
6/7/2015

1

Using Suggar++ With

Unstructured Grids

Ralph Noack, Ph.D.

President

Celeritas Simulation Technology, LLC

www.CeleritasSimTech.com

1

Outline

• Brief overview of overset approach

• Why use Overset?

• Introduction to Suggar++ Inputs

• Summary

2

6/7/2015

2

Overset / Chimera Fundamentals

• Set of body fitted grids (structured or unstructured)
are constructed around each component of a
complex configuration

• Component grids are constructed (mostly)
independently from each other

• Overlap each other arbitrarily within each
component, and between all components

• Interpolation links solution on component grids

6/7/2015

3

Overset Grid Approach

• Domain is discretized using overlapping component grids

• Overset composite grid consists of
– Composite grid (set of component grids, possibly treated as a single unstructured grid)

– Domain Connectivity Information (DCI)

Overset Hole Cutting

• Hole cutting is required to identify points that should be

excluded from computations (OUT points)

6/7/2015

4

Overset Fringe Boundary Points

• Intergrid or Fringe boundary points connect the solutions
on different components

• Inner fringe between hole points and active solution
points

• Outer fringe at outer/overlap boundary

Overset Overlap Minimization

• Solution quality can be improved by reducing the overlap
between grids

• Goal is for fringe (receptor) and interpolation source
(donor) to have approximately the same size

6/7/2015

5

9

Simplify Grid Generation

• Flexibility of overlapping grids simplifies

grid generation

– For complex geometries

– Geometry changes

10

6/7/2015

6

Example of Flexibility

Easily Modify Geometry

11

Turbine Blade With Cooling Hole

Example of Flexibility

Multiple Copies of Geometry

• Multiple identical bodies

can be easily gridded

by simply copying and

translating.

– Consistent grid in all

copies

• Important for evaluating

multiple variants

quickly.

6/7/2015

7

Improving Resolution

• Overset grids simplifies improving

resolution in appropriate locations

– Insert a new grid with desired refinement

13

Enabling Relative Motion

• Overset grids will move rigidly with each body

• Domain connectivity must be recomputed

14

6/7/2015

8

15

Overset Grid Generation

“Requirements”

• Need sufficient overlap between grids

• Better flow solution when

– Cell size is consistent in overlap region

• Fringe & donor have similar sizes

– Do not have large regions of overlap

• Use overlap minimization procedure to trim excess

overlap

16

6/7/2015

9

17

XML Tags/Markup Constructs

• An XML tag is enclosed in “< >”
– <start>

• Must have an associated end tag
– Same as start tag but with / after <

– </start>

<name>

<first>John</first>

<last>Doe</last>

</name>

• Empty elements can have implicit end tag

– <name></name> can be written as <name/>

6/7/2015

10

Hierarchies in XML

• Each XML tag defines an item or element

• Elements can be embedded inside start/end pair

of another element

– Creates a parent/child and sibling/sibling relationship

– Children define element content

– Child element must be closed before a parent can be

closed

• Only one root element allowed

Example Hierarchy

• Hierarchy for <name> example

name

first

last

John

Doe

<name>
<first>John</first>
<last>Doe</last>

</name>

6/7/2015

11

XML Elements Can Have Attributes

• Attributes

– are name/value pairs associated with an
element

– are always attached to the start tag

– must have a value enclosed in quotes
(either single or double quotes)

• Place inside of start tag before closing “>”

<body name=“store”>

Comments in XML

• Comments in XML

– start with <!-- and end with 

– cannot use -- in the comment string

<!-- cannot embed double dashes -- 

– cannot be within a tag

<start <!-- this is illegal--> />

6/7/2015

12

Input Has Three Main Sections

• Global parameter

– Content of <global>

• Body Hierarchy

– <body>

• Grid/Surface definition

– <volume_grid>

• <boundary_surface>

24

6/7/2015

13

Values Specified by Attributes

• All input values are specified by element

attributes

– <body name=“root”>

– Data between elements (PCDATA) is ignored

• Can use as comments, some restricted characters

• Some attributes are required

– Will abort if not present

• Other attributes are optional
25

6/7/2015

14

<global> Content

• Specify execution control parameters

• Sets default values for parameters that

can be set in a grid

• See Suggar++ user’s guide for complete

list

• Specify root body

27

<global> Typical Content

<global>

<threads n="5"/>

<hole_cut method="direct" fill_type="out_cells"/>

<minimize_overlap set_dsf="element_size"/>

<!--<cell_centered mark_using_neighbors="Yes"/> -->

<output>

<composite_grid style="aflr3" filename="composite_grid.r8.ugrid"

precision="double" format="unformatted" />

<domain_connectivity style="unformatted_gen_drt_pairs"

byte_order="native" filename="output++.dci"/>

</output>

<body name="root"> ... </body>

</global>
28

6/7/2015

15

Composite Grid

• Best if flow solver uses composite grid

written by Suggar++

– Exporting from grid generator has possibility

of incorrect order of component grids

• Use <composite_grid/> to specify format

and filename

• Some restrictions on format of input

component grids and output composite

grid 29

6/7/2015

16

Body Hierarchy Controls Hole Cut

• A hierarchical grouping of grids/bodies minimizes user
inputs and controls which grids are cut by which surfaces

• Siblings cut each other
– Geometry in one body (including all children) cuts all grids in a

sibling body (including all children)

ROOT
Aircraft Store

Wing Pylon Body

Fin1

Fin2

Fin3

Fin4

XML for Wing/Pylon/Store Hierarchy

<body name=“Root">

<body name="Aircraft">

<body name="Wing“/>

<body name="Pylon“/>

</body>

<body name="Store">

<body name="Body“/>

<body name="Fin1“/>

<body name="Fin2“/>

<body name="Fin3“/>

<body name="Fin4“/>

</body>

</body>

6/7/2015

17

Transformations

• Associated with a body

• Hierarchical: Child body transforms are relative to parent

• Order dependent

• Suggar++ has two different types of transformations
– Static transformations

• Applied to the grid coordinates on input

• Original coordinates are replaced by transformed coordinates

– Dynamic transformations

• Flags the body as moving

• Grid coordinates are left in original coordinates

– Transformations are always from original coordinate system

• Transformations are used internally during execution

• Output grids are transformed

6/7/2015

18

Hierarchical Transformation Example

<body name=“Aircraft”>

<transform>

<rotate axis="y" value=”20"/>

</transform>

<body name=“fuselage”> … </body>

<body name=“store">

<dynamic>

<transform>

<rotate axis=“z" value=”45"/>

<translate axis="y" value="-2"/>

</transform>

</dynamic>

</body>

</body>

Static

transformation

Dynamic

transformation

Component Grid Input

6/7/2015

19

Suggar++ Current Grid Types

• Structured

– Curvilinear

– Analytic
• Cartesian

• Cylindrical

• Spherical

• Unstructured
– Tetrahedron

– Mixed element
• Tet, Hex, Prism, Pyramid

– Octree-based Cartesian

Can use mix of input grid types

if solver and output composite

grid supports the mixture of

elements

<volume_grid> Element

• Parent element is <body>

• Associates a grid with a body

– Actual grid to be used is specified with the filename attribute.

• A body can have more than one <volume_grid> child

– Cannot have child <body> and child grids!

• Required attribute is name=“grid name“

<body name="Wing">

<volume_grid name="wing grid”>

</volume_grid>

</body>

6/7/2015

20

<volume_grid>

filename, style attributes

• Grid file is specified with the attributes…

– filename=“file”

– style=“style”

• Both are required

<volume_grid name=“wing”

filename=“Grids/wing.g” style=“p3d”/>

Boundary Surfaces

6/7/2015

21

Boundary Surface Creation

• Boundary surfaces are automatically created for

unstructured surface patches

– User must specify associated Boundary Conditions

– Boundary conditions are automatically set for VGRID

files

• Internal mapping between USM3D BCs and Suggar++ BCs

• Can specify an alternate mapping

• Must be explicitly defined for structured grids

– If not defined surface is created with a boundary

condition of “overlap”

Suggar++ Boundary Conditions

• Suggar++ boundary conditions do not need to

“match” flow solver boundary conditions

• Some cases where there may be a loose

mapping

– Flow solver “wall” ~ Suggar++ “solid”

– Flow solver “farfield” ~ Suggar++ “farfield”

– Geometric connections: axis, Block-to-Block, etc.

6/7/2015

22

Suggar++ Boundary Conditions

• Many cases where Suggar++ BCs should be

different than solver BCs

– Hole cutting geometry must be closed/“water tight”!!!

• Surface is not solid geometry but must be used as hole

cutting geometry
– Inlet/Exhaust surface

– Solver has solid surface that is not needed as cutting

surface

• Tunnel walls but no grids extend past tunnel walls

– Suggar++ has a limited set of BCs

Specifying Boundary Conditions

for Unstructured Grids

• Boundary conditions can be specified

– in the input XML file
• <boundary_surface find=“yes” name=“…”>

– in auxiliary files (Recommended approach)

• for Vgrid file sets

– projectName.suggarbc

• for other unstructured grid files

– gridFilename.suggar_surface_bc

– gridFilename.suggar_mapbc

• An auxiliary file can also be used to specify solver BCs in

the output composite grid

– filename.solver_bc

6/7/2015

23

Suggar++ Boundary Condition Types

“overlap” An overset or overlap boundary surface.

“solid” A solid boundary and will be used to define the hole cutting geometry.

“symmetry” A symmetry non-overset boundary surface. The grid points on the
symmetry boundary will be used to determine the value of the symmetry
plane.

“axis” A singular axis where all the grid points in one of the computational
coordinates are collapsed to a point.

“periodic” A periodic boundary in the structured grid. Both the min and max
boundary surfaces should be specified.

“cut” The surface is a cut boundary in the structured grid. Both the min and max
boundary surfaces should be specified.

“block-to-block”, “block-block”, “block2block” The surface is a block-to-
block interface to another grid. Requires additional attributes.

“freestream” or “farfield” A freestream non-overset boundary surface

“non-overlap”, “non_overlap”, “nonoverlap”, “non-solid” , “non-*” The surface is
an unspecified non-overset boundary.

Setting Solver BCs for

Unstructured Component Grids

• Solver BCs can be set from auxiliary files

associated with each component grid

– Vgrid

project.mapbc file

– Cobalt

• grid_filename_cobalt_bc

• basename.cobalt_bc
– Where basename = grid_filename with trailing suffix removed

– Other formats

• grid_filename.solver_bc

• grid_filename.suggar_mapbc

6/7/2015

24

Solver BCs for

Unstructured Composite Grid

• Suggar++ will write selected solver

boundary condition files for the composite

grid

– Vgrid

project.mapbc file

– Cobalt

composite_grid_filename_cobalt_bc

– Other unstructured grid formats

composite_grid_filename.suggar_mapbc

Overlapping

Surface Grids

6/7/2015

25

Overlapping Surface Grids:

Additional Complexities

• Overlapping surfaces will have different

discrete representations

• Surfaces in a grid can be associated with

different geometry components

– Grid is in one body but some surfaces define

geometry in another body

• Overlapping surfaces require special

treatment to eliminate double counting in

Force and Moment integration

Overlapping Surface Grids:

Different Discrete Representations

• Surfaces that overlap on geometry with

curvature will have different discrete

representations

• Difficulties arise when the tangential

spacing is “large” relative to the curvature

and the normal spacing

• Special procedures are required to

properly find appropriate donors

6/7/2015

26

Surface Assembly

• Grid points are not changed

• Fringe points are shifted during the donor search

– Requires grid with structure normal to the surface

• Structured grid or mixed element with hex/prism layers

• Vgrid tet mesh with layers and poin1 file

• Surface assembly procedure is use to find the

shift for each fringe point

– Enabled with <surface_assembly/> element

– Relative to overlapping surface in each donor grid

• A fringe point will have different shifts/offsets for each donor

grid

52

6/7/2015

27

Integrating Force And Moments

On Overlapping Surfaces

• Special treatment to eliminate double counting in

force and moment integration

– Panel weights

• Weight factor between 0 & 1 for each integration surface

face/panel

– Single valued/water tight integration surface

• Remove overlap, glue remaining portions of original surfaces

together using new triangles

Suggar++ has integrated USURP capability

• Enabled with <usurp> element

• Output

– Panel weights

• Included in DCI file: Can be retrieved via DiRTlib

• Written to files

– Can create zipper grid

• Water tight surface grid with overlap eliminated

• Not sufficiently robust

6/7/2015

28

<usurp> Example: Overlapping Surfaces

EXAMINE SUGGAR++

RESULTS

56

6/7/2015

29

General Suggestions

Check Suggar++ Output

• Look at

– summary.log

– Standard error output file

• Suggar++ -reopen will write to out.stderr++

• Visualize the DCI

– Look at orphans

– All blanked points

• May have flood fill leak if entire grid is blanked out

– Use gviz or pointwise

SUGGAR++ USER’S GUIDE

58

6/7/2015

30

Suggar++ User’s Guide

• List of all inputs elements

– Hyperlinked to parent element

– Possible child content

• List of attributes

– Hyperlinked to parent element

• Sections on usage, advance topics, grid

formats, etc.

59

SUMMARY

60

6/7/2015

31

Summary

• Overset grids are an enabling technology

– Simplifies grid generation/model changes

– Enables moving body simulations

• Briefly presented some Suggar++ Inputs

• Briefly discussed overlapping surface grids

– Need surface assembly if overlapping

surfaces are not planar

– Force & Moment integration needs procedure

to eliminate double counting 61

62

Commercial distribution and support

for Suggar++ provided by

Celeritas Simulation Technology, LLC

http://www.CeleritasSimTech.com

Exportable under an EAR-99 license

