FUN3D v12.4 Training

Session 13:
Overset-Grid Simulations

Session Scope

 \What this will cover

— Static and dynamic simulations in FUN3D using overset meshes
and SUGGAR++ /DiRTlib

« What will not be covered
— SUGGAR++ operation (see “SUGGAR++ Basics” session)
« What should you already be familiar with

— Basic time-accurate and dynamic-mesh solver operation and
control

@l http://fun3d.larc.nasa.gov @ I\f!ggmmumm;

Introduction

« Background

— Many moving-body problems of interest involve large relative motion
- rotorcraft, store separation are prime examples

» Deforming meshes allow limited relative motion before mesh
degenerates

« Single rigid mesh allows only one body; no relative motion
» Use overset grids to overcome these limitations
« Compatibility
— Requires DiRTIlib and SUGGAR++ from Celeritas Simulation Tech.
— Grid formats: VGRID, AFLR3, FieldView (FV)
« Status

— Current SUGGAR++ supports unstructured meshes that overlap on
solid surfaces, but we have not really exercised this

— Overset grids generally limit scalability; working several fronts to
improve this

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

Overset - General Info

« Configuring FUN3D for overset

— Use --with-dirtlib=/path/to/dirtlib and --with-
suggar=/path/to/suggar

— FUNS3D will expect to find the following libraries in those locations:

* libdirt.a, libdirt mpich.a and libp3d.a (these may be
soft links to the actual serial and mpi builds of DiRTIib)

* libsuggar.a and libsuggar mpi.a (may be soft links)

* You will also need a “stand-alone” SUGGAR++ executable in addition to the
library files that FUN3D will link to

* Grids

— A composite overset grid is comprised of 2 or more component grids -
independently generated - but with similar cell sizes in the fringe areas

— SUGGAR++ assembles the composite grid from the component grids,
and determines overset connectivity data for the composite mesh

@l http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Overset Preprocessing

» Overset simulations starts with an execution of SUGGAR++ to generate a
composite grid and initial (t=0) connectivity data

— When generating component meshes, try to make cell sizes “similar”
in the overlap regions - .e.g. by using similar sourcing strengths

— Create an XML input file for SUGGAR++ (follow-on session)

« Use the name of your FUN3D project for the names appearing in
<composite grid> and <domain connectivity>

« Can mix and match component grid types (VGRID, FV, AFLR) and
select one of the types for the output composite grid - but note
VGRID only supports tetrahedra

— Run SUGGAR++ and make sure it all works as expected. You should
now have a [project] .dci file; this Domain Connectivity
Information file contains all necessary overset data for solver
interpolation between the component meshes at t=0

@l http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Overset Preprocessing (cont)

« For dynamic-grid simulations, there is an additional consideration at the
preprocessing stage: either precompute the overset connectivity for ALL
time steps up front, or do this “on the fly” from within FUN3D

— Precomputing requires up-front knowledge of the motion - rules out
6DOF and aeroelastic cases since the motion depends on the flow
solution; rules out deforming meshes even if motion known

— If the case fits these restrictions, from the point of view of flow solver
run time, precomputing all connectivity is by far the most efficient

— Need to ensure that SUGGAR++ motion will match FUN3D motion
— Resulting dci files must be named [project]N.dci for timestep N
* If connectivity is computed at run time (by necessity or for convenience)

— Computation of overset connectivity is performed on a single
processor (the last one) - a serial bottleneck

— That processor must have enough memory (basically same memory
requirements as stand alone SUGGAR++)

@l http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Overset — Boundary Conditions

« FUN3D requires only one specialized overset boundary condition - all
other BC’s can be applied as needed:

— In mapbc files, set BC type to -1 for boundaries that are set via

interpolation from another mesh
Grid Courtesy Eric Lynch, GA Tech

111
IIIII
111111111

1111111111111111
lllllllllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllllll

FUN3D Training Workshop
http://fun3d.larc.nasa.gov March 24-25, 2014 '\fuffmmm,m

Overset — Boundary Conditions (Cont.)

« SUGGAR++ needs BC info for each component grid

— Can be set either via the SUGGAR++ input XML file OR an auxiliary file
for each component grid

— Strongly recommend (esp. for dynamic meshes) the XML file approach
* More cumbersome than auxiliary file, but...

« If the auxiliary files get separated from the other files, SUGGAR seems
to assume some defaults which will likely cause problems with hole
cutting

* The exception to setting SUGGAR++ BC info in the XML file is if ALL
the component grids are of VGRID type - in that case both SUGGAR++
and FUN3D get BC’s from the same VGRID mapbc file and can
generally avoid having to explicitly set any BC’s for SUGGAR++

@l http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Overset Mesh Simulations — Static (1/2)

* Running FUN3D with static overset meshes:

— Either use the CLO --overset or set overset flag = .true.
in the &soverset data namelistin fun3d.nml

— In screen output, should see something like:
dirtlib:init overset Reading DCI data: ./[project].dci
Loading of dci file header took Wall Clock time = 0.002223 seconds
Loading of dci file took Wall Clock time = 0.005657 seconds
Using DiRTlib version 1.49 for overset capability

DiRT1lib developed by Ralph Noack, Penn State University Applied Research
Laboratory

— If you request visualization output data for an overset case, “iblank”
data will automatically be output to allow blanking of the hole / out
points for correct visualization of the solution / grid in Tecplot

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

Overset Mesh Simulations — Static (2/2)

* Wind-turbine airfoil in tunnel

ach

m

.45

0
0
0
0
0

35

25

15
05

T

IEEEEEEEE]

imEmEEEmEEEEEE

IEEIEEIEEEEEIEEEEEEEEEINEIERINEEENREERENRERRER]
T

T
T
IEEEREE]

1T
IEEEEEE]

T

RN NN R EEIEE NI ERINE IR RN

T
iEmmEmmE
SEEEEEEEEEE]

1T

.I | I NN NN NN NN NN EEEE AR

ith

Wi

mach

— 0.45

0.35
0.25
0.15
0.05

I | I BN IEEE NN

without

Fully Unstructured Navier-Stokes

N3D

http://fun3d.larc.nasa.gov

Overset Mesh Simulations — Dynamic (1/5)

« SUGGAR++ setup (more details in separate session)
— Starting from a static-grid XML file:
 Add <dynamic/> to <body> elements that are to move, e.q.

<body name="airfoil">
<dynamic/>
<volume grid name="airfoil" style="fvuns"
filename="airfoil 2p.fvgrid fmt"/>
</body>

* Note: use a self-terminated <dynamic/> so that any <transform>
elements of <body> are applied as static transforms on the
component grids when assembling the composite grid

— Use SUGGAR++ to generate the initial (t = 0) composite grid; lets
assume you called the XML file Input.xml 0

@l http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Overset Mesh Simulations — Dynamic (2/5)

* In the FUN3D moving body. input file

— Define the bodies and specify motion as usual; boundary numbers
correspond to those in the composite mesh mapbc file, accounting for
any boundary lumping that may be selected at run time

— use the component body names from the Input.xml 0 file
— Add name of the xml file used to generate the t = 0 composite mesh:

&composite overset mesh
input xml file = 'Input.xml O'
/
* Running FUN3D

— Use CLOs --overset --moving grid --dci on_ the fly

— The last tells FUN3D to call libSUGGAR++ routines to compute new
overset data when the grids are moved; if this CLO is not present,
solver will try to read the corresponding dci file from disk

— Namelist input can be used in lieu of these CLO’s (more in a bit)

@l http://fun3d.larc.nasa.gov @ I\gggmmumm;

Overset Mesh Simulations — Dynamic (3/5)

* Running FUN3D (cont)

— Note: for dynamic meshes, the component grids and mapbc files must
be available (can be soft linked) in the FUN3D run directory, in addition
to the t = 0 composite-grid and mapbc files

— When using --dci_on_ the_ fly, specify one additional processor for
SUGGAR++

* The last processor gets assigned the SUGGAR++ task

» This processor must have enough memory for entire overset problem
(same as needed for SUGGAR++ alone)

— There are a number of other overset-grid CLOs that may be useful for
dynamic overser meshes. These options may now (V12.4 and higher)
be set via namelist input in fun3d.nml

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

Overset Mesh Simulations — Dynamic (4/5)

« Parameters for control of overset operations - primarily for dynamic grids;
set in the &overset data namelist in fun3d.nml

overset flag
dci on the fly

reuse exisiting dci

dci_period
reset_dci_period

dci freq
dci dir

skip dci output
dci io

dci io npro

@l http://fun3d.larc.nasa.gov

.true.
.true.

.true.

N
L

M

‘dir’

. true.

. true.

turns on overset (default: .F.)
compute connectivity during flow solve (.F.)

if dci file for this step already exists, use it
instead of computing on the fly (.F.)

dci data repeats every N steps (huge no.)
now repeats every L steps (huge no.)
..used for time-step change at restart

compute dci data every M steps (1)
look for or put dci files in this dir (./)

don’t write dci data after it's computed (.F.)
...maybe this data won’t be needed again
use dedicated proc(s) for fast loading of
precomputed dci data (.F.) - more later
use P procs for dedicated dci loading

Fully Unstructured Navier-Stokes

Overset Mesh Simulations — Dynamic (5/5)

 Another option, in the &global data namelist in fun3d.nml

grid motion and dci only = .true. (default: .F.) step through the
mesh motion and compute dci
data but don'’t solve flow eqgns.

- Useful as an easy (not the most efficient) way to precompute dci data
while ensuring the motion will match exactly with FUN3D

« Solution data in hole points (governing equations not solved at hole pts.)
- Starts at freestream

- FUN3D will *fill in” flow data at hole points at each time step by
averaging data at surrounding points - eventually replaces freestream

- Averaging is important for dynamic case so a hole point that suddenly
becomes a solve point has something better than freestream as an IC

— Best Practice: use “keep inner fringe” option in SUGGAR++ XML file -
retains extra fringe (interpolated) points near hole edges as a buffer of
points that become exposed before hole pts. - interp. better than avg.

@l http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Overset Mesh Simulations — Dynamic (6/5)

* Wind-turbine airfoil in tunnel

||||||
||||||||||||||||||

11

||

FUN3D Training Worksho
@ http://fun3d.larc.nasa.gov March 24_295 2014 0 @Nm%mm,m 16

DCI_IO For Large-Scale Simulations

Applications are now run on many-thousand core architectures. Suggar++
does not scale well, but for rigid meshes with prescribed motion, it is be
possible to precompute the connectivity data in an “embarrassingly parallel”
fashion, avoiding the SUGGAR++ bottleneck during FUN3D execution

Normally FUN3D calls DiRTIib routines to load and parse this precomputed
dci data. But DiRTIib reads and parses the dci file from every processor,
which prohibits scalability beyond ~1k cores

Instead, use dci_io = .true. and use dci_io_nprocs = P to assign P
processes to read and distribute the dci data - circumvents DiRTIib

- this is the only job for these processors - they operate 1 to P time steps
ahead; regular flow-solve ranks work to advance flow in current step

DCI _10 utilizes a special file containing a subset of dci data - “dcif” file
— Convert dci generated by SUGGAR++ to dcif using utils/dci_to_dcif
Linear scaling demonstrated up ~4K cores; P = 1 sufficient for this size

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

Overset Mesh Simulations — Examples

* As always, can use animation to verify; these were done using Tecplot
output from FUN3D

FUN3D Training Worksho .
@/ http://fun3d.larc.nasa.gov March 24_295 2014 . @Nﬁ;wm.m. 18

Troubleshooting

« Orphan count is and indicator (though hardly precise) of problems
either setup of SUGGAR++ or a poor mesh

— Both standalone SUGGAR++ and FUN3D (“on the fly”) report
orphan counts

e should have none “due to hole-cut failures”; nonzero count a
good indicator of setup issues

 orphans “due to donor quality” perhaps an indicator or grid
quality or setup

— Visualization often the best tool to remedy

— Celeritas’ GVIZ or Tecplot output from FUN3D can help sort out
overset connectivity issues

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

