
http://fun3d.larc.nasa.gov 
FUN3D Training Workshop 

March 24-25, 2014 1 

Bob Biedron 
 

FUN3D v12.4 Training 
 

Session 17: 
Rotorcraft Simulations 



http://fun3d.larc.nasa.gov 

Session Scope 
•  What this will cover 

–  Overview of actuator-disc models for rotorcraft 
–  Overview of setup for overset, articulated-blade rotorcraft simulations 

•  Rigid Blades 
•  Elastic Blades / Loose Coupling to Rotorcraft Comprehensive Codes 

•  What will not be covered 
–  Rotorcraft Comprehensive Code set up and operation 
–  All the many critical setup details 

•  What should you already know 
–  Basic time-accurate and dynamic-mesh solver operation and control 
–  Rudimentary rotorcraft aeromechanics (collective, cyclic…) 

FUN3D Training Workshop 
March 24-25, 2014 2 



http://fun3d.larc.nasa.gov 

Introduction 
•  Background 

–  FUN3D can model a rotor with varying levels of fidelity/complexity 
•  As an actuator disk - when only the overall rotor influence is needed 
•  As rotating, articulated-blade system (cyclic pitch, flap, lead-lag), 

with or without aeroelastic effects - if detailed airloads are needed 
–  Trim and aeroelastic effects require coupling with a rotorcraft 

“comprehensive” code 
•  As a steady-state problem for rigid, isolated, fixed-pitch blades in a 

rotating noninertial frame (not covered here) 
•  Compatibility 

–  Coupled to the CAMRAD II and RCAS comprehensive codes 
•  Status 

–  Coded for multiple rotors, but largely untested 
–  Far less experience / testing with RCAS than with CAMRAD II 

FUN3D Training Workshop 
March 24-25, 2014 3 



http://fun3d.larc.nasa.gov 

Time-Averaged Actuator-Disk Simulations (1/2) 
•  Actuator disk method utilizes momentum/energy source terms to 

represent the influence of the disk (pressure jump) 
– Original implementation by Dave O’Brien (GIT Ph.D. Thesis) 
– HI-ARMS implementation (SMEMRD) by Dave O’Brien ARMDEC 

adds trim and ability to use C81 airfoil tables (Not covered ) 
•  Simplifies grid generation – disk is embedded in computational grid (note 

some refinement in the vicinity of actuator surface needed for accuracy) 
•  Any number of actuator disks can be modeled 
•  Different disk loading models available 

–  RotorType = 1 actuator disk 
•  LoadType = 1 constant (specified thrust coefficient CT) 
•  LoadType = 2 linearly increasing to blade tip (specified CT ) 
•  LoadType = 3 blade element based (computed CT ) 

–  RotorType = 2 actuator blades (time-accurate) Not Functional 

 

FUN3D Training Workshop 
March 24-25, 2014 4 



http://fun3d.larc.nasa.gov 

Time-Averaged Actuator-Disk Simulations (2/2) 
•  Actuator disk implementation runs orthogonal to the standard steady-

state flow solver process (compressible and incompressible) 
– Standard input grid formats for the volume grids 
– Standard solver input deck (fun3d.nml)  
– Standard output is available (project.forces, 
project_hist.tec, project_tec_boundary.plt)  

– Want similar solution convergence as a standard steady-state case 
•  Actuator disk model is activated in the command line by  
mpirun nodet_mpi -–rotor 

– Rotor input deck file (rotor.input) is required in the local directory 
– rotor.input contains disk geometry and loading specifications 
– The disk geometry and loading are output in plot3d format in files 
source_grid_iteration#.p3d and 
source_data_iteration#.p3d 

 

FUN3D Training Workshop 
March 24-25, 2014 5 



http://fun3d.larc.nasa.gov 

Incompressible Robin/Actuator Disk  

 

FUN3D Training Workshop 
March 24-25, 2014 6 

Advance Ratio = 0.051 (Vinf/Vtip) 
Thrust coefficient CT = 0.0064 
Angle of attack = 0 deg 
Shaft angle = 0deg 



http://fun3d.larc.nasa.gov 

 rotor.input File 
•  Constant/linear loading needs only a subset of the data in the file 

  # Rotors   Uinf/Uref  Write Soln   Force Ref  Moment Ref    ! Below we set Uref = Uinf 
         1       1.000        1500    0.001117    0.001297    ! Adv Ratio = Uinf/Utip 
=== Main Rotor =============================================  ! So here Utip/Uref = 1/AR 
Rotor Type   Load Type    # Radial    # Normal  Tip Weight 
         1           2          50         180         0.0 
  X0_rotor    Y0_rotor    Z0_rotor        phi1        phi2        phi3 
     0.696         0.0       0.322        0.00        -0.0        0.00 
 Utip/Uref  ThrustCoff   PowerCoff        psi0 PitchHing/R      DirRot 
     19.61      0.0064       -1.00         0.0         0.0           0 
  # Blades   TipRadius  RootRadius  BladeChord FlapHinge/R  LagHinge/R 
         4       0.861       0.207       0.066       0.051       0.051 
 LiftSlope  alpha, L=0         cd0         cd1         cd2 
       0.0        0.00       0.002        0.00        0.00 
    CL_max      CL_min      CD_max      CD_min       Swirl 
      0.00        0.00        0.00        0.00           0 
    Theta0  ThetaTwist     Theta1s     Theta1c  Pitch-Flap 
       0.0        0.00         0.0         0.0        0.00 
 # FlapHar       Beta0      Beta1s      Beta1c 
         0         0.0         0.0         0.0 
    Beta2s      Beta2c      Beta3s      Beta3c 
       0.0         0.0         0.0         0.0 
  # LagHar      Delta0     Delta1s     Delta1c 
         0         0.0         0.0         0.0 
   Delta2s     Delta2c     Delta3s     Delta3c 
      0.0          0.0         0.0         0.0 

•  Note Vref=Vtip is bad choice for incompressible flow - suggest using rotor 
induced velocity 

 

FUN3D Training Workshop 
March 24-25, 2014 7 

Key: 
Required for constant loading 
Required for blade element 
Not implemented 
(all must have a values)   



http://fun3d.larc.nasa.gov 

Incompressible Robin/Actuator Disk 

 

FUN3D Training Workshop 
March 24-25, 2014 8 



http://fun3d.larc.nasa.gov 

Articulated-Blade Simulations 
•  Relies on the use of overset grids; blades may be rigid or elastic 
•  Elastic-blade cases (or trimmed rigid-blade cases) must be coupled to a 

rotorcraft Computational Structural Dynamics (CSD, aka comprehensive) 
code such as CAMRAD or RCAS 

– The CSD code provides trim solution in addition to blade deformations  
– The interface to the CSD code is through standard OVERFLOW 
rotor_N.onerev.txt and motion.txt type files 

– Interface codes for CAMRAD are maintained and distributed by Doug 
Boyd, NASA Langley (d.d.boyd@nasa.gov) 

– RCAS coupling does not require any interface codes 
– FUN3D has several postprocessing utility codes tailored to CAMRAD 

•  This is about as complicated as it gets with the FUN3D flow solver 
– There are many small details that must be done correctly; we don’t 

have time to cover them all here 
– Novice users of FUN3D will want to start with simpler problems 

 

FUN3D Training Workshop 
March 24-25, 2014 9 



http://fun3d.larc.nasa.gov 

CFD/CSD – Loose (Periodic) Coupling 

FUN3D Training Workshop 
March 24-25, 2014 10 

Coupling Process CSD -> CFD 

CFD -> CSD 

CFD/CSD loose coupling implemented via shell 
script with error checking  

motion.txt and rotor_onerev.txt files common to 
FUN3D and OVERFLOW 



http://fun3d.larc.nasa.gov 

dci_gen Preprocessor (1/8) 
•  A rudimentary code to simplify rotorcraft setup (/utils/Rotocraft/dci_gen) 

–  Uses libSUGGAR++ routines 
–  Takes a single blade grid and a single fuselage / background grid 

(extending to far field) and assembles them into an N-bladed rotorcraft 
–  Creates the SUGGAR++ XML file (Input.xml_0) needed by FUN3D 
–  Generates, using libSUGGAR++ calls, the initial (t = 0) dci file and 

composite grid needed by FUN3D 
–  Generates the composite-grid “mapbc” files needed by FUN3D 
–  Component grids must be oriented as shown on following slide 

•  Blade must have any “as-built” twist incorporated 
•  If grids do not initially meet the orientation criteria, can use     

SUGGAR++ to rotate them before using dci_gen 

FUN3D Training Workshop 
March 24-25, 2014 11 



http://fun3d.larc.nasa.gov 

dci_gen Preprocessor (2/8) 

HART II Component Grids 

FUN3D Training Workshop 
March 24-25, 2014 12 



http://fun3d.larc.nasa.gov 

dci_gen Preprocessor (3/8) 
HART II Composite Grid 

FUN3D Training Workshop 
March 24-25, 2014 13 



http://fun3d.larc.nasa.gov 

 rotor.input File 
•  Articulated rotors need only a subset of the data (manual defines variables) 

  # Rotors   Uinf/Uref  Write Soln   Force Ref Momment Ref    ! Below we set Uref = Utip 
         1       0.245        1500         1.0         1.0    ! Adv Ratio = Uinf/Utip 
=== Main Rotor =============================================  ! So here Uinf/Uref = AR 
Rotor Type   Load Type    # Radial    # Normal  Tip Weight 
         1           1          50         180         0.0 
  X0_rotor    Y0_rotor    Z0_rotor        phi1        phi2        phi3 
       0.0         0.0         0.0        0.00         0.0        0.00 
 Utip/Uref  ThrustCoff   PowerCoff        psi0  PitchHinge      DirRot 
       1.0      0.0064       -1.00         0.0      0.0466           0 
  # Blades   TipRadius  RootRadius  BladeChord   FlapHinge    LagHinge 
         4     26.8330      2.6666       1.741      0.0466      0.0466 
 LiftSlope  alpha, L=0         cd0         cd1         cd2 
      6.28        0.00       0.002        0.00        0.00 
    CL_max      CL_min      CD_max      CD_min       Swirl 
      1.50       -1.50        1.50       -1.50           0 
    Theta0  ThetaTwist     Theta1s     Theta1c  Pitch-Flap 
       0.0        0.00         0.0         0.0        0.00 
 # FlapHar       Beta0      Beta1s      Beta1c 
         0         0.0         0.0         0.0 
    Beta2s      Beta2c      Beta3s      Beta3c 
       0.0         0.0         0.0         0.0 
  # LagHar      Delta0     Delta1s     Delta1c 
         0         0.0         0.0         0.0 
   Delta2s     Delta2c     Delta3s     Delta3c 
      0.0          0.0         0.0         0.0 

 

FUN3D Training Workshop 
March 24-25, 2014 14 

Key: 
Required for rigid and elastic 
Required for untrimmed rigid 
Unused (must have a value)   



http://fun3d.larc.nasa.gov 

•  Typically define the flow reference state for rotors based on the tip 
speed; thus in rotor.input, set Utip/Uref = 1.0 (data line 4) 

•  This way, Uinf/Uref (data line 1) is equivalent to Uinf/Utip, which is the 
Advance Ratio, and is usually specified or easily obtained 

•  Since the reference state corresponds to the tip, the mach_number in 
the fun3d.nml file should be the tip Mach number, and the 
reynolds_number should be the tip Reynolds number 

•  Nondimensional rotation rate: not input directly, but it is output to the 
screen; you might want to explicitly calculate it up front as a later check: 

                         (rad/s,       the rotor radius)                                                 

    and recall                                        (compressible) 
    so with                             and taking                         

                                                (compressible) 

                                                (incompressible)       

  !

 

 Nondimensional Input (1/2) 

FUN3D Training Workshop 
March 24-25, 2014 15 

€ 

Ω* =Utip
* /R*

€ 

Ω=Ω*(Lref
* /Lref ) /aref

*

€ 

aref
* =Uref

* /Mref

€ 

Lref
* = R*

€ 

Ω = Mref (Utip
* /Uref

* ) /R

€ 

Ω =Utip
* /Uref

* /R
€ 

R*



http://fun3d.larc.nasa.gov 

 Nondimensional Input (2/2) 
•  Nondimensional time step: 

    time for one rev:                                             (s) 

    and recall                                     (compressible) 

    so with                 we have 

                                                                                       (nondim time / rev)      

    For N steps per rotor revolution: 

                                                      (compressible) 

                                                      (incompressible) 

•  Note: the azimuthal change per time step is output to the screen in the 
Rotor info section. Make sure this is consistent, to a high degree of 
precision (say at least 4 digits), with your choice of N steps per rev – 
you want the blade to end up very close to 360 deg. after multiple revs! 

•  Formulas above are general, but recall we usually have ref = tip, at 
least for compressible flow 

  !

 

FUN3D Training Workshop 
March 24-25, 2014 16 

€ 

T* = 2π /Ω* = 2π R* /Utip
*

€ 

t = t*aref
* (Lref /Lref

* )

€ 

T = aref
* (R /R*)2π R* /Utip

* = 2π R /(MrefUtip
* /Uref

* )

€ 

Δ t = 2π R /(NMrefUtip
* /Uref

* )
€ 

Lref
* = R*

€ 

Δ t = 2π R /(NUtip
* /Uref

* )



http://fun3d.larc.nasa.gov 

 CAMRAD Considerations 
•  User must set up basic CAMRAD II scripts; the RUN_LOOSE_COUPLING 

script provided with FUN3D requires 3 distinct, but related CAMRAD scripts 
–  basename_ref.scr  

•   Used to generate the reference motion data used by CAMRAD 
•   Set this file to use rigid blades; zero collective/cyclic; no trim 

–  basename_0.scr 
•  Used for coupling/trim cycle “0”  
•  Set up for elastic blades with trim; use CAMRAD aerodynamics 

exclusively (no delta airloads input); simplest aero model will suffice 
–  basename_n.scr 

•   Used for all subsequent coupling/trim cycles 
•   Set up for elastic blades with trim; use same simple CAMRAD 

aerodynamics but now with delta airloads input 

  

 

FUN3D Training Workshop 
March 24-25, 2014 17 



http://fun3d.larc.nasa.gov 

 Untrimmed Rigid-Blade Simulations 
•  Overview of the basic steps 

1. Prepare rotor blade and fuselage grids, with proper axis orientation 

2. Set up the rotor.input file based on desired flight conditions 

3. Run the dci_gen utility to create a composite mesh and initial dci data 

4. Set up fun3d.nml and moving_body.input files 

5. Optionally set up the &slice_data namelist  in the fun3d.nml file 

6. Run the solver with the following command line options (in addition to 
any other appropriate ones, like --temporal_err_control) 
 --moving_grid --overset --overset_rotor --dci_on_the_fly         

--dci_period 360 --reuse_existing_dci 

  If optional step 5 is used, add the following (N as desired, typically 1) 
 --slice_freq N --output_comprehensive_loads 

7. Number of time steps required is case dependent – usually at least 3 
revs 

 

FUN3D Training Workshop 
March 24-25, 2014 18 



http://fun3d.larc.nasa.gov 

 Trimmed, Elastic-Blade Simulations 
•  Overview of the basic steps; steps 1-4 are the same as for the untrimmed 

rigid-blade case; use of CAMRAD is assumed 
5. Set up the &slice_data namelist; not optional 
6. Set up the 3 CAMRAD run-script templates 
7. Set up the RUN_LOOSE_COUPLING run script (a c-shell script geared to 

PBS environments); user-set data is near the top – sections 1 and 2 
8. Set up the fun3d.nml_initial and fun3d.nml_restart files 

used by the run script; typically set the time steps in the initial file to 
cover 2 revs, and 2/Nblade revs in restart version 

9.  If using the run script make sure all items it needs are in place; script 
checks for missing items, but it gets old having to keep restarting 
because you forgot something! 

10. Number of coupling cycles required for trim can vary, but 8-10 is typical 
for low-moderate thrust levels; high thrust cases near thrust boundary 
may require 10-15; user judges acceptable convergence 

FUN3D Training Workshop 
March 24-25, 2014 19 



http://fun3d.larc.nasa.gov 

  RUN_LOOSE_COUPLING Directory Tree 

FUN3D Training Workshop 
March 24-25, 2014 20 

Run Directory 
Script executed here 

FUN3D runs here 

CAMRAD 

Reference 

Trim_0 

Trim_1 

Trim_0 

Trim_1 

Principal 
solver files 

archived here 
at end of  

each trim cycle 

CAMRAD 
and interface 

codes run 
here and 

output stored 
here for each 

trim cycle 
. 
. 
. 

. 

. 

. 

Script creates 
all subdirectories 



http://fun3d.larc.nasa.gov 

 Postprocessing  

FUN3D Training Workshop 
March 24-25, 2014 21 

psi
0 90 180 270 360

-0.02

0

0.02
M2CM - mean

r/R = 0.865

psi
0 90 180 270 360

-0.15

-0.05

0.05

0.15
C9020
15M Nodes

M2CN - mean

psi
0 90 180 270 360

-0.02

0

0.02
M2CX - mean

Sample Plots Possible Via 
process_rotor_airloads.f90 

Output 

psi

Ti
p
E
la
st
ic
Tw
is
t,
de
g

0 90 180 270 360-4

-2

0

2
HART-II MN
CFD+CSD



http://fun3d.larc.nasa.gov 

 The End  

FUN3D Training Workshop 
March 24-25, 2014 22 


