FUN3D v12.7 Training Session 11: Time-Dependent Simulations

Bob Biedron

http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015

Session Scope

- · What this will cover
 - How to set up and run time-accurate simulations on static meshes
 - · Subiteration convergence: what to strive for and why
 - Nondimensionalization
 - · Choosing the time step
 - Input / Output
- · What will not be covered
 - Moving-mesh, aeroelastics (covered in follow-on sessions)
- · What should you already be familiar with
 - Basic steady-state solver operation and control
 - Basic flow visualization

http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015

Introduction

- · Background
 - Many of problems of interest involve unsteady flows and may also involve moving geometries
 - Governing equations written in Arbitrary Lagrangian-Eulerian (ALE) form to account for grid speed
 - Nondimensionalization often more involved/confusing/critical
- Compatibility
 - Compressible/incompressible paths
 - Mixed elements; 2D/3D
 - Dynamic grids
 - Not compatible with generic gas model
- Status
 - Incompressible path exercised very infrequently for unsteady flows

http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015

3

Governing Equations

• Arbitrary Lagrangian-Eulerian (ALE) Formulation

$$\frac{\partial (\vec{Q}V)}{\partial t} = -\oint_{\partial V} \left(\overline{\overline{F}} - \vec{q}\vec{W}^T \right) \cdot \vec{n}dS - \oint_{\partial V} \overline{\overline{F_v}} \cdot \vec{n}dS = \vec{R}$$

$$\vec{Q} = \frac{\oint_{V} \vec{q} \, dV}{V}$$

 \vec{W} = Arbitrary control surface velocity; Lagrangian if \vec{W} = $(u, v, w)^T$ (moves with fluid); Eulerian if \vec{W} = 0 (fixed in space)

• Discretize using Nth order backward differences in time, linearize \vec{R} about time level n+1, and introduce a pseudo-time term:

$$\left[\left(\frac{V^{n+1}}{\Delta \tau} + \frac{V^{n+1}\phi_{n+1}}{\Delta t}\right)^{\frac{1}{L}} - \frac{\partial \vec{R}^{n+1,m}}{\partial \vec{Q}}\right] \Delta \vec{Q}^{n+1,m} = \vec{R}^{n+1,m} - \frac{V^{n+1}\phi_{n+1}}{\Delta t} \left(\vec{Q}^{n+1,m} - \vec{Q}^{n}\right) - \dots + \vec{R}^{n+1}_{GCL}$$

$$= \overline{\vec{R}^{n+1,m}} + O(\Delta t^{N})$$

- Physical time-level $t^{^n}$; Pseudo-time level $au^{^m}$
- Want to drive **subiteration residual** $\vec{R}^{n+1,m} \to 0$ using pseudo-time subiterations at each time step more later otherwise you have more error than the expected $O(\Delta t^N)$ truncation error

http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015

Time Advancement - Namelist Input

- The &nonlinear_solver_parameters namelist in the fun3d.nml file governs how the solution is advanced in time
- Relevant entries default values shown some definitely need changing:

• Let's look at these in some detail (defer time_step_nondim to last)

http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015

Time Advancement - Order of Accuracy

- Currently have several types of backward difference formulae (BDF) that are controlled by the time accuracy component:
 - In order of formal accuracy: BDF1 (1storder), BDF2 (2ndorder), BDF2_{OPT} (2ndorderOPT), BDF3 (3rdorder), MEBDF4 (4thorderMEBDF4)
 - Can pretty much ignore all but BDF2_{OPT} and BDF2
 - BDF1 is least accurate; little gain in CPU time / step over 2nd order; for moving grids can be helpful to start out with BDF1 (rare)
 - BDF3 not guaranteed to be stable; feeling lucky?
 - MEBDF4 only efficient if working to very high levels of accuracy including spatial accuracy - generally not for practical problems
 - BDF2_{OPT} (recommended) is a stable blend of BDF2 and BDF3 schemes; formally 2nd order accurate but error is ~1/2 that of BDF2; also allows for a more accurate estimate of the temporal error for the error controller (p.8)

http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015

Time Advancement - Subiterations (1/4)

- Can think of each time step as a mini steady-state problem
- Subiterations (subiterations > 0) are essential
 - Subiteration control in each time step operates exactly like iteration control in a steady state case:
 - CFL ramping is available for mean flow and turbulence model however, be aware that ramping schedule should be
 - < subiterations or the specified final CFL won't be obtained
 - We almost never ramp CFL for time-accurate cases
 - If used, CFL ramping starts over each time step
 - Caution: the *spatial* accuracy flag, first_order_iterations, starts over each time step, so make sure you don't have this on
- · Pseudo-time term helpful for large time steps
 - We always use it in our applications
 - pseudo time stepping = "on" (default)

http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015

7

Time Advancement - Subiterations (2/4)

- · How many subiterations?
 - In theory, should drive subiteration residual "to zero" each time step but you cannot afford to do that
 - Otherwise have additional errors other than $O(\Delta t^2)$ (if 2nd order time)
- In a perfect world, the answer is to use the temporal error controller
 - temporal err control = .true.
 - temporal_err_floor = 0.1 => iterate until the subiteration residual is 1 order lower than the (estimated) temporal error (0.01 => 2)
 - Subiterations kick out when this level of convergence is reached OR subiteration counter > subiterations
 - (empirically) 1 order is about the minimum; 2 orders is better, BUT...
 - Often, either the turbulence residual converges slowly or the mean flow does, and the max subiterations you specify will be reached
 - When it kicks in, the temporal error controller is the best approach, and the most efficient; even if it doesn't kick in, it can be informative

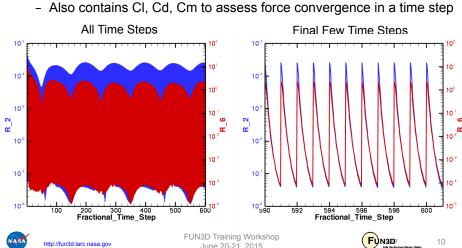
http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015

Time Advancement - Subiterations (3/4)

- Be wary reaching conclusions about the effect of time-step refinement unless the subiterations are "sufficiently" converged for each size step
- How to monitor and assess the subiteration convergence:
 - Printed to the screen, so you can "eyeball" it
 - With temporal error controller, if the requested tolerance is not met, message(s) will be output to the screen:
 - WARNING: mean flow subiterations failed to converge to specified temporal err floor level
 - WARNING: turb flow subiterations failed to converge to specified temporal err floor level
 - Note: when starting unsteady mode, first timestep never achieves target error (no error estimate first step, so target is 0)
 - Note: x-momentum residual (R 2) is the mean-flow residual targeted by the error controller
 - Plot it (usually best)

http://fun3d.larc.nasa.gov


FUN3D Training Workshop June 20-21, 2015

9

Time Advancement - Subiterations (4/4)

- Tecplot file (ASCII) with subiteration convergence history is output to a file: [project] subhist.dat
 - Plot (on log scale) R_2 (etc) VS Fractional_Time_Step

Nondimensionalization of Time

- Notation: * indicates a dimensional variable, otherwise nondimensional; the reference flow state is usually free stream (" ∞ "), but need not be
- Define
 - L*_{ref} = reference length of the physical problem (e.g. chord in ft)
 - L_{ref} = corresponding length in your grid (considered nondimensional)
 - a*_{ref} = reference speed of sound (e.g. ft/sec) (compressible)
 - U*_{ref} = reference velocity (e.g. ft/sec; compressible: U*_{ref} = Mach a*_{ref})
 - t* = time (e.g. sec)
- Then nondimensional time in FUN3D is related to physical time by:
 - $t = t^* a^*_{ref} (L_{ref}/L^*_{ref})$ (compressible)
 - $t = t^* U^*_{ref} (L_{ref}/L^*_{ref})$ (incompressible)
 - Usually have $L_{ref}/L_{ref}^* = 1^*$, but need not e.g. typical 2D airfoil grid
 - L_{ref}/L*_{ref} appears because Re in FUN3D is input per unit grid length

http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015

11

Determining the Time Step

- Identify a characteristic time t*_{chr} that you need to resolve with some level of accuracy in your simulation; perhaps:
 - Some important shedding frequency f^*_{shed} (Hz) is known or estimated $t^*_{chr} \sim$ 1 / f^*_{shed}
 - Periodic motion of the body ${\rm t^*_{chr}} \sim 1$ / ${\rm f^*_{motion}}$
 - A range of frequencies in a DES-type simulation t*_{chr} ~ 1 / f*_{highest}
 - If none of the above, you can estimate the time it takes for a fluid particle to cross the characteristic length of the body, $t^*_{chr} \sim L^*_{ref}/U^*_{ref}$
 - $t_{chr} = t_{chr}^* a_{ref}^* (L_{ref}/L_{ref}^*)$ (comp) $t_{chr} = t_{chr}^* U_{ref}^* (L_{ref}/L_{ref}^*)$ (incomp)
- · Say you want N time steps within the characteristic time:
 - $-\Delta t = t_{chr}/N = time_step_nondim$
- Figure an absolute *minimum* of N = 100 for reasonable resolution of t_{chr} with a 2nd order scheme really problem dependent (*frequencies* > *f* may be important*); but don't over resolve time if space is not well resolved too

http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015

Tutorial Case: Unsteady Flow, High AoA (1/7)

- Test case located in: tutorials/flow_unsteady_airfoil_high_AoA
 - run_tutorial.sh script starts with a 2000 time step restart file, runs an additional 100 steps, and makes plots that follow
- Consider flow past a (2D) NACA 0012 airfoil at 45° angle of attack the flow separates and is unsteady
 - $Re_{c^*} = 4.8 \text{ million}, M_{ref} = 0.6, assume a^*_{ref} = 340 \text{ m/s}$
 - chord = 0.1m, chord-in-grid = 1.0 so $L_{ref}/L_{ref}^* = 1.0/0.1 = 10 \text{ (m}^{-1})$
 - Say we know from experiment that lift oscillations occur at ~450 Hz
 - $t_{chr}^* = 1 / f_{chr}^* = 1 / 450 Hz = 0.002222 s$
 - $t_{chr} = t_{chr}^* a_{ref}^* (L_{ref}/L_{ref}^*) = (0.002222)(340)(10) = 7.555$
 - $-\Delta t = t_{chr}/N$ so $\Delta t = 0.07555$ for 100 steps / lift cycle
 - By way of comparison, for M = 0.6, a^*_{ref} = 340 m/s, and L^*_{ref} = 0.1 m it takes a fluid particle ~ (0.1)/(204) = 0.00049 s to pass by the airfoil; this leads to smaller, more conservative estimate for the time step, by about a factor of 4

http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015

FUN3D)
Fally Unstructured Navier-States

13

Tutorial Case: Unsteady Flow, High AoA (2/7) BC's 8662 Y=Const. Symmetry Planes (2) 4000 Viscous Surface 5000 Farfield Riemann (3) FUN3D Training Workshop June 20-21, 2015

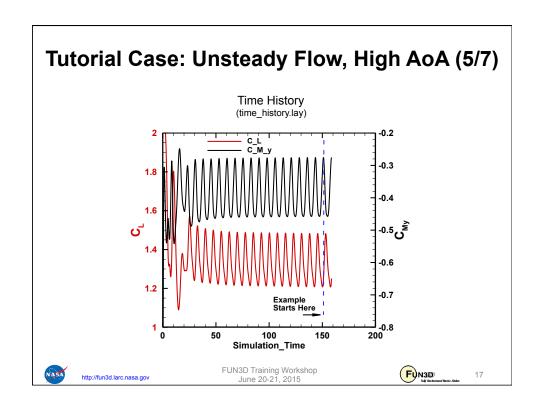
Tutorial Case: Unsteady Flow, High AoA (3/7)

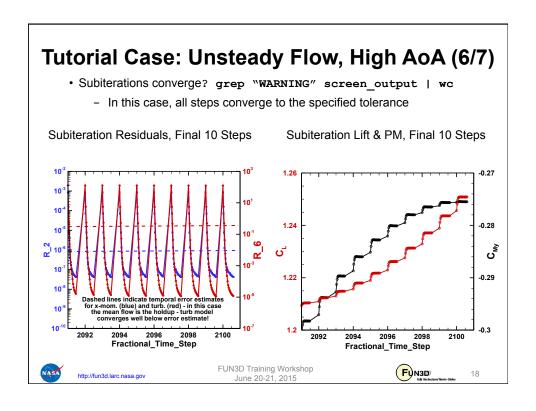
- · Flow viz: output u-velocity and y-component of vorticity
- Relevant fun3d.nml namelist data (note: many defaults assumed)

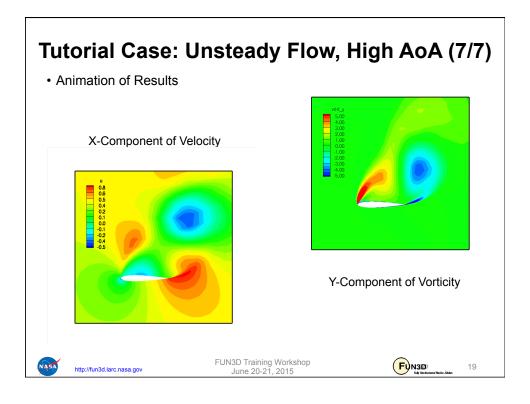
```
&project
  project_rootname = "n0012_i153"
   case_title = "NACA 0012 airfoil, 2D Hex Mesh"
&global
  boundary_animation_freq = 5
&raw_grid
    grid_format = "aflr3"
    data_format = "ASCII"
    twod mode = .true.
{\tt \&reference\_physical\_properties}
  mach_number
                    = 0.60
  reynolds number = 4800000.00
   temperature
                    = 520.00
   temperature_units = 'Rankine'
   angle_of_attack = 45.0
```


http://fun3d.larc.nasa.gov

FUN3D Training Workshop




15


Tutorial Case: Unsteady Flow, High AoA (4/7)

Relevant fun3d.nml namelist data (cont)

```
&force_moment_integ_properties
    x_moment_center = 0.25
&nonlinear_solver_parameters
   time_accuracy = "2ndorderOPT" ! Our Workhorse Scheme
   time_step_nondim
                     = 0.07555 ! 100 steps/cycle @ 450 Hz
   temporal_err_control = .true.
                                      ! Enable error-based kickout
   temporal_err_floor = 0.1
                                       ! Exit 1 order below error estimate
                       = 30
   subiterations
                                       ! No more than 30
                     = 50.00 50.00 ! constant cfl each step; no ramping
   schedule_cfl
   schedule_cflturb = 30.00 30.00
&code_run_control
               = 100 ! need ~2000 steps to be periodic from freestream
   steps
&boundary_output_variables
  primitive_variables = .false. ! turn off default
  y = .false.
                 ! So tecplot displays correct 2D orientation by default
  u = .true.
  vort_y = .true.
                        FUN3D Training Workshop
                                                        FUN3D
                                                                     16
 http://fun3d.larc.nasa.gov
```


List of Key Input/Output Files

- Beyond basics like fun3d.nml, etc.:
- Input
 - none
- Output
 - [project]_subhist.dat
 - Use to check subiteration residual and force/moment convergence

NASA

http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015 FUN3D fall the backword Novice-States