-
formed near the surfaces because the �nal solution is
obtained through an adaptation procedure described
in reference 25. The pressure distribution calculated

at a free-stream Mach number of 0.2 using this ini-
tial grid is shown in �gure 25. As seen, the coarse
grid yields results that agree poorly with the exact
solution.

As previously mentioned, a solution also has been
obtained by adapting the grid to the solution. Adap-
tation is achieved by �rst identifying a list of cells
that require re�nement. New points, which are
located at the center of each of these cells, then
are introduced into the existing triangulation using
Bowyer's algorithm for the Delaunay triangulation,
and the solution is interpolated to the new grid for
use in restarting the solution. Because the present

ow �eld does not contain discontinuities, the list
of new cells is identi�ed by 
agging all the cells in
which the undivided velocity gradient exceeds that
of the average plus the standard deviation of all the
cells in the grid (refs. 25 and 26).

Figure 24. Grid around two-element con�guration.

The �nal grid, shown in �gure 26, consists of 3165
nodes, 6332 cells, and 9190 faces, with 148 nodes on
the surface of the main element and 128 nodes on
the 
ap. The pressure distribution obtained on this
grid is shown in �gure 27. The agreement with the
exact solution is improved over that in �gure 25. In
addition, the calculated lift of 2.026 compares well
with the exact value of 2.0281 given in reference 24.

The present algorithm also has been implemented
in three dimensions with the preliminary results sub-
sequently shown. The case shown is for a business jet
atM1 = 0:2 and � = 3�. The grid used for the com-
putations has been generated using the advancing
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Figure 25. Pressure distribution over two-element con�gura-
tion using initial grid.

Figure 26. Grid obtained for two-element airfoil after adap-

tation.

front-type grid generation described in reference 27;
this grid consists of 27191 nodes, 144 100 cells, and
294 109 faces. The surface grid for this computa-
tion, which consists of 11 582 triangles, is shown in
�gure 28.

This case has been run at a constant CFL number
of 300 with 15 subiterations; the convergence history
is shown in �gure 29. As seen, the residual is re-
duced between two and three orders of magnitude
in 100 global iterations, at which point the conver-
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Figure 27. Solution obtained for two-element airfoil after
adaptation.

Figure 28. Surface grid for business jet.

gence rate degrades. After 200 iterations, a resid-
ual reduction of slightly greater than three orders of
magnitude is obtained. This \tailing o�" behavior
has not been observed in two dimensions when im-
plicit boundary conditions are used, but it may be
caused by the low free-stream Mach number or the
close proximity of the outer boundary that extends
approximately 10 body lengths ahead of and behind
the airplane (but only about two body lengths above
and below). Note that the \tailing o�" of the residual
may also indicate that the high-frequency errors in
the scheme have been e�ectively reduced and that
the low-frequency errors have begun to dominate.
The use of a multigrid to rapidly eliminate these
low-frequency errors should enhance the convergence.
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Figure 29. Convergence history for Lear jet. M1 = 0:2;

� = 3:0�.

A pressure distribution comparison at the
� = 0:44 span station is made in �gure 30 with the

method described in reference 1. In �gure 30, the re-
sults referred to as FUN3D are those of the present
study and USM3D refers to those obtained using the
computer code of reference 1. (This computer code
is an upwind �nite-volume code that uses multistage,
time-stepping and 
ux-di�erence splitting.) As seen,
the comparison between the two codes is reasonably
close, and the main discrepancies occur at the lead-
ing edge. These di�erences are due to slight di�er-
ences in the computation of the boundary 
uxes and
because the computations with USM3D use Roe's

ux-di�erence splitting (ref. 12) instead of 
ux-vector
splitting.

The current implementation of this code in three
dimensions requires approximately 87 words of main
memory per cell and about 50 words per face of a
solid-state device (SSD). The computational rate on
a CRAY YMP is approximately 140 �sec per cell
per iteration, based on 15 subiterations per global
time step. Note that this timing includes both user
time and system time; without the use of SSD,
the computational rate improves to approximately
92 �sec per cell per iteration because of a signi�cant
decrease in system time.
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Figure 30. Comparison of surface pressure distribution. M1 = 0:2; � = 3:0�; � = 0:44.
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Concluding Remarks

A two-dimensional grid generation procedure has
been devised which combines automatic point place-
ment with Delaunay triangulation to e�ciently pro-
duce good-quality unstructured meshes. This
method, which uses the Delaunay triangulation al-
gorithm of Bowyer, is based on the work of Holmes.
The present algorithm improves the previously cited
work by allowing the automatic generation of new
mesh points so that the clustering of points near sur-
faces is achieved.

A 
ow solver that is implicit and can be com-
pletely vectorized is also developed in both two and
three dimensions. This scheme is based on backward-
Euler time di�erencing; the linear problem arising
at each step is solved by using several iterations of
a Gauss-Seidel-type procedure. In this method, the
unknowns are divided into groups so that no cells in
a given group share an edge; therefore, all the cells in
a group are independent of each other so that their
solutions can be obtained simultaneously.

The e�ect of the number of subiterations on the
convergence rate (based on computer time) is also
examined. Between 15 to 20 subiterations per global
time step produce the best results. In addition,
the use of implicit boundary conditions improves the
convergence rate of the current algorithm.

Results are shown for a two-dimensional 
ow over
an NACA 0012 airfoil and a two-element airfoil in
which the solution is obtained with adaptation. For
the two-element con�guration, comparisons are made
with the exact solution, and excellent results are
obtained by adaptation. For three dimensions, the
calculation of subsonic 
ow over a business jet is
demonstrated.

NASA Langley Research Center

Hampton, VA 23665-5225
February 20, 1992

References

1. Frink, Neal T.; Parikh, Paresh; and Pirzadeh, Shahyar:

A Fast Upwind Solver for the Euler Equations on Three-

Dimensional Unstructured Meshes. AIAA-91-0102,
Jan. 1991.

2. Mavriplis, D. J.: Three Dimensional Unstructured Multi-

grid for the Euler Equations. A Collection of Techni-

cal Papers|AIAA 10th Computational Fluid Dynamics

Conference, June 1991, pp. 239{247. (Available as

AIAA-91-1549-CP.)

3. Peraire, J.; Vahdati, M.; Morgan, K.; and Zienkiewicz,
O. C.: Adaptive Remeshing for Compressible Flow Com-

putations. J. Comput. Phys., vol. 72, no. 2, Oct. 1987,

pp. 449{466.

4. L�ohner, Rainald; and Parikh, Paresh: Generation of
Three-DimensionalUnstructuredGrids by the Advancing-

Front Method. AIAA-88-0515, Jan. 1988.

5. Parikh, Paresh; L�ohner, Rainald; Gumbert, Clyde; and

Pirzadeh, Shahyar: Numerical Solutions on a Path�nder

and Other Con�gurations Using Unstructured Grids and
a Finite Element Solver. AIAA-89-0362, Jan. 1989.

6. Spragle, Gregory S.; McGrory, William R.; and Fang,

Jiunn: Comparison of 2D Unstructured Grid Generation
Techniques. AIAA-91-0726, Jan. 1991.

7. Bowyer, A.: Computing Dirichlet Tessellations. Comput.

J., vol. 24, no. 2, 1981, pp. 162{166.

8. Baker, Timothy J.: Three Dimensional Mesh Generation

by Triangulation of Arbitrary Point Sets. A Collection

of Technical Papers|AIAA 8th Computational Fluid Dy-

namics Conference, June 1987, pp. 255{270. (Available

as AIAA-87-1124.)

9. Barth, Timothy J.; and Jespersen, Dennis C.: The Design
and Application of Upwind Schemes on Unstructured

Meshes. AIAA-89-0366, Jan. 1989.

10. Vassberg, John C.; and Dailey, Kathleen B.: AIRPLANE:
Experiences, Benchmarks & Improvements. A Collection

of Technical Papers, Part 1|AIAA 8th Applied Aero-

dynamics Conference, American Inst. of Aeronautics
and Astronautics, Aug. 1990, pp. 21{35. (Available as

AIAA-90-2998-CP.)

11. Holmes, D. Graham; and Snyder, Derek D.: The Gener-
ation of Unstructured Triangular Meshes Using Delaunay

Triangulation. Numerical Grid Generation in Computa-

tion Fluid Mechanics '88, S. Sengupta, J. H�auser, P. R.
Eiseman, and J. F. Thompson, eds., Pineridge Press, 1988,

pp. 643{652.

12. Roe, P. L.: Approximate Riemann Solvers, Parameter
Vectors and Di�erence Schemes. J. Comput. Phys.,

vol. 43, no. 2, Oct. 1981, pp. 357{372.

13. Batina, John T.: Three-Dimensional Flux-Split Euler
Schemes Involving Unstructured Dynamic Meshes.

AIAA-90-1649, June 1990.

14. Rausch, Russ D.; Batina, John T.; and Yang, Henry

T. Y.: Spatial Adaption Procedures on Unstructured

Meshes for Accurate Unsteady Aerodynamic Flow Com-

putation. A Collection of Technical Papers, Part 3|

AIAA/ASME/ASCE/AHS/ASC 32nd Structures, Struc-

tural Dynamics, and Materials Conference, American
Inst. of Aeronautics and Astronautics, Apr. 1991,

pp. 1904{1918. (Available as AIAA-91-1106-CP.)

15. Whitaker, D. L.; Slack, David C.; and Walters, Robert

W.: Solution Algorithms for the Two-Dimensional

Euler Equations on UnstructuredMeshes. AIAA-90-0697,

Jan. 1990.

16. Mavriplis, Dimitri; and Jameson, Antony: Multigrid Solu-

tion of the Euler Equations on Unstructured and Adaptive

Meshes. NASA CR-178346, ICASE Rep. No. 87-53, 1987.

16



17. Van Leer, Bram: Flux-Vector Splitting for the Euler
Equations. Eighth International Conference on Numer-

ical Methods in Fluid Dynamics, E. Krause, ed., Vol-

ume 170 of Lecture Notes in Physics, Springer-Verlag,

1982, pp. 507{512.

18. Frink, Neal T.: Upwind Scheme for Solving the Euler

Equations on Unstructured Tetrahedral Meshes. AIAA

J., vol. 30, no. 1, Jan. 1992, pp. 70{77.

19. Janus, Jonathan Mark: The Development of a Three-

Dimensional Split Flux Vector Euler Solver With Dy-
namic Grid Applications. M.S. Thesis, Mississippi State

Univ., 1984.

20. Venkatakrishnan, V.; and Barth, Timothy J.: Applica-
tion of Direct Solvers to Unstructured Meshes for the Eu-

ler and Navier-Stokes Equations Using Upwind Schemes.

AIAA-89-0364, Jan. 1989.

21. Carey, Graham F.; and Oden, J. Tinsley: Finite Ele-

ments: Computational Aspects, Volume III. Prentice-Hall,

Inc., c.1984.

22. Batina, John T.: Implicit Flux-Split Euler Schemes for
Unsteady Aerodynamic Analysis Involving Unstructured

Dynamic Meshes. AIAA-90-0936, Apr. 1990.

23. Mulder, William Alexander: Dynamics of Gas in a Ro-
tating Galaxy. Ph.D. Thesis, Delft Univ. of Technology,

June 1985.

24. Williams, B. R.: An Exact Test Case for the Plane

Potential Flow About Two Adjacent Lifting Aerofoils. R.
& M. No. 3717, British Aeronautical Research Council,

1973.

25. Warren, Gary P.; Anderson, W. Kyle; Thomas, James

L.; and Krist, Sherrie L.: Grid Convergence for Adaptive
Methods. AIAA-91-1592, June 1991.

26. Kallinderis, Yannis G.; and Baron, Judson R.: Adaptation

Methods for a New Navier-Stokes Algorithm. AIAA J.,

vol. 27, no. 1, Jan. 1989, pp. 37{43.

27. Parikh, Paresh; Pirzadeh, Shahyar; and L�ohner, Rainald:
A Package for 3-D Unstructured Grid Generation, Finite-

Element Flow Solution and Flow Field Visualization.

NASA CR-182090, 1990.

17


