
6/9/15	

FUN3D	 Training	 Workshop	 1	

http://fun3d.larc.nasa.gov
FUN3D Training Workshop

June 20-21, 2015 1

Bob Biedron

FUN3D v12.7 Training

Session 14:
Overset-Grid Simulations

http://fun3d.larc.nasa.gov

Session Scope
•  What this will cover

–  Static and dynamic simulations in FUN3D using overset meshes
and SUGGAR++ /DiRTlib

•  What will not be covered
–  SUGGAR++ operation (Covered by Ralph Noack)

•  What should you already be familiar with
–  Basic time-accurate and dynamic-mesh solver operation and

control

FUN3D Training Workshop
June 20-21, 2015 2

6/9/15	

FUN3D	 Training	 Workshop	 2	

http://fun3d.larc.nasa.gov

Introduction
•  Background

–  Many moving-body problems of interest involve large relative motion
- rotorcraft, store separation are prime examples
•  Deforming meshes allow limited relative motion before mesh

degenerates
•  Single rigid mesh allows only one body; no relative motion
•  Use overset grids to overcome these limitations

•  Compatibility
–  Requires DiRTlib and SUGGAR++ from Celeritas Simulation Tech.
–  Grid formats: VGRID, AFLR3, FieldView (FV)

•  Status
–  Current SUGGAR++ supports unstructured meshes that overlap on

solid surfaces, but we have not really exercised this
–  Overset grids generally limit scalability; not much of an issue for

O(100) cores
FUN3D Training Workshop

June 20-21, 2015 3

http://fun3d.larc.nasa.gov

Overset - General Info
•  Configuring FUN3D for overset

–  Use --with-dirtlib=/path/to/dirtlib and --with-
suggar=/path/to/suggar

–  FUN3D will expect to find the following libraries in those locations:
•  libdirt.a, libdirt_mpich.a and libp3d.a (these may be

soft links to the actual serial and mpi builds of DiRTlib)
•  libsuggar.a and libsuggar_mpi.a (may be soft links)

•  You will also need a “stand-alone” SUGGAR++ executable in addition to the
library files that FUN3D will link to

•  Grids
–  A composite overset grid is comprised of 2 or more component grids -

independently generated - but with similar cell sizes in the fringe areas
–  SUGGAR++ assembles the composite grid from the component grids,

and determines overset connectivity data for the composite mesh

FUN3D Training Workshop
June 20-21, 2015 4

6/9/15	

FUN3D	 Training	 Workshop	 3	

http://fun3d.larc.nasa.gov

Overset Preprocessing
•  Overset simulations starts with an execution of SUGGAR++ to generate a

composite grid and initial (t=0) connectivity data

–  When generating component meshes, try to make cell sizes “similar”
in the overlap regions - .e.g. by using similar sourcing strengths

–  Create an XML input file for SUGGAR++ (previous session)!

•  Use the name of your FUN3D project for the names appearing in
<composite_grid> and <domain_connectivity>

•  Can mix and match component grid types (VGRID, FV, AFLR) and
select one of the types for the output composite grid - but note
VGRID only supports tetrahedra

–  Run SUGGAR++ and make sure it all works as expected. You should
now have a [project].dci file; this Domain Connectivity
Information file contains all necessary overset data for solver
interpolation between the component meshes at t=0

FUN3D Training Workshop
June 20-21, 2015 5

http://fun3d.larc.nasa.gov

Overset Preprocessing (cont)
•  For dynamic-grid simulations, there is an additional consideration at the

preprocessing stage: either precompute the overset connectivity for ALL
time steps up front, or do this “on the fly” from within FUN3D

–  Precomputing requires up-front knowledge of the motion - rules out
6DOF and aeroelastic cases since the motion depends on the flow
solution; rules out deforming meshes even if motion known!

–  If the case fits these restrictions, from the point of view of flow solver
run time, precomputing all connectivity is the most efficient

–  Need to ensure that SUGGAR++ motion will match FUN3D motion

–  Resulting dci files must be named [project]N.dci for timestep N

•  If connectivity is computed at run time (by necessity or for convenience)

–  Computation of overset connectivity is performed on a single
processor (the last one)

–  That processor must have enough memory (basically same memory
requirements as stand alone SUGGAR++)
 FUN3D Training Workshop

June 20-21, 2015 6

6/9/15	

FUN3D	 Training	 Workshop	 4	

http://fun3d.larc.nasa.gov

Overset – Boundary Conditions
•  FUN3D requires only one specialized overset boundary condition - all

other BC’s can be applied as needed:
–  In mapbc files, set BC type to -1 for boundaries that are set via

interpolation from another mesh
 !

FUN3D Training Workshop
June 20-21, 2015 7

Grid Courtesy Eric Lynch, GA Tech

http://fun3d.larc.nasa.gov

Overset – Boundary Conditions (Cont.)
•  SUGGAR++ needs BC info for each component grid

–  Can be set either via the SUGGAR++ input XML file OR an auxiliary file
for each component grid

–  Strongly recommend (esp. for dynamic meshes) the XML file approach

•  More cumbersome than auxiliary file, but...

•  If the auxiliary files get separated from the other files, SUGGAR may
assume some defaults which can cause problems with hole cutting

•  The exception to setting SUGGAR++ BC info in the XML file is if ALL
the component grids are of VGRID type - in that case both SUGGAR++
and FUN3D get BC’s from the same VGRID mapbc file and can
generally avoid having to explicitly set any BC’s for SUGGAR++

FUN3D Training Workshop
June 20-21, 2015 8

6/9/15	

FUN3D	 Training	 Workshop	 5	

http://fun3d.larc.nasa.gov

Overset – Namelist Input
•  Control of overset operations - primarily for dynamic grids - set in the
&overset_data namelist in fun3d.nml

 overset_flag = .true. turn on overset (default: .F.)

dci_on_the_fly = .true. compute connectivity during flow solve (.F.)
reuse_exisiting_dci = .true. if dci file for this step already exists, use it
 instead of computing on the fly (.F.)
dci_period = N dci data repeats every N steps (huge no.)
reset_dci_period = L now repeats every L steps (huge no.)
 …used for time-step change at restart
dci_freq = M compute dci data every M steps (1)

dci_dir = ‘dir’ look for or put dci files in this dir (./)
skip_dci_output = .true. don’t write dci data after it’s computed (.F.)
 …maybe this data won’t be needed again
dci_io = .true. use dedicated proc(s) for fast loading of
 precomputed dci data (.F.) - more later
dci_io_npro = P use P procs for dedicated dci loading

FUN3D Training Workshop
June 20-21, 2015 9

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Static (1/2)
•  Running FUN3D with static overset meshes:!

–  Set overset_flag = .true. in the &overset_data namelist in
fun3d.nml (Alt.: use the CLO --overset)

–  In screen output, should see something like:
dirtlib:init_overset Reading DCI data: ./[project].dci

Loading of dci file header took Wall Clock time = 0.002223 seconds

Loading of dci file took Wall Clock time = 0.005657 seconds

Using DiRTlib version 1.49 for overset capability

DiRTlib developed by Ralph Noack, Penn State University Applied Research
Laboratory

–  If you request visualization output data for an overset case, “iblank”
data will automatically be output to allow blanking of the hole / out
points for correct visualization of the solution / grid in Tecplot

FUN3D Training Workshop
June 20-21, 2015 10

6/9/15	

FUN3D	 Training	 Workshop	 6	

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Static (2/2)

FUN3D Training Workshop
June 20-21, 2015 11

without iblank

•  Wind-turbine airfoil in tunnel

with iblank

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Dynamic (1/5)
•  SUGGAR++ setup (more details in “SUGGAR++” session)!

–  Starting from a static-grid XML file:!
•  Add <dynamic/> to <body> elements that are to move, e.g.
 <body name=”airfoil">
 <dynamic/>
 <volume_grid name=”airfoil" style=”fvuns"
 filename=”airfoil_2p.fvgrid_fmt"/>
 </body>

•  Note: use a self-terminated <dynamic/> so that any <transform>
elements of <body> are applied as static transforms on the
component grids when assembling the composite grid

–  Use SUGGAR++ to generate the initial (t = 0) composite grid; lets
assume you called the XML file Input.xml_0

FUN3D Training Workshop
June 20-21, 2015 12

6/9/15	

FUN3D	 Training	 Workshop	 7	

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Dynamic (2/5)
•  In the FUN3D moving_body.input file

–  Define the bodies and specify motion as usual; boundary numbers
correspond to those in the composite mesh mapbc file, accounting for
any boundary lumping that may be selected at run time

–  Use the component body names from the Input.xml_0 file
–  Add name of the xml file used to generate the t = 0 composite mesh:

&composite_overset_mesh
 input_xml_file = 'Input.xml_0'
/

•  Running FUN3D
–  Set moving_grid = .true. in &global namelist and
overset_flag=.true. dci_on_the_fly = .true. in
&overset_data namelist

–  When dci_on_the_fly = .T., FUN3D calls libSUGGAR++ to
compute new overset data when the grids are moved; if .false.
(default), solver will try to read the corresponding dci file from disk

FUN3D Training Workshop
June 20-21, 2015 13

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Dynamic (3/5)
•  Running FUN3D (cont)

–  Note: when dci_on_the_fly = .true., the component grids and
mapbc files must be available (can be soft linked) in the FUN3D run
directory, in addition to the t = 0 composite-grid and mapbc files

–  When using --dci_on_the_fly, specify one additional processor for
SUGGAR++

•  The last processor gets assigned the SUGGAR++ task
•  This processor must have enough memory for entire overset problem

(same as needed for SUGGAR++ alone)
–  There are a number of other overset-grid CLOs that may be useful for

dynamic overset meshes (see “Overset – Namelist Input” slide).

FUN3D Training Workshop
June 20-21, 2015 14

6/9/15	

FUN3D	 Training	 Workshop	 8	

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Dynamic (4/5)
•  Another option, in the &global_data namelist in fun3d.nml
 grid_motion_and_dci_only = .true. (default: .F.) step through the
 mesh motion and compute dci
 data but don’t solve flow eqns.

-  Useful as an easy (not the most efficient) way to precompute dci data
while ensuring the motion will match exactly with FUN3D

•  Solution data in hole points (governing equations not solved at hole pts.)
-  Starts at freestream
-  FUN3D will “fill in” flow data at hole points at each time step by

averaging data at surrounding points - eventually replaces freestream
-  Averaging is important for dynamic case so a hole point that suddenly

becomes a solve point has something better than freestream as an IC
-  Best Practice: use “keep inner fringe” option in SUGGAR++ XML file -

retains extra fringe (interpolated) points near hole edges as a buffer of
points that become exposed before hole pts. - interp. better than avg.

FUN3D Training Workshop
June 20-21, 2015 15

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Dynamic (5/5)
•  Wind-turbine airfoil in tunnel

FUN3D Training Workshop
June 20-21, 2015 16

6/9/15	

FUN3D	 Training	 Workshop	 9	

http://fun3d.larc.nasa.gov

Example – Store Separation (1/5)
•  Test case located in: tutorials/flow_overset_grids
•  Super-coarse grid for a 4-finned store magnetically suspended below a

semi-span wing. Could be hooked up to 6DOF library but here we specify
the motion for t > 0 as a constant downward velocity

•  run_tutorial.sh
–  First runs stand-alone SUGGAR++ executable to generate a dci file for

a static-grid / steady-state solution
–  Next runs nodet_mpi to give a steady-state solution on composite

mesh - this will become the starting solution (t=0) for the moving-grid /
unsteady case

–  Finally runs moving-grid case in which dci data generated “on the fly”
for each of 50 time steps

!

FUN3D Training Workshop
June 20-21, 2015 17

http://fun3d.larc.nasa.gov

Example – Store Separation (2/5)
•  Set up SUGGAR++ xml file wingstore.xml
<global>
 <symmetry_plane axis="Y"/>
 <minimize_overlap keep_inner_fringe="yes"/>
 <output>
 <composite_grid style="unsorted_vgrid_set" filename="wingstore"/>
 <domain_connectivity style="ascii_gen_drt_pairs" filename="wingstore.dci"/>
 </output>
 <body name="wingstore">
 <body name="wing">
 <volume_grid name="wing" style="vgrid_set" filename="wing"/>
 </body>
 <body name="store">
 <dynamic/>
 <volume_grid name="store" style="vgrid_set" filename="store">
 </volume_grid>
 </body>
 </body>
</global>

•  Add <dynamic/> tag since we will ultimately be doing moving-grid case
•  Component grids are VGRID – don’t need explicit BCs in the xml file

! FUN3D Training Workshop
June 20-21, 2015 18

6/9/15	

FUN3D	 Training	 Workshop	 10	

http://fun3d.larc.nasa.gov

Example – Store Separation (3/5)
•  Relevant fun3d.nml data (static grid / steady state)

 &overset_data
 overset_flag = .true.
 /
 &project
 project_rootname = “wingstore” ! same as <composite_grid> filename
 / ! we set in wingstore.xml

•  Relevant fun3d.nml data (moving / unsteady)
 &overset_data
 overset_flag = .true.
 dci_on_the_fly = .true. ! Must have composite (“wingstore”) and
 / ! Component grids (“wing” and “store”)in
 &global ! in the run directory
 moving_grid = .true.
 /
 &project
 project_rootname = “wingstore”
 /

!

FUN3D Training Workshop
June 20-21, 2015 19

http://fun3d.larc.nasa.gov

Example – Store Separation (4/5)
•  Relevant moving_body.input data (moving / unsteady))

 &body_definitions
 n_moving_bodies = 1
 body_name(1) = “store” ! same name used in xml file
 n_defining_bndry(1)= 1
 defining_bndry(1) = 4
 mesh_movement(1) = “rigid”
 motion_driver(1) = “forced”
 /
 &forced_motion
 translate(1) = 1 ! constant-rate translation
 translation_rate(1) = -0.2 ! Mach 0.2 downward
 /
 &composite_overset_mesh
 input_xml_file = “wingstore.xml”
 /

!

FUN3D Training Workshop
June 20-21, 2015 20

6/9/15	

FUN3D	 Training	 Workshop	 11	

http://fun3d.larc.nasa.gov

Example – Store Separation (5/5)

!

FUN3D Training Workshop
June 20-21, 2015 21

Hole Cutting
(mesh_animation.lay)

Pressure Coefficient
(cp_animation.lay)

Slices Through Store Centerline

http://fun3d.larc.nasa.gov

DCI_IO For Large-Scale Simulations
•  Some applications are now run on many-thousand core architectures.

Suggar++ does not scale well, but for rigid meshes with prescribed motion,
it is possible to precompute the connectivity data in an “embarrassingly
parallel” fashion, avoiding a bottleneck during FUN3D execution

•  Normally FUN3D calls DiRTlib routines to load and parse this precomputed
dci data. But DiRTlib reads and parses the dci file from every processor,
which prohibits scalability beyond ~1k cores

•  Instead, use dci_io = .true. and use dci_io_nprocs = P to assign P
processes to read and distribute the dci data - circumvents DiRTlib
-  this is the only job for these processors - they operate 1 to P time steps

ahead; regular flow-solve ranks work to advance flow in current step
•  DCI_IO utilizes a special file containing a subset of dci data - “dcif” file
-  Convert dci generated by SUGGAR++ to dcif using utils/dci_to_dcif

•  Linear scaling demonstrated up ~4K cores; P = 1 sufficient for this size

FUN3D Training Workshop
June 20-21, 2015 22

6/9/15	

FUN3D	 Training	 Workshop	 12	

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Examples
•  As always, can use animation to verify; these were done using Tecplot

output from FUN3D

FUN3D Training Workshop
June 20-21, 2015 23

http://fun3d.larc.nasa.gov

Troubleshooting
•  Orphan count is an indicator (though hardly precise) of problems -

either in setup of SUGGAR++ or a poor mesh
–  Both standalone SUGGAR++ and FUN3D (“on the fly”) report

orphan counts
•  should have none “due to hole-cut failures”; nonzero count a

good indicator of setup issues
•  orphans “due to donor quality” perhaps an indicator or grid

quality or setup
–  Visualization often the best tool to remedy
–  Celeritas’ GVIZ or Tecplot output from FUN3D can help sort out

overset connectivity issues

FUN3D Training Workshop
June 20-21, 2015 24

