
http://fun3d.larc.nasa.gov

Kevin Jacobson

1

FUN3D v13.4 Training
Session 14:

Dynamic Grid Simulations

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Session Scope
• What this will cover

– How to set up and run time-accurate simulations on dynamic meshes
• Nondimensionalization
• Choosing the time step
• Body / Mesh motion options
• Input / Output

• What will not be covered
– Specifics for overset and aeroelastic: covered in follow-on sessions

• What should you already be familiar with
– Basic steady-state solver operation and control
– Basic flow visualization

2
FUN3D Training Workshop

December 11-12, 2018

http://fun3d.larc.nasa.gov

Introduction
• Background

– Many of problems of interest involve moving or deforming
geometries

– Governing equations written in Arbitrary Lagrangian-Eulerian
(ALE) form to account for grid speed

– Nondimensionalization often more involved/confusing/critical
• Compatibility

– Fully compatible for compressible/incompressible flows; mixed
elements; 2D/3D

– Not compatible with generic gas model
• Status

– Compressible path with moving grids is exercised routinely;
incompressible path much less so

– 6-DOF option has had very limited testing / usage

3FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Governing Equations
• Arbitrary Lagrangian-Eulerian (ALE) Formulation

Arbitrary control surface velocity; Lagrangian if
(moves with fluid); Eulerian if (fixed in space)

• Discretize using Nth order backward differences in time, linearize
about time level n+1, and introduce a pseudotime term:

• Physical time-level ; Pseudo-time level
• Need to drive subiteration residual using pseudotime

subiterations at each time step – more later – otherwise you have
more error than the expected truncation error

4

∂(

QV)
∂t

= − F − q

WT()∂V∫ ⋅

ndS − Fv∂V∫ ⋅
ndS =

R

W =

Q =

q dV
V∫
V

W = 0

W = (u,v,w)T

V n+1

Δτ
+
V n+1φn+1
Δt

"

#
$

%

&
'I −

∂

Rn+1,m

∂

Q

)

*
+

,

-
.Δ

Qn+1,m =

Rn+1,m −

V n+1φn+1
Δt

Qn+1,m −

Qn()−...+

Rn+1
GCL

t n

t m
Rn+1,m → 0

=

Rn+1,m +O(Δt N)

O(DtN)

R

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Mesh / Body Motion (1/2)
• Motion is triggered either by setting moving_grid = .true. in
&global (fun3d.nml), or by the command line --moving_grid

• All dynamic-mesh simulations require some input data via an auxiliary
namelist file: moving_body.input

• A body is defined as a user-specified collection of solid boundaries in grid
• Body motion options:

– Several built-in functions for rigid-body motion: translation and/or
rotation with either constant velocity or periodic displacement

– Read a series of surface files – body can be either rigid or deforming
– Read a series of 4x4 transform matrices - rigid body
– 6 DOF via UAB/Kestrel library “libmo”

• Limited distribution
• Requires configuring with --with-sixdof=/path/to/6DOF

– Application-specific: mode-shape based aeroelasticity (linear
structures); rotorcraft nonlinear beam

5FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Mesh / Body Motion (2/4)
• Chose a mesh-motion option than can accommodate the desired

body-motion option
• Mesh motion options:

– Rigid - maximum 1 body containing all solid surfaces (unless overset)
– Deforming - allows multiple bodies without overset; can be limited to

relatively small displacements before mesh cells collapse
– Combine rigid and/or deforming with overset for large displacements /

multiple bodies
• Rigid mesh motion performed by application of 4x4 transform matrix to all

points in the mesh - fast; positivity of cell volumes guaranteed to be
maintained
– Complex transforms can be built up from simple ones: matrix multiply
– Allows parent-child motion (child follows parent but can have its own

motion on top of that)

6
FUN3D Training Workshop

December 11-12, 2018

http://fun3d.larc.nasa.gov

Mesh / Body Motion (3/4)
• Mesh deformation handled via solution of a linear elasticity PDE:

– (Poisson’s ratio) is fixed; E (Young’s modulus)

– Elasticity parameters are controlled by &elasticity_gmres (in the

fun3d.nml file):

• elasticity=1 Young’s modulus (1⇒ wall distance, 2 ⇒ cell volume)

• elasticity_exponent=1.0 Inverse power for Young’s modulus

• With default parameters, the Young’s modulus will be:

E = 1 / slen**1.0

7
FUN3D Training Workshop

December 11-12, 2018

u

Ñ × [µ(Ñu+ÑuT)+l(Ñ × u)I]= f = 0

(1)(1 2)
Eul

u u
=

+ - 2(1)
Eµ
u

=
+

http://fun3d.larc.nasa.gov

Mesh / Body Motion (4/4)
• Elasticity solved via GMRES method (preferred) or multicolor point solver

– GMRES requires the SPARSKIT library:
• Need to configure with --with-SPARSKIT=/path/to/SPARSKIT

• GMRES solver has default parameter settings, which can be adjusted in
the namelist &elasticity_gmres:
ileft nsearch nrestarts tol

1 50 10 1.e-06

– You generally won’t have to adjust these values
– If negative volumes are generated, try:

• Decreasing the convergence tolerance, tol

• Increasing the number of iterations (nsearch x nrestarts for
GMRES)to allow further convergence

• Setting elasticity=2
• Setting elasticity_exponent=2.0

8FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Nondimensionalization of Motion Data (1/2)
• Recall: * indicates a dimensional variable, otherwise nondimensional
• Typical motion data we need to nondimensionalize: translational velocity,

translational displacement, angular velocity, and oscillation frequency
• Angular or translational displacements / velocities are input into FUN3D

as magnitude and direction
• Displacement input: angular in degrees; translational
• Translational velocity is nondimensionalized just like flow velocity:

– U* = translation speed of the vehicle (e.g., ft/s)
– U = U* / a*ref (comp.; this is a Mach No.) U = U* / U*ref (incomp)

• Rotation rate:
– = body rotation rate (e.g. rad/s)
– (L*ref/Lref) / a*ref (comp) (L*ref/Lref) / U*ref (incomp)
– Other variants on specified rotation rate are possible, e.g., rotor tip

speed, from which = U*tip / R*
9

W*

W =W*

W =W*

W*

Δ
x = Δx* / (Lref

* / Lref)

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Nondimensionalization of Motion Data (2/2)
• Oscillation frequency of the physical problem can be specified in different

forms
– f * = frequency (e.g., Hz)
– = circular frequency (rad/s)

= 2 f *
– k = reduced frequency, k = ½ L*ref / U*ref (be careful of exact

definition - sometimes a factor of ½ is not used)
• Built-in sinusoidal oscillation in FUN3D is defined as sin(2 f t +) where

the nondimensional frequency f and phase lag are user-specfied
• So the corresponding nondimensional frequency for FUN3D is

– f = f * (L*ref / Lref) / a*ref (comp) f = f * (L*ref / Lref)/ U*ref (incomp)
– f = (L*ref / Lref) / (2 a*ref) f = (L*ref / Lref) / (2 U*ref)
– f = k M*ref / (Lref) f = k / (Lref)

10

w*

p

p

w*

€

ω *

€

ω *

p

p

p

p
€

δ

€

δ

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Overview of moving_body.input
• A body is defined as a collection of solid boundaries in the grid

• The specifics of body / mesh motion are set in one or more namelists that

are put in a file called moving_body.input - this file must be provided

when moving_grid is triggered (as a CLO or &global entry)

– The &body_definitions namelist defines one or more bodies that

move and is always needed in a dynamic-grid simulation

– The &forced_motion namelist provides a limited means of defining

basic translations and rotations as functions of time

– The &motion_from_file namelist defines the motion of a rigid body

from a sequence of 4x4 transform matrices

– The &surface_motion_from_file namelist defines the motion of a

rigid or deforming body from a time sequence of boundary surfaces

– The &observer_motion namelist provides a means of generating

boundary animation output from a non-stationary reference frame

• &body_definitions is required with moving_grid , others optional

11
FUN3D Training Workshop

December 11-12, 2018

http://fun3d.larc.nasa.gov

Overview of &body_definitions Namelist
• Only most-used items shown here – see manual for complete list

• The &body_definitions namelist defines the bodies that move
(defaults shown; most need changing)
&body_definitions ! below, b=body i=boundary

n_moving_bodies = 0 ! how many bodies in motion

body_name(b) = ‘’ ! must set unique name for each

parent_name(b) = ‘’ ! child inherits motion of parent

n_defining_boundary(b)= 0 ! how many boundaries define body

defining_boundary(i,b)= 0 ! list of boundaries defining body

motion_driver(b) = ‘none’ ! mechanism driving body motion

mesh_movement(b) = ‘static’ ! specifies how mesh will move
/

• Caution: boundary numbers must reflect any lumping applied at run time!
• All variables above except n_moving_bodies are set for each body
• The blank string(‘’) for parent_name => inertial frame

12
FUN3D Training Workshop

December 11-12, 2018

http://fun3d.larc.nasa.gov

Overview of &body_definitions (cont.)
• Options for motion_driver (default: ‘none’)

– ‘forced’
• Built-in forcing functions for rigid-body motion, const. or periodic

– ‘surface_file’
• File with surface meshes at selected times; interpolates in between

– ‘motion_file’
• File with 4x4 transforms at selected times; “interpolates” in between

– ‘6dof’
• relies on calls to “libmo” functions

– ‘aeroelastic’
• modal aeroelastics

– All the above require additional namelists to specify details; next slide
outlines namelist required when motion_driver=‘forced’

• Options for mesh_movement (default: ‘static’)
– ‘rigid’, ‘deform’, ‘rigid+deform’

13
FUN3D Training Workshop

December 11-12, 2018

http://fun3d.larc.nasa.gov

Overview of &forced_motion Namelist
• Use &forced_motion namelist to specify a limited set of built-in motions
&forced_motion ! below, index b=body#
rotate(b) ! how to rotate this body: 0 don’t (default);

! 1 constant rotation rate; 2 sinusoidal in time
rotation_rate(b) ! body rotation rate; used only if rotate = 1
rotation_freq(b) ! frequency of oscillation; use only if rotate = 2
rotation_amplitude(b) ! oscillation amp. (degrees); only if rotate=2
rotation_vector_x(b) ! x-comp. of unit vector along rotation axis
rotation_vector_y(b) ! y-comp. of unit vector along rotation axis
rotation_vector_z(b) ! z-comp. of unit vector along rotation axis
rotation_origin_x(b) ! x-coord. of rotation center (to fix axis)
rotation_origin_y(b) ! y-coord. of rotation center
rotation_origin_z(b) ! z-coord. of rotation center
/

• There are analogous inputs for translation (translation_rate, etc.)
• See manual for complete list
• Note: FUN3D’s sinusoidal oscillation function (translation or rotation) has

2 built in, e.g sin(2 rotation_freq t)

14

p

p
FUN3D Training Workshop

December 11-12, 2018

http://fun3d.larc.nasa.gov

Output Files
• In addition to the usual output files, for forced / 6-DOF motion there are 3

ASCII Tecplot files for each body
– PositionBody_N.dat tracks linear (x,y,z) and angular (yaw, pitch,

roll) displacement of the “CG” (rotation center)
– VelocityBody_N.dat tracks linear (Vx,Vy,Vz) and angular

() velocity of the “CG” (rotation center)
– AeroForceMomentBody_N.dat tracks force components (Fx,Fy, Fz)

and moment components (Mx,My,Mx)
– Data in all files are nondimensional by default (e.g. “forces” are

actually force coefficients); moving_body.input file has option to
supply dimensional reference values such that this data is output in
dimensional form - see manual/website for details

– Forces are by default given in the inertial reference system;
moving_body.input file has option to output forces in the body-
fixed system - see manual/website for details

15

Wx,Wy,Wz

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Tutorial Case: Pitching Airfoil (1/9)
• Test case located in: tutorials/flow_unsteady_airfoil_pitching
- run_tutorial.sh script starts with a 600 time step restart file, runs

an additional 100 steps, and makes plots that follow
• Consider one of the well known AGARD pitching airfoil experiments,

“Case 1”
– Rec* = 4.8 million, Minf = 0.6, chord = c* = 0.1m , chord-in-grid = 1.0
– Reduced freq. k = 2 f * / (U*inf / 0.5c*) = 0.0808, (f *= 50.32 Hz)
– Angle of attack variation (exp): (deg)

• Setting the FUN3D data:
– angle_of_attack = 2.89 rotation_amplitude = 2.41

– Recall f = k M*ref / from the 2nd nondimensionalization slide
– rotation_freq = f = 0.0808 (0.6) / 3.14… = 0.01543166
– So in this case we actually didn’t have to use any dimensional data

since the exp. frequency was given as a reduced (non dim.) frequency
16

a = 2.89 + 2.41sin(2pf *t*)

p

p

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Tutorial Case: Pitching Airfoil (2/9)
• Setting the FUN3D data (cont):

– Time step: the motion has gone through one cycle of motion when
t = T, so that

sin(2 rotation_freq T) = sin(2)
T = 1 / rotation_freq (this is our t chr)
for N steps / cycle, T = N t so

t = T / N = (1 /rotation_freq) / N
– Take 100 steps to resolve this frequency:

t = (1 / 0.01543166) / 100 = 0.64801842
– Alternatively, could use tchr = (1/ f *) a*inf (Lref/L*ref), with f * = 50.32 Hz,

and assume value for a*inf

17

p

p

D

D

D

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Tutorial Case: Pitching Airfoil (3/9)

18FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Tutorial Case: Pitching Airfoil (4/9)
• Relevant fun3d.nml data

&global
moving_grid = .true.

/
&nonlinear_solver_parameters

temporal_err_control = .true. ! Turn on
temporal_err_floor = 0.1 ! Exit 1 order below estimate
time_accuracy = "2ndorderOPT” ! Our Workhorse Scheme
time_step_nondim = 0.64801842 ! 100 steps/pitch cycle
subiterations = 30
schedule_cfl = 50.00 50.00 ! constant cfl each step
schedule_cflturb = 30.00 30.00

/

• Relevant moving_grid.input data
&body_definitions
n_moving_bodies = 1, ! number of bodies
body_name(1) = 'airfoil', ! name must be in quotes
n_defining_bndry(1) = 1, ! one boundary defines the airfoil
defining_bndry(1,1) = 5, ! (boundary, body)
motion_driver(1) = 'forced’
mesh_movement(1) = 'rigid’,

/
19FUN3D Training Workshop

December 11-12, 2018

http://fun3d.larc.nasa.gov

Tutorial Case: Pitching Airfoil (5/9)
• Relevant moving_grid.input data (cont)

&forced_motion

rotate(1) = 2, ! type: sinusoidal

rotation_freq(1) = 0.01543166, ! reduced rotation frequency

rotation_amplitude(1) = 2.41, ! pitching amplitude

rotation_origin_x(1) = 0.25, ! x-coordinate of rotation origin

rotation_origin_y(1) = 0.0, ! y-coordinate of rotation origin

rotation_origin_z(1) = 0.0, ! z-coordinate of rotation origin

rotation_vector_x(1) = 0.0, ! unit vector x-component along
! rotation axis

rotation_vector_y(1) = 1.0, ! unit vector y-component along
! rotation axis

rotation_vector_z(1) = 0.0, ! unit vector z-component along
! rotation axis

/

20FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Tutorial Case: Pitching Airfoil (6/9)

21

Simulation_Time

C
L

C
M
y

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

-0.02

-0.01

0

0.01

0.02
C_L
C_M_y

Example
Starts Here

Time History
(time_history.lay)

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Tutorial Case: Pitching Airfoil (7/9)

22

Fractional_Time_Step

R
_2

R
_6

670 672 674 676 678 680
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-6

10-5

10-4

10-3

10-2

10-1

100

101

R_2
R_6

Dashed Lines Indicate
Approx. Temporal Error Estimates

Subiteration Residuals, Final 10 Steps
(mean flow just misses tolerance)

(subit_history.lay)

Fractional_Time_Step

C
L

C
M
y

690 692 694 696 698 7000.2

0.25

0.3

0.35

0.4

-0.01

-0.008

-0.006

-0.004

-0.002

0

Subiteration Lift & PM, Final 10 Steps

(subit_force_history.lay)

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Tutorial Case: Pitching Airfoil (8/9)

23

Mach Number
(mach_animation.lay)

Pressure Coefficient
(cp_animation.lay)

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Tutorial Case: Pitching Airfoil (9/9)

24

Rigid mesh and deforming mesh produce nearly identical results

a, deg

C
L

0 2 4 60

0.2

0.4

0.6

0.8
Experiment
Rigid Mesh, 100 Steps/Cycle
Deforming Mesh, 100 Steps/Cycle

a, deg

C
m

0 2 4 6-0.01

0

0.01

0.02

0.03

0.04
Experiment
Rigid Mesh, 100 Steps/Cycle
Deforming Mesh, 100 Steps/Cycle

Comparison with Landon, AGARD-R-702, Test Data,1982
Note: comparison typical of other published CFD results

These plots not generated as part of the tutorial

Pitching Moment vs. Alpha Lift vs. Alpha

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Troubleshooting Body / Grid Motion
• When first setting up a dynamic mesh problem, suggest using either the

following in the &global namelist
– body_motion_only = .true.
– grid_motion_only = .true.

• Both options turn off the flow solution for faster processing (memory
footprint is the same however)
– body_motion_only especially useful for 1st check of a deforming

mesh case since the elasticity solver is also bypassed
– grid_motion_only performs all mesh motion, including elasticity

solution – in a deforming case this can tell you up front if negative
volumes will be encountered

– Caveat: can’t really do this for aeroelastic or 6DOF cases since motion
and flow solution are coupled

• Use these with some form of animation output: only solid boundary output
is appropriate for body_motion_only; with grid_motion_only can
look at any boundary, or use sampling to look at interior planes, etc.

25
FUN3D Training Workshop

December 11-12, 2018

http://fun3d.larc.nasa.gov

List of Key Input/Output Files
• Beyond basics like fun3d.nml, etc.:

– Set moving_grid = .true. in &global namelist
• Input

– moving_body.input (else code stops when moving_grid = T)
• Output

– [project]_subhist.dat

– PositionBody_N.dat (forced motion / 6-DOF only)
– VelocityBody_N.dat (forced motion / 6-DOF only)
– AeroForceMomentBody_N.dat (forced motion / 6-DOF only)

26
FUN3D Training Workshop

December 11-12, 2018

