FUN3D v12.7 Training

Session 12:
Dynamic-Grid Simulations

Bob Biedron

FUNS3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 N.?Emmw 1

Session Scope

* What this will cover
— How to set up and run time-accurate simulations on dynamic meshes
* Nondimensionalization
» Choosing the time step
* Body / Mesh motion options
* Input / Output
» What will not be covered
— Specifics for overset and aeroelastic: covered in follow-on sessions
» What should you already be familiar with
— Basic steady-state solver operation and control
— Basic flow visualization

FUNS3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 N.?Emmw 2

FUN3D Training Workshop

6/9/15

6/9/15

Introduction

» Background
— Many of problems of interest involve involve moving or deforming

geometries
— Governing equations written in Arbitrary Lagrangian-Eulerian

(ALE) form to account for grid speed
— Nondimensionalization often more involved/confusing/critical

» Compatibility
— Fully compatible for compressible/incompressible flows; mixed

elements; 2D/3D
— Not compatible with generic gas model
« Status
— Compressible path with moving grids is exercised routinely;
incompressible path much less so
— 6-DOF option has had very limited testing / usage

FUN3D Training Workshop @NSD 3
i

@ http://fun3d.larc.nasa.gov June 20-21, 2015

Governing Equations

* Arbitrary Lagrangian-Eulerian (ALE) Formulation
$ gav

17(QV)=_éﬁv(f_éWT).ﬁdS_Eﬁva-ﬁdS=1§ 0=

ot
W = Arbitrary control surface velocity; Lagrangian if W =(u,v,w)"

(moves with fluid); Eulerian if W =0 (fixed in space)

« Discretize using Nt order backward differences in time, linearize R
about time level n+1, and introduce a pseudo-time term:

n+1¢ R N _
1
21(QM - 0") -+ Ry

Aéml,m — R’n+l,m _
- Rn+l,m + O(AIN)

At

At At

* Physical time-level t" ; Pseudo-time level "

- Need to drive subiteration residual R™" —0 using pseudo-time
subiterations at each time step — more later — otherwise you have

N .
more error than the expected O(At") truncation error
FUNS3D Training Workshop @NSD 4

@ http://fun3d.larc.nasa.gov June 20-21, 2015

n+l n+l — pn+lm
vV,)7 oR”
70

FUN3D Training Workshop

6/9/15

Mesh / Body Motion (1/2)

* Motion is triggered either by setting moving grid = .true. in
&global (fun3d.nml), or by the command line --moving grid

* All dynamic-mesh simulations require some input data via an auxiliary
namelist file: moving body.input

» A body is defined as a user-specified collection of solid boundaries in grid
» Body motion options:

— Several built-in functions for rigid-body motion: translation and/or
rotation with either constant velocity or periodic displacement

— Read a series of surface files — body can be either rigid or deforming
— Read a series of 4x4 transform matrices - rigid body
— 6 DOF via UAB/Kestrel library “libmo”

* Limited distribution

* Requires configuring with --with-sixdof=/path/to/6DOF

— Application-specific: mode-shape based aeroelasticity (linear
structures); rotorcraft nonlinear beam

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2024, 2015 @N.?Emmw °

Mesh / Body Motion (2/4)

» Chose a mesh-motion option than can accommodate the desired
body-motion option
* Mesh motion options:
— Rigid - maximum 1 body containing all solid surfaces (unless overset)
— Deforming — allows multiple bodies without overset; can be limited to
relatively small displacements before mesh cells collapse

— Combine rigid and/or deforming with overset for large displacements /

multiple bodies
* Rigid mesh motion performed by application of 4x4 transform matrix to all

points in the mesh - fast; positivity of cell volumes guaranteed to be

maintained

— Complex transforms can be built up from simple ones: matrix multiply

— Allows parent-child motion (child follows parent but can have its own
motion on top of that)

FUNS3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 N.?Emm&_‘ 6

FUN3D Training Workshop 3

6/9/15

Mesh / Body Motion (3/4)

» Mesh deformation handled via solution of a linear elasticity PDE:
V- [uw(Vu+ VuT) +AV-wl]l=f=0
he By E
(1+v)(1-2v) 2(1+v)
— v (Poisson’s ratio) is fixed; E (Young’s modulus) is selectable as:

* 1/slen --elasticity 1 (default)
* 1/volume --elasticity 2 (rarely used anymore)
* 1/slen**2 --elasticity 5 (last ditch for difficult problems)

» Elasticity solved via GMRES method; CPU intensive - can be 30% or more
of the flow solve time; check convergence (screen output)

* Fairly robust, but can generate negative cell volumes; code stops
* “untangling” step attempted if neg. volumes generated — tet meshes only

FUNS3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 N.?Emmw 7

Mesh / Body Motion (4/4)

* GMRES solver used for mesh deformation has default parameter
settings which can be adjusted in the namelist selasticity gmres (in
the fun3d.nml file):

ileft nsearch nrestarts tol
1 +50 10 l.e-06

— You generally won’t have to adjust these values

— Exception: “structured” grids with very tight wake spacing can be very
hard to deform and you may need to set tol very small, e.g. 1.e-12
(and will need more restarts); usually not an issue with typical grids

— If negative volumes are generated and not successfully untangled, try
reducing tol, which in turn may require a larger value of nrestarts

FUNS3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 N.?Emmw 8

FUN3D Training Workshop 4

6/9/15

Nondimensionalization of Motion Data (1/2)

« Recall: * indicates a dimensional variable, otherwise nondimensional

* Typical motion data we need to nondimensionalize: translational velocity,
translational displacement, angular velocity, and oscillation frequency

» Angular or translational displacements / velocities are input into FUN3D
as magnitude and direction

+ Displacement input: angular in degrees; translational Ax=Ax"/(L,,

+ Translational velocity is nondimensionalized just like flow velocity:

/ Lrﬂf)

— U* = translation speed of the vehicle (e.g. ft/s)
- U =U*/a*, (comp.; thisis a Mach No.) U =U*/U*(incomp)
* Rotation rate:
-Q'= body rotation rate (e.g. rad/s)
~ Q= Q" (Leflre) / @%s (COMP) Q= Q (L¥ilLye) / U (incomp)

— Other variants on specified rotation rate are possible, e.g. rotor tip
speed, from which Q"= U*;, / R*

FUNS3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 N.?Emm&_‘ 9

Nondimensionalization of Motion Data (2/2)

* Oscillation frequency of the physical problem can be specified in different
forms

— f*=frequency (e.g. Hz)
— @ = circular frequency (rad/s)
=2mf*

— k =reduced frequency, k = % L* s @'/ U* (be careful of exact
definition - sometimes a factor of 2 is not used)

« Built-in sinusoidal oscillation in FUN3D is defined as sin(2 7ft + 96) where
the nondimensional frequency f and phase lag § are user-specfied

» So the corresponding nondimensional frequency for FUN3D is
— =" (L*f/ Lieg) / @%es (cOmp) f=F* (L* ¢/ Lieg)/ U* ¢ (incomp)

-f=ow (L*ref/ Lref) / (Zﬂ'a*ref) f=w (L*ref/ Lref) / (2 ”U*ref)
- f=k M*ref/ (ﬂ Lref) f=k/ (” Lref)
@ http://fun3d.larc.nasa.gov FUN iﬁwgg‘[‘;j;?, g/gwréshop @N.?Emmw 10

FUN3D Training Workshop 5

6/9/15

Overview of moving body.input

» A body is defined as a collection of solid boundaries in the grid

* The specifics of body / mesh motion are set in one or more namelists that
are put in a file called moving_body . input - this file must be provided
when moving grid is triggered (as a CLO or &global entry)

— The &body_definitions namelist defines one or more bodies that
move and is always needed in a dynamic-grid simulation

— The &forced_motion namelist provides a limited means of defining
basic translations and rotations as functions of time

— The smotion_from_file namelist defines the motion of a rigid body
from a sequence of 4x4 transform matrices

— The &surface_motion_from file namelist defines the motion of
a rigid or deforming body from a time sequence of boundary surfaces

— The sobserver_motion namelist provides a means of generating
boundary animation output from a non-stationary reference frame

* §body_definitions is required with moving grid, others optional

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2024, 2015 @N.?Emmw o

Overview of sbody definitions Namelist

* Only most-used items shown here — see manual for complete list

* The sbody_definitions namelist defines the bodies that move
(defaults shown; most need changing)

&body definitions ! below, b=body i=boundary
n_moving bodies = 0 ! how many bodies in motion
body_ name (b) = ‘' ! must set unique name for each

parent name (b) /! child inherits motion of parent

n_defining boundary(b)= 0 ! how many boundaries define body
defining boundary(i,b)= 0 ! list of boundaries defining body
motion_driver (b) = ‘none’ ! mechanism driving body motion
mesh_movement (b) = ‘static’ ! specifies how mesh will move

/
» Caution: boundary numbers must reflect any lumping applied at run time!
* All variables above except n_moving bodies are set for each body
* The blank string(’) for parent_name => inertial frame

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2021, 2015 @N.?Emmw 2

FUN3D Training Workshop 6

6/9/15

Overview of sbody definitions (cont.)

* Options for motion_driver (default: *‘none’)

— ‘forced’

+ Built-in forcing functions for rigid-body motion, const. or periodic

— ‘surface_file’
* File with surface meshes at selected times; interpolates in between
‘motion file’
* File with 4x4 transforms at selected times; “interpolates” in between
‘6dof’
* relies on calls to “libmo” functions

‘aeroelastic’
* modal aeroelastics

All the above require additional namelists to specify details; next slide
outlines namelist required when motion_driver=‘forced’

* Options for mesh_movment (default: *static’)

— ‘rigid’, ‘deform’, ‘rigid+deform’

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2024, 2015 @N.?Emmw 8

Overview of &forced motion Namelist

* Use &forced_motion namelist to specify a limited set of built-in motions

&forced motion ! below, index b=body#

rotate (b) how to rotate this body: 0 don’t (default);

1 constant rotation rate; 2 sinusoidal in time
body rotation rate; used only if rotate =1
frequency of oscillation; use only if rotate = 2

1
!

rotation_rate (b) !

rotation_freq(b) !

rotation_amplitude(b) ! oscillation amp. (degrees); only if rotate=2

rotation_vector x(b) ! x-comp. of unit vector along rotation axis

rotation_vector_y(b) ! y-comp. of unit vector along rotation axis

rotation_vector_z(b) !

rotation_origin x(b) !

rotation_origin_y(b) !

rotation_origin_z(b) !

/
* There are analogous inputs for translation (translation_rate, etc.)

» See manual for complete list

z-comp. of unit vector along rotation axis
x-coord. of rotation center (to fix axis)
y-coord. of rotation center

z-coord. of rotation center

* Note: FUN3D’s sinusoidal oscillation function (translation or rotation) has
27 builtin, e.g sin(27 rotation_freq t)

FUNSD Training Worksho
@ hitpifun3d lrc.nasa gov Jone 2095 20150 @rﬂ:mm& 14

FUN3D Training Workshop 7

6/9/15

Output Files

* In addition to the usual output files, for forced / 6-DOF motion there are 3
ASCII Tecplot files for each body

— PositionBody_ N.dat tracks linear (x,y,z) and angular (yaw, pitch,
roll) displacement of the “CG” (rotation center)

— VelocityBody N.dat tracks linear (V,,V,,V,) and angular
(Q,,Q ,Q)) velocity of the “CG” (rotation center)

— ReroForceMomentBody N.dat tracks force components (F,,F,, F,)
and moment components (MX,My,MX)

— Data in all files are nondimensional by default (e.g. “forces” are
actually force coefficients); moving _body.input file has option to
supply dimensional reference values such that this data is output in
dimensional form - see manual/website for details

— Forces are by default given in the inertial reference system;
moving body.input file has option to output forces in the body-
fixed system - see manual/website for details

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2024, 2015 @N.?Emmw 5

Tutorial Case: Pitching Airfoil (1/8)

+ Test case located in: tutorials/flow_unsteady_airfoil_pitching

- run_tutorial. sh script starts with a 600 time step restart file, runs
an additional 100 steps, and makes plots that follow

* Consider one of the well known AGARD pitching airfoil experiments,
“Case 1”

— Re, = 4.8 million, M;,;=0.6, chord=c*=0.1m, chord-in-grid =1.0
— Reduced freq. k =277 */ (U*,;/ 0.5¢*) = 0.0808, (f *=50.32 Hz)
— Angle of attack variation (exp): & =2.89 + 2.41sin(2af t') (deg)
* Setting the FUN3D data:
— angle_of_attack = 2.89 rotation_amplitude = 2.41
— Recall f=k M*/ 7T from the 2" nondimensionalization slide
— rotation_freq=1f=0.0808 (0.6)/3.14... = 0.01543166

— So in this case we actually didn’t have to use any dimensional data
since the exp. frequency was given as a reduced (non dim.) frequency

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2021, 2015 @N.?Emmw 16

FUN3D Training Workshop 8

Tutorial Case: Pitching Airfoil (2/8)

« Setting the FUN3D data (cont):
— Time step: the motion has gone through one cycle of motion when
t =T, so that

sin(27T rotation_freqT) =sin(27)
T=1/rotation_freq (thisisourt,)
for N steps / cycle, T=NAt so
At=T/N=(1/rotation_freq)/N

— Take 100 steps to resolve this frequency:
At=(1/0.01543166) / 100 = 0.64801842

— Alternatively, could use t, = (1/f*) @* (L L"), With f* = 50.32 Hz,

and assume value for a*

chr

inf

FUN3D Training Worksho
@ http://fun3d.larc.nasa.gov June 20-2?, 2015 . @N,.,?Emmw 17

Tutorial Case: Pitching Airfoil (3/8)

C's
8662 Y=Const. Symmetry Planes (2)
4000 Viscous Surface

\\\\\ 5000 Farfield Riemann (3)

Y
N\
sl
-‘

FUN3D Training Worksho
@ http://fun3d.larc.nasa.gov June 20-2?, 2015 . @N,.,?Emmw 18

FUN3D Training Workshop

6/9/15

Tutorial Case: Pitching Airfoil (4/8)

¢ Relevant fun3d.nml data

&global
moving_grid = .true.

/

&nonlinear solver parameters
temporal_err_control = .true. ! Turn on
temporal err floor = 0.1 ! Exit 1 order below estimate
time_accuracy = "2ndorderOPT” ! Our Workhorse Scheme
time_step nondim = 0.64801842 ! 100 steps/pitch cycle
subiterations = 30
schedule cfl = 50.00 50.00 ! constant cfl each step
schedule_cflturb = 30.00 30.00

/

* Relevant moving grid.input data

&body_definitions

n_moving_bodies = 1, ! number of bodies
body_name (1) = 'airfoil', ! name must be in quotes
n_defining bndry(l) = 1, ! one boundary defines the airfoil
defining bndry(1,1) = 5, ! (boundary, body)
motion_driver (1) = 'forced’
mesh_movement (1) = 'rigid’,
@ /hltp://funSd,Iarc.nasa.gov FUN?EHEEBW_I;?V Vz\/élwr EShOp @N.?Emmw 19

Tutorial Case: Pitching Airfoil (5/8)

* Relevantmoving grid.input data (cont)

&forced motion

rotate (1) = 2, ! type: sinusoidal
rotation_freq(l) = 0.01543166, ! reduced rotation frequency
rotation_amplitude(1l) = 2.41, ! pitching amplitude
rotation_origin x(1) = 0.25, ! x-coordinate of rotation origin
rotation_origin_y(1) = 0.0, ! y-coordinate of rotation origin
rotation_origin_z (1) = 0.0, ! z-coordinate of rotation origin
rotation_vector_x(1) = 0.0, ! unit vector x-component along

! rotation axis
rotation_vector_y (1) = 1.0, ! unit vector y-component along

! rotation axis
rotation_vector_z(l) = 0.0, ! unit vector z-component along

! rotation axis

/
@ hitp://fun3d.arc.nasa.gov FUN?E mz;g_i; ? vzvg ;EShOp @"fﬂfmm& 20

FUN3D Training Workshop

6/9/15

10

6/9/15

Tutorial Case: Pitching Airfoil (6/8)

Time History
(time_history.lay)
1.2 — — — — 0.02
- 0.01
] 2
- 0 o
- -0.01
I Example)
s Starts Here 1
L L1 N IR BRI N —J _0.02
0 100 200 300 400 500
Simulation_Time
FUNS3D Training Worksh
@ hitp:#un3d arc.nasa. gov Jone 2095 2015 " @rﬂ:mm& 21

Tutorial Case: Pitching Airfoil (6/8)

Subiteration Residuals, Final 10 Steps Subiteration Lift & PM, Final 10 Steps
(mean flow just misses tolerance)

(subit_history.lay) (subit_force_history.lay)
e T 310 04 ——————————————————— 0
10* 1

-0.002
10°
0.004
. 1% % |8 - 2
110] i - - %)
A 0.006
10"5
10"7 1 | -0.008
E Dashed Lines Indicate 10°]
Approx. Temporal Error Estimates|
ol R R RS SAET Pp P R SR R S S
Yero ez o4 et o8 e80 O%90 692 694 696 698 700 OO
Fractional_Time_Step Fractional_Time_Step
FUN3D Training Worksh:
@ http://fun3d.larc.nasa.gov Jumergg_lgwgv 281"55 op @N.?Emm& 22

FUN3D Training Workshop 11

@/ http://fun3d.larc.nasa.gov

Tutorial Case: Pitching Airfoil (7/8)

Mach Number

(mach_animation.lay)

Pressure Coefficient
(cp_animation.lay)

FUNS3D Training Workshop @

June 20-21, 2015 N3D. 23

ol st e St

Tutorial Case: Pitching Airfoil (8/8)

Comparison with Landon, AGARD-R-702, Test Data,1982
Note: comparison typical of other published CFD results
These plots not generated as part of the tutorial

@/ http://fun3d.larc.nasa.gov

Lift vs. Alpha Pitching Moment vs. Alpha

0.8 —_— 0.04 ————————————————
) Experiment i o Experiment]
Rigid Mesh, 100 Steps/Cycle [Rigid Mesh, 100 Steps/Cycle]
| = = - - Deforming Mesh, 100 Steps/Cycle | - = = - Deforming Mesh, 100 Steps/Cycle 1
B 0.03 -
06| b []
0.02 - —
- £ I]
Q 04 - [(8) L i
0.01 - —
02} < []
| of g

o— ; L ,|1 — oo b ; M };
a, deg a, deg

Rigid mesh and deforming mesh produce nearly identical results

N3D 24

ol st e St

FUN3D Training Workshop @
June 20-21, 2015

FUN3D Training Workshop

6/9/15

12

Troubleshooting Body / Grid Motion

* When first setting up a dynamic mesh problem, suggest using either the
following in the &global namelist
— body motion_only = .true.
— grid motion_only = .true.
» Both options turn off the flow solution for faster processing (memory
footprint is the same however)
— body motion_only especially useful for 15t check of a deforming
mesh case since the elasticity solver is also bypassed
— grid _motion_only performs all mesh motion, including elasticity
solution — in a deforming case this can tell you up front if negative
volumes will be encountered
— Caveat: can’t really do this for aeroelastic or 6DOF cases since motion
and flow solution are coupled
* Use these with some form of animation output: only solid boundary output

is appropriate for body _motion_only; with grid motion_only can
look at any boundary, or use sampling to look at interior planes, etc.

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2024, 2015 @N.?Emmw 25

List of Key Input/Output Files

* Beyond basics like fun3d.nml, etc.:

— Setmoving _grid = .true. in &global namelist
* Input

— moving body.input (else code stops when moving_grid = T)
* Output

— [project]_subhist.dat

— PositionBody_ N.dat (forced motion / 6-DOF only)

— VelocityBody N.dat (forced motion / 6-DOF only)

— AeroForceMomentBody N.dat (forced motion / 6-DOF only)

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2021, 2015 @N.?Emmw 26

FUN3D Training Workshop

6/9/15

13

