FUN3D v13.4 Training Session 10: Parameterization Tools

Bill Jones

http://fun3d.larc.nasa.gov

Setting

- FUN3D shape design relies on a pre-defined relationship between a set of parameters, or design variables, and the discrete surface mesh coordinates
- Given DV, surface parameterization determines X_{surf}
 - For example, given the current value of wing thickness at a location, what are the corresponding xyz-coordinates of the mesh?
- This narrows down the number of design variables from hundreds of thousands (raw mesh points) to dozens or hundreds
 - Optimizers will perform more efficiently
 - Smoother design space

http://fun3d.larc.nasa.gov

- An additional requirement of the parameterization package is that it provides the Jacobian of the relationship between the design variables and the surface mesh, $\partial X_{surf}/\partial DV$
- While users may provide their own parameterization scheme, FUN3D is set up to handle three common packages:
 - MASSOUD: Aircraft-centric design variables (thickness, camber, planform, twist, etc)
 - BandAids: General FFD based tool
 - Sculptor®: Commercial package from Optimal Solutions

Learning Goals

- Parameterize geometry with respect to DVs to control shape
 - MASSOUD
 - BandAids
- Generate perturbed surface mesh and SDs for FUN3D design
 - Visual validation
- What we will not cover
 - Body transformations
 - How to use the data in FUN3D
 - That will be covered in the next session

MASSOUD

- Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation
 - AIAA-2000-4911 (Jamshid Samareh)
- Used to generate consistent models for MDAO
 - Same shape changes communicated across all disciplines
- Highly tailored for aerodynamic shapes
 - Parameters familiar to engineer
- Mesh based parameterization

Multidisciplinary Aero/Structural Shape Optimization Using Deformation (MASSOUD)

4

N3D

Fully Unstructured Navier-Stoke

MASSOUD Key Ideas

- Uses soft object animation algorithms for deforming meshes
 - Nonlinear global deformation (twist and dihedral)
 - NURBS surface (camber and thickness)
 - Free-form deformation (planform)
- Parameterizes the discipline meshes
 - Avoids mesh regeneration
- Parameterizes the changes in shape, not the shape itself
 - No need to reproduce shape
 - Reduces the number of design variables

MASSOUD Twist and Shear

- Nonlinear Global Deformation
 - Wrapped in twist cylinder
 - Twisted and sheared in planes along span normal to twist vector

MASSOUD Camber and Thickness

- Non-Uniform Rational B-Spline (NURBS)
 - Represents the shape changes not the shape

December 11-12, 2018

Fully Unstructured Navier-Stoke

MASSOUD Planform

- Free-form Deformation (FFD)
 - Surround shapes with quadrilaterals

MASSOUD Installation

- Distributed as source code
 - Single Makefile uses GNU C compiler (gcc)
 - Any localization must be done manually
 - Creates two executables
 - `massoudDesignDriver` creates parameterization
 - `massoud` surface mesh perturbation with sensitivity data

MASSOUD Process

December 11-12, 2018

- Parameterization requires input to define DV locations
 - Small ASCII file
 - Contains 7 groups of oriented curves
 - X axis is positive downstream
 - Y is positive out the wing span
 - Y should be positive with curves monotonically increasing
 - GridTool can be used to create the file

Design location file Case Name Title (SECTION 1) np ne ntwist ncmax	
4 1 2 100 0 12 Pt X Y Z (SECTION 2) 0.0000000e+00 0.0000000e+0	
#Twist Vector (SECTION 3) # Ax Ay Az 0.0000000e+00 1.000000e+00 0.000000e+00 # x y z 2.5000000e-01 -1.000000e+00 0.000000e+00 1000.0 2.5000000e-01 0.000000e+00 0.000000e+00 1000.0	ir or 10000.0 10000.0
# Le/Te definitions (SECTION 4) 2 0.000000e+00 -1.0010000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 2 1.0010000e+00 -1.0010000e+00 0.0000000e+00 1.0000000e+00 -0.000000e+00 0.0000000e+00 0.0000000e+00	
5 2 0.000000e+00-1.001000e+00 0.000000e+00 5) 0.0 0.000000e+00.000000e+00 0.000000e+00 0.1 0.000000e+00.000000e+00 0.000000e+00 0.000000e+00 0.5 0.000000e+00.000000e+00 0.000000e+00 0.000000e+00 1.0 0.000000e+00.000000e+00 0.000000e+00 3 2 0.000000e+00 -1.001000e+00 0.000000e+00 0.000000e+00	1.000000e+00 # Thickness (SECTION
0.000000e+00 0.00000e+00 0.00000e+00 5 2 0.000000e+00-1.001000e+00 0.000000e+00 0.0 0.000000e+00.000000e+00 0.1 0.000000e+00.000000e+00 0.5 0.000000e+00.000000e+00 1.0 0.000000e+00.000000e+00 3 2 0.000000e+00 -1.001000e+00 0.000000e+00 0.000000e+00 0.00000e+00 0.000000e+00 0.00000e+00	1.000000e+00 # Camber (SECTION 6)
http://fun3d.larc.nasa.gov	FUN3D Training Worksho December 11-12, 2018

Twist vector and Twist

Planform

Leading and **Trailing Edges**

Thickness

Camber

- 1. Planform
 - Cover planform with <u>5 point</u> quadrilaterals
 - Closed but orientation does not matter
 - 1 Curve per planform section
 - GridTool Family name "planform"

2. Leading Edge

- Create an *n* point PWL curve defining the leading edge
 - Must bound all mesh nodes
 - May extend beyond actual geometry
- GridTool Family name "1e"
- 3. Trailing Edge
 - Create an *n* point PWL curve defining the trailing edge
 - Must bound all mesh nodes
 - GridTool Family name "te"

- 4. Twist Vector
 - Create a 2 point curve to represent the twist vector
 - Twist sections defined normal to this vector
 - GridTool Family name "twistv"
- 5. Twist Location
 - Create an *n* point PWL curve to represent the *n* twist locations
 - Airfoil sections defined at these points normal to "twistv"
 - · First and last section must bound the Y coordinates of the target mesh
 - GridTool family name "twist"

6. Thickness

- Chordwise
 - Create an n point PWL curve to represent the n chordwise thickness locations
 - Start, length, and %
 - GridTool family name "tx"
- Spanwise
 - Create an *m* point PWL curve to represent the *m* spanwise thickness locations

- Should bound Y values of all target mesh nodes
- Beginning and ending Y coordinates must be bounded by the Y coordinates of <u>both</u> the "le" and "te" curves
- May be a duplicate of the "twist" curve
- GridTool family name "ty"
- n x m set of DVs

- 7. Camber
 - Same as for Thickness but with GridTool family names "cx" and "cy" respectively
 - May be duplicates of "tx" and "ty"
 - Two curves define *n x m* set of DVs

- Dump out surface meshes of interest in a Tecplot[™] format
 - Includes the surface node coordinates
 - Global ID of the surface nodes wrt the volume mesh
 - FUN3D flow solver CLO '--write_massoud_file'
 - Produces "[project]_massoud_bodyN.dat" file for body N
 - Default extracts all viscous boundary surfaces as separate bodies
- FUN3D Namelist controls

```
&massoud_output
  n_bodies = 2  ! Parameterize 2 bodies
  nbndry(1) = 6  ! 1st body has 6 boundaries
  boundary_list(1) = `3-8'  ! Boundaries in
  1st body
  nbndry(2) = 3  ! 2nd body has 3 boundaries
  boundary_list(2) = `9,10,12'  ! Boundaries in
  2nd body
/
```

boundary_list() indices should reflect boundary lumping

• Generate geometry parameterization

- Geometry parameterization is output in "design.gp.1"
 - Used as input to `massoud`
- Additional output
 - "designVariableTemplate"
 - Reference for "design.1" file with zero perturbations
 - "designTemplate.usd"
 - Reference for "design.usd.1" user defined variable links
 - "designVariableTemplateNumber"
 - Lists the DV indices by DV type (planform, twist, etc.)
 - "baselineShape.plt"
 - Tecplot[™] readable zero perturbation reference
 - Errors in "GP.log"

- Mesh deformation % massoud massoud.N
 - Where MASSOUD input is in "massoud.N"
 - FUN3D design will utilize "customDV.N" for perturbations

```
#MASSOUD INPUT FILE
# Option (0 analysis), (> 0 sd using user dvs ) (-1, sd using massoud dvs)
-1
# core (0 incore solution) (1 out of core solution)
0
# input parameterized file
design.gp.1 -
# design variable input file
design.1
# input sensitivity file (used for Option > 0)
design.usd.1
# output file mesh file
new1.plt
# output tecplot file for viewing
model.tec.1
# file containing the design variables group
designVariableGroups.1
# user design variable file
[customDV.1] -
```


MASSOUD Results

- Visual inspection
 - Tecplot[™]
 - "model.tec.1.sd1" contains mesh and SDs
 - (e.g. XD1, YD1, ZD1... XDndv, YDndv, ZDndv)
 - GridTool
 - % GridTool -d model.tec.1.sd1
 - Sliders to interactively perturb DVs
 - Twist is non-linear and is only indication of change

21

Fully Unstructured Navier-Stoke

What Could Go Wrong (1 of 2)

- Failure ... check "GP.log"
- Design locations must be defined to bound all target mesh nodes

22

What Could Go Wrong (2 of 2)

• Design locations must be defined to bound all target mesh nodes

MASSOUD User Defined Variables

New variables as linear combination of MASSOUD variables

http://fun3d.larc.nasa.gov

MASSOUD Pros and Cons

<u>Pros</u>

- Consistent Meshes
- No need for mesh generation
- Easy to setup (hours)
- Parameterization is fast
- Analytic sensitivity
- Compact set of DVs
- Suitable for high- and lowfidelity application

- Limited to small shape changes
- Fixed topology
- No built-in geometry constraints
- No direct CAD connection

BandAids

- Aerodynamic Shape Parameterization based on Free-Form Deformation
- General application based on free-form deformation
 - Handles complex shapes
 - DVs are not classic aerodynamic parameters

BandAids Key Ideas

- 1. Parameterize surface mesh
 - Avoids mesh regeneration
- 2. Use FFD to represent shape perturbations
 - Automates surface parameterization
- 3. Parameterize changes in shape perturbation, not the shape itself
 - Reduces the number of design variables

BandAids FFD (1 of 3)

- Based on algorithm used in computer animation
 - Control points are DVs
 - Immersed in Jell-O
- Design variables have no aerodynamic significance
 - Only those near surface have significant impact

BandAids FFD (2 of 3)

- Many more control points in 3D
 - Only those near surface have impact on surface

BandAids FFD (3 of 3)

- Equivalent 3D bi-variant form of tri-variant FFD
 - Collapse CPs onto surface
 - Move CP moves surface underneath
 - Number of DVs reduced from N³ to N²
 - 4 sided Bandaid marking surface over geometry
 - Moves only surface to which it is collapsed
 - No MDO

BandAids Parameterizes Changes

- Shape changes are small
 - Can be represented with fewer CPs than surface
- Maintains surface mesh character/quality

NURBS control points for camber & thickness

BandAids Installation

- Distributed as source code
 - Single Makefile uses GNU C compiler (gcc)
 - Any localization must be done manually
 - Creates a single executable
 - `bandAids` parameterization and deformation

BandAids Marking Surfaces (1 of 2)

- Create structured marking surface
 - Marks portion of geometry to parameterize
 - Can span multiple geometry surfaces

BandAids Marking Surfaces (2 of 2)

- Marking surface interpolated by reference with n x m CPs
 - nxmDVs

BandAids Execution

```
% bandAids inMesh.plt \
    inDesignSurf.p3d \
    output \
    numDesignInU \
    numDesignInV \
    [tol]
```

- "inMesh.plt" target mesh in Tecplot™ format
- "inDesignSurf.p3d" marking surface in PLOT3D format
- "outfile" output file name prefix
- "numDesignInU" number of design variables in U-direction
- "numDesignInV" number of design variables in V-direction
- "tol" optional, max gap between mesh and marking surface
- User defined variables are created if a "bandaids.usd" file exists at execution

BandAids Output

- Execution produces seven files:
 - "output.bandaid"
 - All non-zero shape information
 - Read directly by FUN3D
 - "output.distance.plt"
 - Tecplot[™] file with the surface mesh including the distance between the surface mesh and marking surface
 - "output.distanceSD.plt"
 - Tecplot[™] file containing surface mesh and sensitivity data
 - "bandAidsSample.dvs"
 - Template for input design variable file
 - "bandAidsAll.usd", "bandAidsCol.usd", and "bandAidsRow.usd"
 - Templates to base "bandaids.usd" used for DV linking
 - Requires a subsequent `bandaids` run for linked variables

BandAids Deformation

- Not necessary with FUN3D as all deformation is linear
 - Useful for validation
- Execute bandAids with -deformMesh
 - % bandAids -deformMesh \
 output.distanceSD.plt \
 my.dvs \
 - new.plt
- "output.distanceSD.plt"
 - Tecplot[™] file containing surface mesh and sensitivity data
- "my.dvs"
 - Input DV perturbations
- "new.plt"
 - Deformed surface mesh

BandAids Results

- Visual inspection
 - Tecplot[™]
 - "output.distanceSD.plt" contains mesh and SDs
 - (e.g. XD1, YD1, ZD1... XDndv, YDndv, ZDndv)
 - GridTool
 - % GridTool -d output.distanceSD.plt
 - Sliders to interactively perturb DVs

BandAids Pros and Cons

<u>Pros</u>

- General Application
- Consistent Meshes
- No need for mesh generation
- Easy to setup (hours)
- Parameterization is fast
- Analytic sensitivity
- Compact set of DVs
- Suitable for high- and low- fidelity application

<u>Cons</u>

- Non-intuitive DVs
- Limited to small shape changes
- No built-in geometry constraints
- No direct CAD connection

What We Learned

- MASSOUD parameterizes with aerodynamic parameters
 - Best applied to aerodynamic shapes
- BandAids provides general application
 - Albeit w/o intuitive parameters
- Both mesh based parameterization
- Both tools parameterize shape changes not shape
 - Reduces number of DVs
- Both provide mesh perturbation with SDs suitable for FUN3D

