
http://fun3d.larc.nasa.gov

Bob Biedron

FUN3D Training Workshop
March 24-25, 2014 1

FUN3D v12.4 Training

Session 11:
Dynamic-Grid Simulations

http://fun3d.larc.nasa.gov

Session Scope
•  What this will cover

–  How to set up and run time-accurate simulations on dynamic meshes
•  Nondimensionalization
•  Choosing the time step
•  Body / Mesh motion options
•  Input / Output

•  What will not be covered
–  Specifics for overset and aeroelastic: covered in follow-on sessions

•  What should you already be familiar with
–  Basic steady-state solver operation and control
–  Basic flow visualization

FUN3D Training Workshop
March 24-25, 2014 2

http://fun3d.larc.nasa.gov

Introduction
•  Background

–  Many of problems of interest involve involve moving or deforming
geometries

–  Governing equations written in Arbitrary Lagrangian-Eulerian
(ALE) form to account for grid speed

–  Nondimensionalization often more involved/confusing/critical
•  Compatibility

–  Fully compatible for compressible/incompressible flows; mixed
elements; 2D/3D

–  Not compatible with generic gas model
•  Status

–  Compressible path with moving grids is exercised routinely;
incompressible path much less so

–  6-DOF option has had very limited testing / usage

FUN3D Training Workshop
March 24-25, 2014 3

http://fun3d.larc.nasa.gov

Governing Equations
•  Arbitrary Lagrangian-Eulerian (ALE) Formulation

 Arbitrary control surface velocity; Lagrangian if
 (moves with fluid); Eulerian if (fixed in space)
•  Discretize using Nth order backward differences in time, linearize

about time level n+1, and introduce a pseudo-time term:

•  Physical time-level ; Pseudo-time level
•  Need to drive subiteration residual using pseudo-time

subiterations at each time step – much more later – otherwise you
have more error than the expected truncation error
 FUN3D Training Workshop

March 24-25, 2014 4

∂(

QV)
∂t

= − F − q

WT()∂V∫ ⋅

ndS − Fv∂V∫ ⋅
ndS =


R


W =


Q =

q dV
V∫
V


W = 0


W = (u,v,w)T

V n+1

Δτ
+
V n+1φn+1
Δt

"

#
$

%

&
'I −

∂

Rn+1,m

∂

Q

)

*
+

,

-
.Δ

Qn+1,m =


Rn+1,m −

V n+1φn+1
Δt


Qn+1,m −


Qn()−...+


Rn+1
GCL

€

t n

€

τ m
Rn+1,m → 0

=

Rn+1,m +O(Δt N)

€

O(ΔtN)

KEY
POINT


R

http://fun3d.larc.nasa.gov

Mesh / Body Motion (1/2)
•  Motion is triggered either by setting moving_grid = .true. in
&global (fun3d.nml), or by the command line --moving_grid

•  All dynamic-mesh simulations require some input data via an auxiliary
namelist file: moving_body.input

•  A body is defined as a user-specified collection of solid boundaries in grid
•  Body motion options:

–  Several built-in functions for rigid-body motion: translation and/or
rotation with either constant velocity or periodic displacement!

–  Read a series of surface files – body can be either rigid or deforming
–  Read a series of 4x4 transform matrices - rigid body
–  6 DOF via UAB/Kestrel library “libmo”

•  Requires configuring with --with-sixdof=/path/to/6DOF
–  Application-specific: mode-shape based aeroelasticity (linear

structures); rotorcraft nonlinear beam

FUN3D Training Workshop
March 24-25, 2014 5

http://fun3d.larc.nasa.gov

Mesh / Body Motion (2/4)
•  Chose a mesh-motion option than can accommodate the desired

body-motion option
•  Mesh motion options:

–  Rigid - maximum 1 body containing all solid surfaces (unless overset)
–  Deforming – allows multiple bodies without overset; can be limited to

relatively small displacements before mesh cells collapse
–  Combine rigid and/or deforming with overset for large displacements /

multiple bodies
•  Rigid mesh motion performed by application of 4x4 transform matrix to all

points in the mesh - fast; positivity of cell volumes guaranteed to be
maintained
–  Complex transforms can be built up from simple ones: matrix multiply
–  Allows parent-child motion (child follows parent but can have its own

motion on top of that)

FUN3D Training Workshop
March 24-25, 2014 6

http://fun3d.larc.nasa.gov

Mesh / Body Motion (3/4)
•  Mesh deformation handled via solution of a linear elasticity PDE:

–  (Poisson’s ratio) is fixed; E (Young’s modulus) is selectable as:
•  1 / slen --elasticity 1 (default)
•  1 / volume --elasticity 2 (rarely used anymore)
•  1 / slen**2 --elasticity 5 (last ditch for difficult problems)

•  Elasticity solved via GMRES method; CPU intensive - can be 30% or more
of the flow solve time; check convergence (screen output)

•  Fairly robust, but can generate negative cell volumes; code stops
•  “untangling” step attempted if neg. volumes generated – tet meshes only

FUN3D Training Workshop
March 24-25, 2014 7

€

∇ ⋅ [µ(∇u+∇uT)+λ(∇ ⋅ u)I]= f = 0

(1)(1 2)
Eυ

λ
υ υ

=
+ − 2(1)

E
µ

υ
=

+

€

υ

http://fun3d.larc.nasa.gov

Mesh / Body Motion (4/4)
•  GMRES solver used for mesh deformation has default parameter

settings which can be adjusted in the namelist &elasticity_gmres (in
the fun3d.nml file):

 ileft nsearch nrestarts tol
 1 +50 10 1.e-06

–  You generally won’t have to adjust these values
–  Exception: “structured” grids with very tight wake spacing can be very

hard to deform and you may need to set tol very small, e.g. 1.e-12
(and will need more restarts); usually not an issue with typical grids

–  If negative volumes are generated and not successfully untangled, try
reducing tol, which in turn may require a larger value of nrestarts

FUN3D Training Workshop
March 24-25, 2014 8

http://fun3d.larc.nasa.gov

Nondimensionalization of Motion Data (1/2)
•  Recall: * indicates a dimensional variable, otherwise nondimensional
•  Typical motion data we need to nondimensionalize: translational velocity,

translational displacement, angular velocity, and oscillation frequency
•  Angular or translational displacements / velocities are input into FUN3D

as magnitude and direction
•  Displacement input: angular in degrees; translational
•  Translational velocity is nondimensionalized just like flow velocity:

–  U* = translation speed of the vehicle (e.g. ft/s)
–  U = U* / a*ref (comp.; this is a Mach No.) U = U* / U*ref (incomp)

•  Rotation rate:!
–  = body rotation rate (e.g. rad/s)
–  (L*ref/Lref) / a*ref (comp) (L*ref/Lref) / U*ref (incomp)

–  Other variants on specified rotation rate are possible, e.g. rotor tip
speed, from which = U*tip / R*

FUN3D Training Workshop
March 24-25, 2014 9

€

Ω*

€

Ω =Ω*

€

Ω =Ω*

€

Ω*

Δ
x = Δx* / (Lref

* / Lref)

http://fun3d.larc.nasa.gov

Nondimensionalization of Motion Data (2/2)
•  Oscillation frequency of the physical problem can be specified in different

forms
–  f * = frequency (e.g. Hz)
–  = circular frequency (rad/s)
 = 2 f *
–  k = reduced frequency, k = ½ L*ref / U*ref (be careful of exact

definition - sometimes a factor of ½ is not used)
•  Built-in sinusoidal oscillation in FUN3D is defined as sin(2 f t +) where

the nondimensional frequency f and phase lag are user-specfied
•  So the corresponding nondimensional frequency for FUN3D is

–  f = f * (L*ref / Lref) / a*ref (comp) f = f * (L*ref / Lref)/ U*ref (incomp)

–  f = (L*ref / Lref) / (2 a*ref) f = (L*ref / Lref) / (2 U*ref)

–  f = k M*ref / (Lref) f = k / (Lref)

! FUN3D Training Workshop
March 24-25, 2014 10

€

ω*

€

π

€

π

€

ω*

€

ω *

€

ω *

€

π

€

π

€

π

€

π
€

δ

€

δ

http://fun3d.larc.nasa.gov

Overview of moving_body.input
•  A body is defined as a collection of solid boundaries in the grid
•  The specifics of body / mesh motion are set in one or more namelists that

are put in a file called moving_body.input - this file must be provided
when moving_grid is triggered (as a CLO or &global entry)
–  The &body_definitions namelist defines one or more bodies that

move and is always needed in a dynamic-grid simulation
–  The &forced_motion namelist provides a limited means of defining

basic translations and rotations as functions of time
–  The &motion_from_file namelist defines the motion of a rigid body

from a sequence of 4x4 transform matrices
–  The &surface_motion_from_file namelist defines the motion of

a rigid or deforming body from a time sequence of boundary surfaces
–  The &observer_motion namelist provides a means of generating

boundary animation output from a non-stationary reference frame
•  &body_definitions is required with moving_grid , others optional

FUN3D Training Workshop
March 24-25, 2014 11

http://fun3d.larc.nasa.gov

Overview of &body_definitions Namelist
•  Only most-used items shown here – see manual for complete list
•  The &body_definitions namelist defines the bodies that move

(defaults shown; most need changing)
 &body_definitions ! below, b=body i=boundary

 n_moving_bodies = 0 ! how many bodies in motion

 body_name(b) = ‘’ ! must set unique name for each

 parent_name(b) = ‘’ ! child inherits motion of parent

 n_defining_boundary(b)= 0 ! how many boundaries define body

 defining_boundary(i,b)= 0 ! list of boundaries defining body

 motion_driver(b) = ‘none’ ! mechanism driving body motion

 mesh_movement(b) = ‘static’ ! specifies how mesh will move
 /

•  Caution: boundary numbers must reflect any lumping applied at run time!
•  All variables above except n_moving_bodies are set for each body
•  The blank string(‘’) for parent_name => inertial frame

FUN3D Training Workshop
March 24-25, 2014 12

http://fun3d.larc.nasa.gov

Overview of &body_definitions (cont.)
•  Options for motion_driver (default: ‘none’)

–  ‘forced’
•  Built-in forcing functions for rigid-body motion, const. or periodic

–  ‘surface_file’
•  File with surface meshes at selected times; interpolates in between

–  ‘motion_file’
•  File with 4x4 transforms at selected times; “interpolates” in between

–  ‘6dof’
•  relies on calls to “libmo” functions

–  ‘aeroelastic’
•  modal aeroelastics

–  All the above require additional namelists to specify details; next slide
outlines namelist required when motion_driver=‘forced’

•  Options for mesh_movment (default: ‘static’)
–  ‘rigid’
–  ‘deform’ FUN3D Training Workshop

March 24-25, 2014 13

http://fun3d.larc.nasa.gov

Overview of &forced_motion Namelist
•  Use &forced_motion namelist to specify a limited set of built-in motions
 &forced_motion ! below, index b=body#
 rotate(b) ! how to rotate this body: 0 don’t (default);
 ! 1 constant rotation rate; 2 sinusoidal in time
 rotation_rate(b) ! body rotation rate; used only if rotate = 1
 rotation_freq(b) ! frequency of oscillation; use only if rotate = 2
 rotation_amplitude(b) ! oscillation amp. (degrees); only if rotate=2
 rotation_vector_x(b) ! x-comp. of unit vector along rotation axis
 rotation_vector_y(b) ! y-comp. of unit vector along rotation axis
 rotation_vector_z(b) ! z-comp. of unit vector along rotation axis
 rotation_origin_x(b) ! x-coord. of rotation center (to fix axis)
 rotation_origin_y(b) ! y-coord. of rotation center
 rotation_origin_z(b) ! z-coord. of rotation center
 /

•  There are analogous inputs for translation (translation_rate, etc.)
•  See manual for complete list
•  Note: FUN3D’s sinusoidal oscillation function (translation or rotation) has

2 built in, e.g sin(2 rotation_freq t)

FUN3D Training Workshop
March 24-25, 2014 14

€

π

€

π

http://fun3d.larc.nasa.gov

Output Files!
•  In addition to the usual output files, for forced / 6-DOF motion there are 3

ASCII Tecplot files for each body
–  PositionBody_N.dat tracks linear (x,y,z) and angular (yaw, pitch,

roll) displacement of the “CG” (rotation center)
–  VelocityBody_N.dat tracks linear (Vx,Vy,Vz) and angular

() velocity of the “CG” (rotation center)
–  AeroForceMomentBody_N.dat tracks force components (Fx,Fy, Fz)

and moment components (Mx,My,Mx)
–  Data in all files are nondimensional by default (e.g. “forces” are

actually force coefficients); moving_body.input file has option to
supply dimensional reference values such that this data is output in
dimensional form - see manual/website for details

–  Forces are by default given in the inertial reference system;
moving_body.input file has option to output forces in the body-
fixed system - see manual/website for details

FUN3D Training Workshop
March 24-25, 2014 15

€

Ωx,Ωy,Ωz

http://fun3d.larc.nasa.gov

Example - Pitching Airfoil (1/8)
•  Consider one of the well known AGARD pitching airfoil experiments,

“Case 1”:
–  Rec* = 4.8 million, Minf = 0.6, chord = c* = 0.1m , chord-in-grid = 1.0
–  Reduced freq. k = 2 f * / (U*inf / 0.5c*) = 0.0808, (f *= 50.32 Hz)

–  Angle of attack variation (exp): (deg)
•  Setting the FUN3D data:

–  angle_of_attack = 2.89 rotation_amplitude = 2.41
–  Recall f = k M*ref / from the 2nd nondimensionalization slide
–  rotation_freq = f = 0.0808 (0.6) / 3.14… = 0.01543166
–  So in this case we actually didn’t have to use any dimensional data

since the exp. frequency was given as a reduced (non dim.) frequency

!

FUN3D Training Workshop
March 24-25, 2014 16

€

α = 2.89 + 2.41sin(2πf *t*)

€

π

€

π

http://fun3d.larc.nasa.gov

Example - Pitching Airfoil (2/8)
•  Setting the FUN3D data (cont):

–  Time step: the motion has gone through one cycle of motion when
 t = T, so that
 sin(2 rotation_freq T) = sin(2)
 T = 1 / rotation_freq (this is our t chr)

 for N steps / cycle, T = N t so
 t = T / N = (1 /rotation_freq) / N
–  Take 100 steps to resolve this frequency:
 t = (1 / 0.01543166) / 100 = 0.64801842
–  Alternatively, could use tchr = (1/ f *) a*inf (Lref/L*ref), with f * = 50.32 Hz,

and assume value for a*inf

FUN3D Training Workshop
March 24-25, 2014 17

€

π

€

π

€

Δ

€

Δ

€

Δ

http://fun3d.larc.nasa.gov

Example - Pitching Airfoil (3/8)

FUN3D Training Workshop
March 24-25, 2014 18

http://fun3d.larc.nasa.gov

Example - Pitching Airfoil (4/8)
•  Relevant fun3d.nml data

 &global
 moving_grid = .true.
 /
 &nonlinear_solver_parameters
 temporal_err_control = .true. ! Turn on
 temporal_err_floor = 0.1 ! Exit 1 order below estimate
 time_accuracy = "2ndorderOPT” ! Our Workhorse Scheme
 time_step_nondim = 0.64801842 ! 100 steps/pitch cycle
 subiterations = 30
 schedule_cfl = 50.00 50.00 ! constant cfl each step
 schedule_cflturb = 30.00 30.00
 /

•  Relevant moving_grid.input data
&body_definitions
 n_moving_bodies = 1, ! number of bodies
 body_name(1) = 'airfoil', ! name must be in quotes
 n_defining_bndry(1) = 1, ! one boundary defines the airfoil
 defining_bndry(1,1) = 5, ! (boundary, body)
 motion_driver(1) = 'forced’
 mesh_movement(1) = 'rigid’,
/

 !

FUN3D Training Workshop
March 24-25, 2014 19

http://fun3d.larc.nasa.gov

Example - Pitching Airfoil (5/8)
•  Relevant moving_grid.input data (cont)

&forced_motion

 rotate(1) = 2, ! type: sinusoidal

 rotation_freq(1) = 0.01543166, ! reduced rotation frequency

 rotation_amplitude(1) = 2.41, ! pitching amplitude

 rotation_origin_x(1) = 0.25, ! x-coordinate of rotation origin

 rotation_origin_y(1) = 0.0, ! y-coordinate of rotation origin

 rotation_origin_z(1) = 0.0, ! z-coordinate of rotation origin

 rotation_vector_x(1) = 0.0, ! unit vector x-component along
 ! rotation axis

 rotation_vector_y(1) = 1.0, ! unit vector y-component along
 ! rotation axis

 rotation_vector_z(1) = 0.0, ! unit vector z-component along
 ! rotation axis

/

!

FUN3D Training Workshop
March 24-25, 2014 20

http://fun3d.larc.nasa.gov

Example - Pitching Airfoil (6/8)

FUN3D Training Workshop
March 24-25, 2014 21

Simulation_Time

C
_L

C
_M
_y

0 100 200 300 400 5000

0.2

0.4

0.6

0.8

1

1.2

0

C_L
C_M_y

Example
Starts Here

Fractional_Time_Step

R
_2

R
_6

670 672 674 676 678 680
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-6

10-5

10-4

10-3

10-2

10-1

100

101

R_2
R_6

Dashed Lines Indicate
Approx. Temporal Error Estimates

Time History
(time_history.lay)

Sample Subiteration Convergence
(where mean flow just misses tolerance)

(subit_history.lay)

http://fun3d.larc.nasa.gov

Example - Pitching Airfoil (7/8)

FUN3D Training Workshop
March 24-25, 2014 22

Mach Number
(mach_animation.lay)

Pressure Coefficient
(cp_animation.lay)

http://fun3d.larc.nasa.gov

Example - Pitching Airfoil (8/8)

FUN3D Training Workshop
March 24-25, 2014 23

Rigid mesh and deforming mesh produce nearly identical results

α, deg

C
L

0 2 4 60

0.2

0.4

0.6

0.8
Experiment
Rigid Mesh, 100 Steps/Cycle
Deforming Mesh, 100 Steps/Cycle

α, deg

C
m

0 2 4 6-0.01

0

0.01

0.02

0.03

0.04
Experiment
Rigid Mesh, 100 Steps/Cycle
Deforming Mesh, 100 Steps/Cycle

Comparison with Landon, AGARD-R-702, Test Data,1982
Note: comparison typical of other published CFD results

Pitching Moment vs. Alpha Lift vs. Alpha

http://fun3d.larc.nasa.gov

Troubleshooting Body / Grid Motion!
•  When first setting up a dynamic mesh problem, suggest using either the

following in the &global namelist
–  body_motion_only = .true.
–  grid_motion_only = .true.

•  Both options turn off the flow solution for faster processing (memory
footprint is the same however)
–  body_motion_only especially useful for 1st check of a deforming

mesh case since the elasticity solver is also bypassed
–  grid_motion_only performs all mesh motion, including elasticity

solution – in a deforming case this can tell you up front if negative
volumes will be encountered

–  Caveat: can’t really do this for aeroelastic or 6DOF cases since motion
and flow solution are coupled

•  Use these with some form of animation output: only solid boundary output
is appropriate for body_motion_only; with grid_motion_only can
look at any boundary, or use sampling to look at interior planes, etc.

FUN3D Training Workshop
March 24-25, 2014 24

http://fun3d.larc.nasa.gov

List of Key Input/Output Files
•  Beyond basics like fun3d.nml, etc.:
•  Input

–  moving_body.input (code stops if dynamic mesh and not found)
•  Output

–  [project]_subhist.dat
–  PositionBody_N.dat (forced motion / 6-DOF only)
–  VelocityBody_N.dat (forced motion / 6-DOF only)
–  AeroForceMomentBody_N.dat (forced motion / 6-DOF only)

FUN3D Training Workshop
March 24-25, 2014 25

