FUN3D v12.4 Training

Session 11:
Dynamic-Grid Simulations

Session Scope

* What this will cover
— How to set up and run time-accurate simulations on dynamic meshes

* Nondimensionalization

» Choosing the time step

* Body / Mesh motion options
* Input / Output

* What will not be covered
— Specifics for overset and aeroelastic: covered in follow-on sessions

« What should you already be familiar with
— Basic steady-state solver operation and control

— Basic flow visualization

@ http://fun3d.larc.nasa.gov @ I\f!ggmmumm;

Introduction
« Background

— Many of problems of interest involve involve moving or deforming
geometries

— Governing equations written in Arbitrary Lagrangian-Eulerian
(ALE) form to account for grid speed

— Nondimensionalization often more involved/confusing/critical
« Compatibility

— Fully compatible for compressible/incompressible flows; mixed
elements; 2D/3D

— Not compatible with generic gas model
« Status

— Compressible path with moving grids is exercised routinely;
incompressible path much less so

— 6-DOF option has had very limited testing / usage

@ http://fun3d.larc.nasa.gov @ I\f!ggmmumm;

Governing Equations

* Arbitrary Lagrangian-Eulerian (ALE) Formulation

2 = - — - N dV
NCL) § (F-qw)-ias-§, F.iids =R 5%
ot v v

Q)

<

W = Arbitrary control surface velocity; Lagrangian if W = (u,v,w)T
(moves with fluid); Eulerian if W =0 (fixed in space)

- Discretize using Nt order backward differences in time, linearize R
about time level n+1, and introduce a pseudo-time term:

Vn+1 ‘/n+l¢n+1 — é,Rn+1 Jm
Ar At ﬁQ

Vn:fml (Qn+1,m _ Q”) —...+ I_énglL

= R + O(At™)

AQn+1m _ Rn+1m _

 Physical time-level t" - Pseudo-time level "

ey " Need to drive subiteration residual R""" — 0 using pseudo-time
POINT Subiterations at each time step — much more later — otherwise you
have more error than the expected O(Ar") truncation error

@ http://fun3d.larc.nasa.gov @ I\gggmmumm;

Mesh / Body Motion (1/2)

 Motion is triggered either by setting moving grid = .true. in
&global (fun3d.nml), or by the command line --moving grid

 All dynamic-mesh simulations require some input data via an auxiliary
namelist file: moving body.input

* Abody is defined as a user-specified collection of solid boundaries in grid

* Body motion options:

— Several built-in functions for rigid-body motion: translation and/or
rotation with either constant velocity or periodic displacement

— Read a series of surface files — body can be either rigid or deforming
— Read a series of 4x4 transform matrices - rigid body
— 6 DOF via UAB/Kestrel library “libmo”

* Requires configuring with --with-sixdof=/path/to/6DOF

— Application-specific: mode-shape based aeroelasticity (linear
structures); rotorcraft nonlinear beam

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Uhsiruciured Navier-Siokes

Mesh / Body Motion (2/4)

« Chose a mesh-motion option than can accommodate the desired
body-motion option

* Mesh motion options:
— Rigid - maximum 1 body containing all solid surfaces (unless overset)

— Deforming — allows multiple bodies without overset; can be limited to
relatively small displacements before mesh cells collapse

— Combine rigid and/or deforming with overset for large displacements /
multiple bodies

» Rigid mesh motion performed by application of 4x4 transform matrix to all
points in the mesh - fast; positivity of cell volumes guaranteed to be
maintained

— Complex transforms can be built up from simple ones: matrix multiply

— Allows parent-child motion (child follows parent but can have its own
motion on top of that)

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Uhsiruciured Navier-Siokes

Mesh / Body Motion (3/4)

* Mesh deformation handled via solution of a linear elasticity PDE:
V- [u(Vu+Vu' Y+ AV -wl]= f =0
Ev E
A= U=
(1+v)(1-2v) 2(1+v)

— v (Poisson’s ratio) is fixed; E (Young's modulus) is selectable as:

* 1/slen --elasticity 1 (default)
« 1/volume --elasticity 2 (rarely used anymore)
 1/slen*™™2 --elasticity 5 (last ditch for difficult problems)

» Elasticity solved via GMRES method; CPU intensive - can be 30% or more
of the flow solve time; check convergence (screen output)

 Fairly robust, but can generate negative cell volumes; code stops
 “untangling” step attempted if neg. volumes generated — tet meshes only

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Uhsiruciured Navier-Siokes

Mesh / Body Motion (4/4)

 GMRES solver used for mesh deformation has default parameter
settings which can be adjusted in the namelist selasticity gmres (in
the fun3d.nml file):

ileft nsearch nrestarts tol
1 +50 10 l1.e-06

— You generally won'’t have to adjust these values

— Exception: “structured” grids with very tight wake spacing can be very
hard to deform and you may need to set tol very small, e.g. 1.e-12
(and will need more restarts); usually not an issue with typical grids

— If negative volumes are generated and not successfully untangled, try
reducing tol, which in turn may require a larger value of nrestarts

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Uhsiruciured Navier-Siokes

Nondimensionalization of Motion Data (1/2)

« Recall: * indicates a dimensional variable, otherwise nondimensional

 Typical motion data we need to nondimensionalize: translational velocity,
translational displacement, angular velocity, and oscillation frequency

« Angular or translational displacements / velocities are input into FUN3D
as magnitude and direction

» Displacement input: angular in degrees; translational Ax=Ax"/(L,,/L,,)
 Translational velocity is nondimensionalized just like flow velocity:

— U* = translation speed of the vehicle (e.g. ft/s)

— U =U*/a* (comp.; thisis a Mach No.) U =U*/U* . (incomp)
 Rotation rate:

— Q" = body rotation rate (e.g. rad/s)

~Q=Q (LfLr) / @% (comp) Q=Q (L*efLrer) / Ut (incomp)

— Other variants on specified rotation rate are possible, e.g. rotor tip
speed, from which Q"= U*;, / R*

@ http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Nondimensionalization of Motion Data (2/2)

» Oscillation frequency of the physical problem can be specified in different
forms

— f*=frequency (e.g. Hz)
— @ = circular frequency (rad/s)
=2 f*

— k =reduced frequency, k = %2 L* . @ / U* . (be careful of exact
definition - sometimes a factor of 72 is not used)

« Built-in sinusoidal oscillation in FUN3D is defined as sin(2 zft +0) where
the nondimensional frequency f and phase lag 6 are user-specfied

» So the corresponding nondimensional frequency for FUN3D is
— f=1*(L*/ L)/ @% (comp) f=1%(L* /L) Uy (incomp)
- f= (U* (L*ref/ I—ref) / (2 ”a*ref) f= (U* (L*ref/ I—ref) / (2 ”U*ref)
- f=k IVl*ref/ (‘77” Lref) f=k/ (JZ’ Lref)

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Uhsiruciured Navier-Siokes

Overview of moving body.input

* Abody is defined as a collection of solid boundaries in the grid

» The specifics of body / mesh motion are set in one or more namelists that
are put in a file called moving body. input - this file must be provided
when moving grid is triggered (as a CLO or &global entry)

— The &body definitions namelist defines one or more bodies that
move and is always needed in a dynamic-grid simulation

— The &forced motion namelist provides a limited means of defining
basic translations and rotations as functions of time

— The amotion from file namelist defines the motion of a rigid body
from a sequence of 4x4 transform matrices

— The &surface motion from file namelist defines the motion of
a rigid or deformlng body “from a time sequence of boundary surfaces

— The &observer motion namelist provides a means of generating
boundary animation output from a non-stationary reference frame

* 8body definitions is required with moving grid, others optional

@ http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Overview of ébody definitions Namelist

* Only most-used items shown here — see manual for complete list

* The &body definitions namelist defines the bodies that move
(defaults shown; most need changing)

&body definitions ! below, b=body i=boundary
n _moving bodies = 0 ! how many bodies in motion
body name (b) = ‘Y ! must set unique name for each
parent name (b) = ‘Y ! child inherits motion of parent
n _defining boundary(b)= 0 ! how many boundaries define body
defining boundary(i,b)= 0 ! list of boundaries defining body
motion driver (b) = ‘none’ ! mechanism driving body motion

mesh movement (b)

/
» Caution: boundary numbers must reflect any lumping applied at run time!

- All variables above except n moving bodies are set for each body
 The blank string(‘’) for parent name => inertial frame

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Uhsiruciured Navier-Siokes

‘static’ ! specifies how mesh will move

Overview of ébody definitions (cont.)

* Options formotion driver (default: ‘none’)
— ‘forced’
 Built-in forcing functions for rigid-body motion, const. or periodic
— ‘surface file’
 File with surface meshes at selected times; interpolates in between
— ‘motion file’
 File with 4x4 transforms at selected times; “interpolates” in between
— ‘edof’
* relies on calls to “libmo” functions
— ‘aeroelastic’
* modal aeroelastics

— All the above require additional namelists to specify details; next slide
outlines namelist required when motion driver=‘forced’

* Options for mesh _movment (default: ‘static’)
— ‘rigid’

— ‘deform’
@ http://fun3d.larc.nasa.gov @ I\}!,?LEMMW,MS

Overview of &forced motion Namelist

* Use &forced motion namelist to specify a limited set of built-in motions

&forced motion ! below, index b=body#
rotate (b) how to rotate this body: 0 don’t (default);

1 constant rotation rate; 2 sinusoidal in time
rotation rate (b) body rotation rate; used only if rotate =1
rotation freq(b) frequency of oscillation; use only if rotate = 2
rotation_amplitude (b) oscillation amp. (degrees); only if rotate=2
rotation vector_y (b) y-comp. of unit vector along rotation axis
rotation vector z (b) z-comp. of unit vector along rotation axis
rotation origin x(b) x-coord. of rotation center (to fix axis)

rotation origin y(b)

!

!

!

!

!

rotation vector x(b) ! x-comp. of unit vector along rotation axis

!

]

]

! y-coord. of rotation center

!

rotation origin z (b) z-coord. of rotation center

/
 There are analogous inputs for translation (translation_ rate, efc.)

« See manual for complete list

* Note: FUN3D’s sinusoidal oscillation function (translation or rotation) has
277 builtin, e.g sin(2.77 rotation freq t)

@ http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Output Files

* In addition to the usual output files, for forced / 6-DOF motion there are 3
ASCII Tecplot files for each body

— PositionBody N.dat tracks linear (x,y,z) and angular (yaw, pitch,
roll) displacement of the “CG” (rotation center)

— VelocityBody_ N.dat tracks linear (V,,V,,V,) and angular
(Q,,Q ,Q) velocity of the “CG” (rotation center)

— AeroForceMomentBody N.dat tracks force components (F,.F,, F,)
and moment components (M,,M,,M,)

— Data in all files are nondimensional by default (e.g. “forces” are
actually force coefficients); moving body.input file has option to
supply dimensional reference values such that this data is output in
dimensional form - see manual/website for details

— Forces are by default given in the inertial reference system;

moving body.input file has option to output forces in the body-
fixed system - see manual/website for details

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Uhsiruciured Navier-Siokes

Example - Pitching Airfoil (1/8)

» Consider one of the well known AGARD pitching airfoil experiments,
“Case 17;

— Re..=4.8 million, M, ;= 0.6, chord =c*=0.1m, chord-in-grid =1.0
— Reduced freq. k=2 f*/ (U*/0.5¢c*) = 0.0808, (f*=50.32 Hz)
— Angle of attack variation (exp): o =2.89 + 2.4lsin(2jzf*t*) (deg)
« Setting the FUN3D data:
— angle of attack = 2.89 rotation amplitude = 2.41
— Recall f =k M*.;/ 7T from the 2" nondimensionalization slide
— rotation freq=1=0.0808 (0.6)/3.14... = 0.01543166

— So in this case we actually didn’t have to use any dimensional data
since the exp. frequency was given as a reduced (non dim.) frequency

@ http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Example - Pitching Airfoil (2/8)
» Setting the FUN3D data (cont):
— Time step: the motion has gone through one cycle of motion when
t =T, so that
sin(27T rotation freqT) = sin(27)
T=1/rotation freq (thisisourt,)
for N steps /cycle, T =NAt so
At=T/N=(1/rotation freq)/N
— Take 100 steps to resolve this frequency:
At=(1/0.01543166)/ 100 = 0.64801842

— Alternatively, could use t = (1/f*) @*,; (L,ofL" o), With f * = 50.32 Hz,

and assume value for a*,

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Uhsiruciured Navier-Siokes

Example - Pitching Airfoil (3/8)
Z W

| BC's
« 6662 Y=Const. Symmetry Planes (2)
4000 Viscous Surface

9000 Farfield Riemann (3)

A

|
]

11

|

[t
.

17l

FUN3D Training Workshop
http://fun3d.larc.nasa.gov March 24-25, 2014 %?Emmm,m;

Example - Pitching Airfoil (4/8)

 Relevant fun3d.nml data

&global
moving grid = .true.

/

&nonlinear solver parameters
temporal err control = .true. ! Turn on
temporal err floor = 0.1 ! Exit 1 order below estimate
time_ accuracy = "2ndorderOPT” ! Our Workhorse Scheme
time step nondim = 0.64801842 ! 100 steps/pitch cycle
subiterations = 30
schedule cfl = 50.00 50.00 ! constant cfl each step
schedule cflturb = 30.00 30.00

/
* Relevant moving grid.input data

&body definitions

n_moving bodies = 1, number of bodies

!
body name (1) = 'airfoil', ! name must be in quotes

n _defining bndry(l) = 1, ! one boundary defines the airfoil
defining bndry(1,1) = 5, ! (boundary, body)

motion driver (1) = 'forced’

mesh movement (1) = 'rigid’,

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Uhsiruciured Navier-Siokes

Example - Pitching Airfoil (5/8)

* Relevantmoving grid.input data (cont)

&forced motion
rotate (1)
rotation freq(l)
rotation amplitude (1)
rotation origin x(1)
rotation origin y (1)
rotation_origin z (1)

rotation vector x(1)
rotation vector y (1)

rotation vector z (1)

@ http:/fun3d.larc.nasa.gov

O O O O MM o Db

.01543166,
.41,
.25,

type: sinusoidal

reduced rotation frequency
pitching amplitude

x-coordinate of rotation origin
y-coordinate of rotation origin
z-coordinate of rotation origin

unit vector x-component along
rotation axis

unit vector y-component along
rotation axis

unit vector z-component along
rotation axis

Fully Unstructured Navier-Stokes

Example - Pitching Airfoil (6/8)

Sample Subiteration Convergence

(where mean flow just misses tolerance)
(subit_history.lay)

Time History
(time_history.lay)

1-2 I 1 I 1 1 I 1 1 I 1 1 I 1 10-3 F I I I I g 101
1F 10'4; 110°
: |0
0.8 10°]
i > 102
- 1 o~
10. Ho = o B - % - [~ % -1% -8R [R-
/0:6 0 = JO7F | A8 [_[3% [
o - 10°
0.4 107
g 10*
i I i
0.2 1 10% R)
i R g Dashed Lines Indicate H10°
| Example - T R_2 Approx. Temporal Error Estimates | 1
i Starts Here . ———— R_6]
0 | | | | I | | | | I | | | | I | | | | I | | | L 10'9 | | | I | | | I | | I | | I | L 10'8
0 100 200 300 400 500 670 672 674 676 678 680

Simulation_Time Fractional_Time_Step

FUN3D Training Workshop
http://fun3d.larc.nasa.gov March 24-25, 2014 '\fuffmmm,m 21

Example - Pitching Airfoil (7/8)

Mach Number

(mach_animation.lay)

Pressure Coefficient
(cp_animation.lay)

FUN3D Training Worksho
@/ http://fun3d.larc.nasa.gov March 24_295 2014 0 @Nmﬂ?mmm,m 22

0.8

0.6

(&) 0.4

0.2

Example - Pitching Airfoil (8/8)

Comparison with Landon, AGARD-R-702, Test Data,1982

Note: comparison typical of other published CFD results

Lift vs. Alpha
I I | I |
o Experiment
Rigid Mesh, 100 Steps/Cycle

= = = = Deforming Mesh, 100 Steps/Cycle

o, deg

Rigid mesh and deforming

@ http:/fun3d.larc.nasa.gov

0.04

0.03

-0.01

Pitching Moment vs. Alpha

1 1 I 1 I

o] Experiment

Rigid Mesh, 100 Steps/Cycle
= = = = Deforming Mesh, 100 Steps/Cycle

o, deg

mesh produce nearly identical results

Fully Unstructured Navier-Stokes

Troubleshooting Body / Grid Motion

« When first setting up a dynamic mesh problem, suggest using either the
following in the &global namelist

— body motion only = .true.
— grid motion only = .true.

» Both options turn off the flow solution for faster processing (memory
footprint is the same however)

— body motion only especially useful for 15t check of a deforming
mesh case since the elasticity solver is also bypassed

— grid motion_ only performs all mesh motion, including elasticity
solution — in a deforming case this can tell you up front if negative
volumes will be encountered

— Caveat: can't really do this for aeroelastic or 6DOF cases since motion
and flow solution are coupled

» Use these with some form of animation output: only solid boundary output
is appropriate for body motion only; with grid motion only can
look at any boundary, or use sampling to look at interior planes, etc.

@ http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

List of Key Input/Output Files

* Beyond basics like fun3d.nml, etc.:
* Input

— moving body.input (code stops if dynamic mesh and not found)
* Output

— [project] subhist.dat

— PositionBody N.dat (forced motion / 6-DOF only)

— VelocityBody N.dat (forced motion / 6-DOF only)

— AeroForceMomentBody N.dat (forced motion /6-DOF only)

@ http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

