
http://fun3d.larc.nasa.gov

Session 10:
SUGGAR++ Basics

Bob Biedron

FUN3D Training Workshop
July 27-28, 2010 1

http://fun3d.larc.nasa.gov

Learning Goals
•  What this will teach you

–  Very rudimentary SUGGAR++ operation
•  What you will not learn

–  All the useful stuff that Ralph Noack would teach you
–  GVIZ (Ralph’s own viewer for overset grid assembly - useful for

debugging/assessing hole cutting)
•  What should you already know

–  Basic concept of overset meshes

FUN3D Training Workshop
July 27-28, 2010 2

http://fun3d.larc.nasa.gov

Setting
•  Background

–  Use of overset grids in FUN3D requires either SUGGAR++ or
SUGGAR (predecessor)
•  SUGGAR++ and SUGGAR are very similar in functionality and

usage; will generally use “SUGGAR” and “SUGGAR++”
interchangeably here; in one or two spots the differences are noted

•  Disclaimer: I am not a SUGGAR expert - just a user for limited
applications; this presentation may contain factual errors or other
misinformation

•  Compatibility
–  FUN3D requires both DiRTlib and SUGGAR codes from PSU
–  Grid formats: VGRID, AFLR3, FieldView (FV)

•  Status
–  Overset simulations done with FUN3D and SUGGAR++ on a

frequent basis, primarily for rotorcraft applications.
FUN3D Training Workshop

July 27-28, 2010 3

http://fun3d.larc.nasa.gov

SUGGAR++ Documentation
•  User’s Guide: doc/UsersGuide/UsersGuide.pdf

–  Documents list of input elements (the rules, not much of the “why”)
–  Documents command-line options for SUGGAR++

•  Programmer’s Guide: doc/ProgrammersGuide/ProgrammersGuide.pdf
–  Compilation
–  How to integrate libSUGGAR++ into a flow solver

•  Training slides presented by Ralph Noack and Dave Boger at the April
2010 FUN3D Training Session will eventually make it on to the FUN3D
website
–  Much of the material here is a distillation of the April slides - but they

had a full day to cover this

FUN3D Training Workshop
July 27-28, 2010 4

http://fun3d.larc.nasa.gov

Nomenclature (1/4)
•  SUGGAR: Structured, Unstructured, Generalized overset Grid AssembleR

SUGGAR++ is the next-generation version
–  PEGASUS-like capability for general grids
–  Stand-alone versions for static grids; library versions for dynamic grids

•  DiRTlib: Donor interpolation/Receptor Transaction library - used by flow
solver to handle data provided by SUGGAR++; no user input (just compile
and link to flow solver)

•  Component Grid
–  “Independently” generated grid for one piece of the configuration
–  Up to you to create these

•  Composite Grid
–  An assembly of component grids
–  Created by SUGGAR++ based on your input

FUN3D Training Workshop
July 27-28, 2010 5

http://fun3d.larc.nasa.gov

Nomenclature (2/4)
•  Overset grid point classification

–  In or Active: flow solver updates these points by solving the governing
equations at these locations

–  Out or Hole: flow solver need not update these points as they have been
removed from the domain
•  In practice, especially for moving grids, the flow solver fills in data at

these points by averaging neighboring points - done so that as points
move from “out” to “in”, they have “reasonable” data

–  Fringe: these points are updated by interpolation from “in” points; fringe
points border a hole (inner fringe) or lie along an outer boundary (outer
fringe)

–  Donor: the “in” points that supply data to fringe points
–  Orphan: fringe points for which too few or no donor points can be found;

undesirable; solver fills in data at these points by averaging solution at
neighboring points

FUN3D Training Workshop
July 27-28, 2010 6

http://fun3d.larc.nasa.gov

Nomenclature (3/4)
•  Flow solver point classification - example

FUN3D Training Workshop
July 27-28, 2010 7

Hole - Blue Dots

Outer Fringe - Red Dots

Inner Fringe - Black Dots

http://fun3d.larc.nasa.gov

Nomenclature (4/4)
•  DCI file

–  Domain Connectivity Information file
–  Created by SUGGAR; contains information about point classifications

(hole, fringe, etc) for points in composite mesh, plus interpolation stencil
data

–  Calls to DiRTlib within FUN3D read the DCI file and utilize the data
within to update the solution at fringe points via interpolation from donor
points

–  If grid is static, only need one DCI file
–  If grid is dynamic, must either have pre-computed DCI files available for

the grid positions at each time step, or utilize libSUGGAR calls within
FUN3D to compute DCI data “on the fly”

FUN3D Training Workshop
July 27-28, 2010 8

http://fun3d.larc.nasa.gov

XML Basics (1/2)
•  SUGGAR/SUGGAR++ input based on XML

–  eXtensible Markup Language (HTML-like, but not web-centric)
–  XML element is enclosed in a tag “< >” , with corresponding end tag
<body> … </body> (start and end can also span multiple lines)

–  Elements can have attributes/data: <body name=“wing”>
–  Elements can have an implicit end tag; elements can be empty - no

attributes: <dynamic/>
–  XML elements can be embedded in other XML elements to create

parent-child relationships (wing and store are children of aircraft)
<body name=“aircraft”>

 <body name=“wing”>

 </body>

 <body name=“store”>

 </body>

</body>

FUN3D Training Workshop
July 27-28, 2010 9

http://fun3d.larc.nasa.gov

XML Basics (2/2)
•  Element attributes are name/value pairs associated with an element

–  Always in the start tag, value must be in quotes (single or double)
<body name=‘blade_1’> … </body>
<translate axis=“x” value=“1.0e0”/>

•  Comments start with <!-- and end with --> and cannot be within a tag
<!-- <body name=“aircraft”/> --> Correct
<body <!-- name=“aircraft” --> /> Incorrect

•  XML syntax must be precise: xmllint is on most(?) systems and can be
used to check XML syntax before using SUGGAR
–  Usage: xmllint myfile.xml
–  If syntax is OK, will simply echo XML file to screen; otherwise it reports

the error
•  Indentation helps keep XML input readable; xmllint can help here too

–  Usage: xmllint -format my_messy_file.xml > my_neat_file.xml
FUN3D Training Workshop

July 27-28, 2010 10

http://fun3d.larc.nasa.gov

Hole-Cutting: Hierarchy
•  Parent-Child hierarchy established in XML file minimizes additional input to

control hole cutting
•  Basic rule: siblings cut each other

–  Geometry in one body (including all children) cut all grids in a sibling
body (including all children); Aircraft cuts hole in Store and vice versa

FUN3D Training Workshop
July 27-28, 2010 11

ROOT
Aircraft Store

Wing Pylon Body

Fin1

Fin2

Fin3

Fin4

http://fun3d.larc.nasa.gov

Hole-Cutting: SUGGAR vs SUGGAR++
•  Older SUGGAR code relies (primarily) on Octree hole cutting - uses

Cartesian representation of geometry; hole cutting based on a query
approach: Is this point inside (the Cartesian representation of) the body?

FUN3D Training Workshop
July 27-28, 2010 12

•  In my experience, the Octree hole cutting approach often needs a lot of
tweaking beyond the default behavior

•  Newer SUGGAR++ code relies (primarily) on a direct hole cutting approach:
Find intersections of geometry and grid; requires watertight geometry

•  In my experience very little tweaking has been required with SUGGAR++
•  SUGGAR++ supports the older Octree approach too; other hole-cutting

options are available in both codes but are beyond the scope here
•  There are pros and cons to any approach…

http://fun3d.larc.nasa.gov

Hole Cutting: Overlap Minimization
•  Solution quality usually improved by reducing amount of overlap
•  Goal is to have donors and receptors of similar size
•  Enabled by element <minimize_overlap>
•  For moving grids: <minimize_overlap keep_inner_fringe=“yes”/>

–  Instead of blanking out points removed in overlap minimization, keeps
them as fringes so they are interpolated rather than averaged -
presumably better for when these points later emerge from the hole

FUN3D Training Workshop
July 27-28, 2010 13

http://fun3d.larc.nasa.gov

Building Up A SUGGAR Input File (1/7)
•  <global> element serves as the root (parent) element for every SUGGAR

input file: first line in file is <global> and last line is </global>
•  Child elements of <global> specify various global parameters, and the

body hierarchy
•  So on a high level an input file for an aircraft composed of a wing and a

store would look something like:

FUN3D Training Workshop
July 27-28, 2010 14

<global>

 <!-- global parameters here -->
 <body name=“aircraft”>

 <body name=“wing”>
 </body>

 <body name=“store”>

 </body>
 </body>

</global>

http://fun3d.larc.nasa.gov

Building Up A SUGGAR Input File (2/7)
•  Common child elements of <global> (see documentation for more info)

–  <donor_quality value="0.9”/> (lower stencil quality standard to
reduce number of orphans)

–  <minimize_overlap keep_inner_fringe=“yes”/>
–  <output> (governs output of composite mesh and DCI file)
–  Principle children of <output>

•  <composite_grid filename=“file” style=“style”/>
•  <domain_connectivity filename=“file” style=“style”/>
•  Note: <composite_grid> and <donor_receptor_file> are for

SUGGAR++; SUGGAR uses different element names, but accomplish
the same thing

•  <composite_grid/> style attributes compatible with FUN3D:
“vgrid_set”, “unsorted_vgrid_set”, “fvuns”, “aflr3”,
“ugrid”

FUN3D Training Workshop
July 27-28, 2010 15

http://fun3d.larc.nasa.gov

Building Up A SUGGAR Input File (3/7)
•  <body> element can be child of <global> or another <body>

–  Required attribute is name=“body_name”
•  Common child elements of <body> (see documentation for more info)

–  <volume_grid name=”wing” filename=“Grids/wing”
style=“vgrid_set”/> (associates a volume grid with a body)

–  <dynamic> (declares a body as moving; also determines how the
element <transform> is handled)

–  <transform> (used to manipulate body - scale, rotate, translate,
etc.)
•  If <transform> is child of <body>, transform is “static” - input

grid coordinates are actually altered by the transform specified
•  If <transform> is child of <dynamic>, transform is “dynamic” -

input grid coordinates are not altered by the transform; the transform
is only used internally

•  I find this more than a little confusing…please see the documentation
for yourself

FUN3D Training Workshop
July 27-28, 2010 16

http://fun3d.larc.nasa.gov

Building Up A SUGGAR Input File (4/7)
•  I deal with the <transform> duality by adopting the following fixed

strategy for moving-body cases:
–  Always make it a child of <body> and not a child of <dynamic>
–  Add a “self-terminating” <dynamic/> child to any body I want to

have in motion:
 <body name="store">
 <dynamic/>
 <transform>
 <scale value= '1.6666666666667'/>
 </transform>
 </body>

–  Because the <dynamic/> element self terminates, <transform>
is not a child of it

–  I don’t claim this is the “right” way…but it works for my applications
–  Not an issue for non-moving bodies in the composite grid

FUN3D Training Workshop
July 27-28, 2010 17

http://fun3d.larc.nasa.gov

Building Up A SUGGAR Input File (5/7)
•  Children of <transform>:

–  <translate>
–  <rotate> (used to rotate about x, y, or z)
–  <rotate_about_v> (used to rotate about arbitrary vector axis)
–  <scale>
 <body name="store">
 <dynamic/>
 <transform>
 <scale value= '1.6666666666667'/>
 </transform>
 </body>

–  The order of transforms is important; transforms applied in order
specified in the input file

•  Refer to documentation for complete rules about which elements are
allowed as children, which are allowed as parent, allowable attributes, etc.

FUN3D Training Workshop
July 27-28, 2010 18

http://fun3d.larc.nasa.gov

Building Up A SUGGAR Input File (6/7)
•  More complex example of <transform> from rotorcraft application

<body name="rotor1_blade2">

 <dynamic/>
 <transform>

 <translate axis="x" value=" 7.6520E-01"/>
 <translate axis="y" value=" 0.0000E+00"/>

 <translate axis="z" value=" 7.9600E-01"/>

 <rotate_about_v axis_vector="0.0E+00, 1.0E+00, 0.0E+00" value="0.0E+00”
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/>

 <rotate_about_v axis_vector="1.0E+00, 0.0E+00, 0.0E+00" value="0.0E+00"
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/>

 <rotate_about_v axis_vector="0.0E+00, 0.0E+00, 1.0E+00" value="0.0E+00"
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/>

 <rotate_about_v axis_vector="0.0E+00, -1.0E+00, 0.0E+00" value="0.0E+00"
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/>

 <rotate_about_v axis_vector="0.0E+00, 0.0E+00, 1.0E+00" value="9.0E+01"
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/>

 </transform>
 <volume_grid name="rotor_w_cutout_1_correct_pitch" style="vgrid_set"

filename="rotor_w_cutout_1_correct_pitch" format="unformatted"
precision="double">

 </volume_grid>

</body>
FUN3D Training Workshop

July 27-28, 2010 19

http://fun3d.larc.nasa.gov

Building Up A SUGGAR Input File (7/7)
•  Boundary conditions

–  SUGGAR needs to know some boundary condition information, e.g.
which are the solid (body) boundaries, which outer boundaries need to
be interpolated from other grids

–  SUGGAR input has provision for specifying the required SUGGAR
BC’s via XML elements

–  An alternative is to provide SUGGAR with a separate file with the BC
data

–  I always use the separate file and so will not cover the xml input file
approach - this is by far the most expedient way for VGRID meshes

•  Pretty much wraps up this very brief overview of what goes into the input
XML file for SUGGAR; documentation goes into much more and you
should consult it in detail

•  Next, look at how to set those BC’s for SUGGAR via a file

FUN3D Training Workshop
July 27-28, 2010 20

http://fun3d.larc.nasa.gov

Boundary Condition Files For SUGGAR
•  SUGGAR++ needs BC info for each component grid - set either via the

SUGGAR++ input XML file OR an auxiliary file for each component grid;
SUGGAR++ will output this auxiliary file for the composite mesh

•  FUN3D also needs BC info for the composite grid; depending on grid type,
file names / content may differ slightly between FUN3D / SUGGAR

•  “ext” is the FUN3D grid extension, e.g.: grid.fvgrid_fmt, grid.r8.ugrid
•  AFLR3 / FV grids: suggar_mapbc file has extra column; FUN3D ignores
3 ! number of boundaries (patches)
1 5000 Box farfield ! patch_index, fun3d_bc, family_name, suggar_bc
2 4000 Wing_Surf solid
3 -1 Wing_FarFld overlap

FUN3D Training Workshop
July 27-28, 2010 21

VGRID grid FV grid AFLR3 grid

FUN3D grid.mapbc
(standard VGRID file)

grid.mapbc
(not same as VGRID)

grid.mapbc
(not same as VGRID)

SUGGAR++ grid.mapbc
(standard VGRID file)

grid.ext.suggar_mapbc
(not same as VGRID)

grid.ext.suggar_mapbc
(not same as VGRID)

http://fun3d.larc.nasa.gov

Running SUGGAR/SUGGAR++ (1/3)
•  Ralph recommends creating a “Grids” subdirectory and an “Input”

subdirectory for each case
–  I never make an Input directory but do use a separate directory to

hold the component grids
–  By default SUGGAR will look to read Input/Input.xml, so if you don’t

have this you simply have to explicitly give the input file name
•  You will want to redirect stdout and stderr (stdout has LOTS of output);

below, file name Input.xml_0 is explicitly given
–  c-shell
 (./suggar++ Input.xml_0 > suggar++.output) > & suggar++.error

–  bourne-shell
 ./suggar++ Input.xml_0 1> suggar++.output 2> suggar++.error

–  Simpler trick (just learned): ./suggar++ -reopen Input.xml_0
•  stdout and stderr automatically go to out.stdout++ and
out.stderr++

FUN3D Training Workshop
July 27-28, 2010 22

http://fun3d.larc.nasa.gov

Running SUGGAR/SUGGAR++ (2/3)
•  Principle output: DCI and composite grid files specified in the XML file
•  A concise summary of SUGGAR++ info is written to summary.log

start time: Wed Jul 7 18:49:17 2010
host: i16n1
last git commit:
command line: ./suggar++ Input.xml_0
number of processors: 1
number of threads: 1
total number of out: 9657
total number of fringes: 166124
total number of min fringes: 145265
total number of orphans: 199
number of orphans due to poor quality donors: 199
wall clock to perform assembly (seconds): 4.98748
memory used (MB): 1018.83
max interpolation deviation: 7.32747e-15
fringe donor quality: 0.904761
min fringe donor quality: 1

FUN3D Training Workshop
July 27-28, 2010 23

http://fun3d.larc.nasa.gov

Running SUGGAR/SUGGAR++ (3/3)
•  For FUN3D applications, SUGGAR++ itself is typically only run one

time, to create the composite mesh and initial DCI file
•  For moving-body cases, FUN3D calls libSUGGAR++ to compute the

DCI data “on the fly”; however the libSUGGAR++ functionality is
identical to SUGGAR++

•  SUGGAR++ can be run in parallel
–  So far scaling achieved has been fairly poor - nowhere near linear,

even for small (~8) processor counts
–  Requires a separate partitioning step, which is at odds with current

FUN3D parallel-processing paradigm; “optimum” SUGGAR++
partitioning bears no resemblance to optimal flow solver partitioning

–  For these reasons, and since libSUGGAR++ exhibits the same
parallel issues, there has been minimal incentive to utilize the
parallel capability for SUGGAR++ processing

–  Hopefully SUGGAR++ parallel scaling will improve in the future

FUN3D Training Workshop
July 27-28, 2010 24

http://fun3d.larc.nasa.gov

Running SUGGAR/SUGGAR++ (3/3)
•  Ralph has a “home-brew” interactive visualizer for looking at the overset

grid assembly, called GVIZ
–  Allows visualization of the meshes, hole points, fringe points, etc.
–  Very useful for debugging
–  I don’t have enough skill with GVIZ to even begin to explain how to

use it

FUN3D Training Workshop
July 27-28, 2010 25

http://fun3d.larc.nasa.gov

List of Key Input/Output Files
•  Input

–  Input/Input.xml (default; any name OK if explicitly specified)
–  Component grids (name and grid format vary; for FUN3D: vgrid,

aflr3, fieldview formats)
•  Output

–  Composite grid; name and grid format vary
–  filename.dci (name set in XML file)
–  summary.log

FUN3D Training Workshop
July 27-28, 2010 26

http://fun3d.larc.nasa.gov

FAQ’s
•  Where do I go to get the correct information on all this and not just

your lame, watered-down interpretation?
–  SUGGAR/SUGGAR++ documentation
–  Ralph Noack
–  Sign up for the Google User Group: http://groups.google.com/

group/overset-grid-tools/topics (may require invitation from Ralph)

FUN3D Training Workshop
July 27-28, 2010 27

http://fun3d.larc.nasa.gov

What We Learned
•  Very basic SUGGAR/SUGGAR++ XML input
•  Setting up a suggar_mapbc file
•  SUGGAR/SUGGAR++ execution

FUN3D Training Workshop
July 27-28, 2010 28

