
6/9/15	
  

FUN3D	
  Training	
  Workshop	
   1	
  

http://fun3d.larc.nasa.gov 
FUN3D Training Workshop 

June 20-21, 2015  1 

Bob Biedron 
 

FUN3D v12.7 Training 
 

Session 17: 
Rotorcraft Simulations 

http://fun3d.larc.nasa.gov 

Session Scope 
•  What this will cover 

–  Overview of actuator-disc models for rotorcraft 
–  Overview of setup for “first principles” articulated-blade rotorcraft 

simulations using overset grids 
•  Rigid Blades 
•  Elastic Blades / Loose Coupling to Rotorcraft Comprehensive Codes 

•  What will not be covered 
–  Rotorcraft Comprehensive Code set up and operation 
–  All the many critical setup details for the “first principles” approach 

•  What should you already know 
–  Basic time-accurate and dynamic-mesh solver operation and control 
–  Rudimentary rotorcraft aeromechanics (collective, cyclic…) 

FUN3D Training Workshop 
June 20-21, 2015  2 



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   2	
  

http://fun3d.larc.nasa.gov 

Introduction 
•  Background 

–  FUN3D can model a rotor with varying levels of fidelity/complexity 
•  As an actuator disk – low-fidelity representation of the rotor - when 

only the overall rotor influence on the configuration is needed 
•  As rotating, articulated-blade system (cyclic pitch, flap, lead-lag), 

with or without aeroelastic effects - if detailed rotor airloads are 
needed 

–  Trim and aeroelastic effects require coupling with a rotorcraft 
“comprehensive” code 

•  As a steady-state problem for rigid, isolated, fixed-pitch blades in a 
rotating noninertial frame 

•  Compatibility 
–  Coupled to the CAMRAD II and RCAS comprehensive codes 

•  Status 
–  Far less experience / testing with RCAS than with CAMRAD II 
–  Near future: hooks to US Army’s HELIOS rotorcraft framework 

FUN3D Training Workshop 
June 20-21, 2015  3 

http://fun3d.larc.nasa.gov 

Time-Averaged Actuator-Disk Simulations (1/3) 
•  Actuator disk method utilizes momentum and energy equation source 

terms to represent the influence of the disk 
– Original implementation by Dave O’Brien (GIT Ph.D. Thesis) 
– HI-ARMS implementation (SMEMRD) by Dave O’Brien ARMDEC 

adds trim and ability to use C81 airfoil tables (Not covered ) 
•  Simplifies grid generation – actuator disk is automatically embedded in 

computational grid (refinement in the vicinity of actuator surface improves 
accuracy) 

•  Any number of actuator disks can be modeled 
•  Requires the --rotor  command line option (--hiarms_rotor  for 

SMEMRD). See rotor.input section in user manual for full details 

 

FUN3D Training Workshop 
June 20-21, 2015  4 



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   3	
  

http://fun3d.larc.nasa.gov 

Time-Averaged Actuator-Disk Simulations (2/3) 
•  Different disk loading models available 

–  RotorType = 1 actuator disk 
•  LoadType = 1 constant (specified thrust coefficient CT) 
•  LoadType = 2 linearly increasing to blade tip (specified CT ) 
•  LoadType = 3 blade element based (computed CT ) 
•  LoadType = 4 not recommended, user specified sources 
•  LoadType = 5 CT and CQ radial distributions proved in a file 
•  LoadType = 6 Goldstein distribution with optional swirl (specified 

CT and CQ) 
–  RotorType = 2 actuator blades (time-accurate) Not Functional 

 

FUN3D Training Workshop 
June 20-21, 2015  5 

http://fun3d.larc.nasa.gov 

Time-Averaged Actuator-Disk Simulations (3/3) 
•  Actuator disk implementation compatible with the standard steady-state 

flow solver process (compressible and incompressible) 
– Standard grid formats for the volume grids 
– Standard solver input deck (fun3d.nml)  
– Standard output is available (project.forces, 
project_hist.tec, project_tec_boundary.plt)  

– Want similar solution convergence as a standard steady-state case 
•  Standard actuator disk model is activated in the command line by        
-–rotor 

– Rotor input deck file (rotor.input) is required in the local directory 
– rotor.input contains disk geometry and loading specifications 
– The disk geometry and loading are output in plot3d format in files 
source_grid_iteration#.p3d and 
source_data_iteration#.p3d 

 

FUN3D Training Workshop 
June 20-21, 2015  6 



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   4	
  

http://fun3d.larc.nasa.gov 

 rotor.input File 
•  Constant/linear loading needs only a subset of the data in the file data 

(manual defines variables) 
  # Rotors   Uinf/Uref  Write Soln   Force Ref  Moment Ref    ! Below we set Uref = Uinf 
         1       1.000        1500    0.001117    0.001297    ! Adv Ratio = Uinf/Utip 
=== Main Rotor =============================================  ! So here Utip/Uref = 1/AR 
Rotor Type   Load Type    # Radial    # Normal  Tip Weight 
         1           2          50         180         0.0 
  X0_rotor    Y0_rotor    Z0_rotor        phi1        phi2        phi3 
     0.696         0.0       0.322        0.00        -0.0        0.00 
 Utip/Uref  ThrustCoff  TorqueCoff        psi0 PitchHing/R      DirRot 
     19.61      0.0064        0.00         0.0         0.0           0 
  # Blades   TipRadius  RootRadius  BladeChord FlapHinge/R  LagHinge/R 
         4       0.861       0.207       0.066       0.051       0.051 
 LiftSlope  alpha, L=0         cd0         cd1         cd2 
       0.0        0.00       0.002        0.00        0.00 
    CL_max      CL_min      CD_max      CD_min       Swirl 
      0.00        0.00        0.00        0.00           0 
    Theta0  ThetaTwist     Theta1s     Theta1c  Pitch-Flap 
       0.0        0.00         0.0         0.0        0.00 
 # FlapHar       Beta0      Beta1s      Beta1c 
         0         0.0         0.0         0.0 
    Beta2s      Beta2c      Beta3s      Beta3c 
       0.0         0.0         0.0         0.0 
  # LagHar      Delta0     Delta1s     Delta1c 
         0         0.0         0.0         0.0 
   Delta2s     Delta2c     Delta3s     Delta3c 
      0.0          0.0         0.0         0.0 

•  Vref=Vtip a bad choice for incompressible – use rotor induced velocity 

 

FUN3D Training Workshop 
June 20-21, 2015  7 

Key: 
Required for constant/linear actuator disk 
Addt’l data for blade element or “first 
principles” simulations 
(all items must have a value, even if 
unused)   

http://fun3d.larc.nasa.gov 

Robin Fuselage with Actuator Disk  

 

FUN3D Training Workshop 
June 20-21, 2015  8 

Green: surface mesh from  
FUN3D input mesh 

Red: disk mesh generated with resolution 
#Radial x #Normal (azimuthal!!) from rotor.data 



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   5	
  

http://fun3d.larc.nasa.gov 

Incompressible Robin/Actuator Disk 

 

FUN3D Training Workshop 
June 20-21, 2015  9 

Advance Ratio = 0.051 (Vinf/Vtip) 
Thrust coefficient CT = 0.0064 
Angle of attack = 0o Shaft angle = 0o 

http://fun3d.larc.nasa.gov 

Articulated-Blade Simulations 
•  “First Principles” – rotor flow is computed, not modeled 

–  Requires moving, overset grids; blades may be rigid or elastic 
•  Elastic-blade cases (or trimmed rigid-blade cases) must be coupled to a 

rotorcraft Computational Structural Dynamics (CSD, aka comprehensive) 
code such as CAMRAD or RCAS 

– The CSD code provides trim solution in addition to blade deformations  
– The interface to the CSD code is through standard OVERFLOW 
rotor_N.onerev.txt and motion.txt type files 

– Interface codes for CAMRAD are maintained and distributed by Doug 
Boyd, NASA Langley (contact d.d.boyd@nasa.gov) 

– RCAS coupling does not require any interface codes (RCAS API) 
– FUN3D has several postprocessing utility codes tailored to CAMRAD 

•  Coupled simulations are about as complicated as it gets with the basic 
FUN3D flow solver 

– There are many small details that must be done correctly; we don’t 
have time to cover them all here 

 

FUN3D Training Workshop 
June 20-21, 2015  10 



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   6	
  

http://fun3d.larc.nasa.gov 

CFD/CSD – Loose (Periodic) Coupling 

FUN3D Training Workshop 
June 20-21, 2015  11 

Coupling Process CSD -> CFD 

CFD -> CSD 

CFD/CSD loose coupling implemented via shell 
script with error checking  

motion.txt file (blade elastic motion) and 
 rotor_onerev.txt file (aero loads) common to 

FUN3D and OVERFLOW 

http://fun3d.larc.nasa.gov 

•  Typically define the flow reference state for rotors based on the tip 
speed; thus in rotor.input, set Utip/Uref = 1.0 (data line 4) 

•  This way, Uinf/Uref (data line 1) is equivalent to Uinf/Utip, which is the 
Advance Ratio, and is usually specified or easily obtained 

•  Since the reference state corresponds to the tip, the mach_number in 
the fun3d.nml file should be the tip Mach number, and the 
reynolds_number should be the tip Reynolds number 

•  Nondimensional rotation rate: not input directly, but it is output to the 
screen; you might want to explicitly calculate it up front as a later check: 

                         (rad/s,       the rotor radius)                                                 

    and recall                                        (compressible) 
    so with                             and taking                         

                                                (compressible) 

                                                (incompressible)       

  !

 

 Rotor-Specific Nondimensional Input (1/2) 

FUN3D Training Workshop 
June 20-21, 2015  12 

€ 

Ω* =Utip
* /R*

€ 

Ω=Ω*(Lref
* /Lref ) /aref

*

€ 

aref
* =Uref

* /Mref

€ 

Lref
* = R*

€ 

Ω = Mref (Utip
* /Uref

* ) /R

€ 

Ω =Utip
* /Uref

* /R
€ 

R*



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   7	
  

http://fun3d.larc.nasa.gov 

 Rotor-Specific Nondimensional Input (2/2) 
•  Nondimensional time step: 

    time for one rev:                                             (s) 

    and recall                                     (compressible) 

    so with                 we have 

                                                                                       (nondim time / rev)      

    For N steps per rotor revolution: 

                                                      (compressible) 

                                                      (incompressible) 

•  Note: the azimuthal change per time step is output to the screen in the 
Rotor info section. Make sure this is consistent, to a high degree of 
precision (say at least 4 digits), with your choice of N steps per rev – 
you want the blade to end up very close to 360 deg. after multiple revs! 

•  Formulas above are general, but recall we usually have ref = tip, at 
least for compressible flow 

  !

 

FUN3D Training Workshop 
June 20-21, 2015  13 

€ 

T* = 2π /Ω* = 2π R* /Utip
*

€ 

t = t*aref
* (Lref /Lref

* )

€ 

T = aref
* (R /R*)2π R* /Utip

* = 2π R /(MrefUtip
* /Uref

* )

€ 

Δ t = 2π R /(NMrefUtip
* /Uref

* )
€ 

Lref
* = R*

€ 

Δ t = 2π R /(NUtip
* /Uref

* )

http://fun3d.larc.nasa.gov 

dci_gen Preprocessor (1/8) 
•  A rudimentary code to simplify rotorcraft setup (/utils/Rotocraft/dci_gen) 

–  Uses libSUGGAR++ routines 
–  Takes a single blade grid and a single fuselage / background grid 

(extending to far field) and assembles them into an N-bladed rotorcraft 
–  Requires rotor.input file 
–  Creates the SUGGAR++ XML file (Input.xml_0) needed by FUN3D 
–  Generates, using libSUGGAR++ calls, the initial (t = 0) dci file and 

composite grid needed by FUN3D 
–  Generates the composite-grid “mapbc” files needed by FUN3D 
–  Component grids must be oriented as shown on following slide 

•  Blade must have any “as-built” twist incorporated 
•  If grids do not initially meet the orientation criteria, can use     

SUGGAR++ to rotate them before using dci_gen 

FUN3D Training Workshop 
June 20-21, 2015  14 



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   8	
  

http://fun3d.larc.nasa.gov 

dci_gen Preprocessor (2/8) 

HART II Component Grids 

FUN3D Training Workshop 
June 20-21, 2015  15 

http://fun3d.larc.nasa.gov 

dci_gen Preprocessor (3/8) 
HART II Composite Grid 

FUN3D Training Workshop 
June 20-21, 2015  16 



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   9	
  

http://fun3d.larc.nasa.gov 

 rotor.input File 
•  Articulated rotors need only a subset of the data (manual defines variables) 

  # Rotors   Uinf/Uref  Write Soln   Force Ref Momment Ref    ! Below we set Uref = Utip 
         1       0.245        1500         1.0         1.0    ! Adv Ratio = Uinf/Utip 
=== Main Rotor =============================================  ! So here Uinf/Uref = AR 
Rotor Type   Load Type    # Radial    # Normal  Tip Weight 
         1           1          50         180         0.0 
  X0_rotor    Y0_rotor    Z0_rotor        phi1        phi2        phi3 
       0.0         0.0         0.0        0.00         0.0        0.00 
 Utip/Uref  ThrustCoff  TorqueCoff        psi0  PitchHinge      DirRot 
       1.0      0.0064        0.00         0.0      0.0466           0 
  # Blades   TipRadius  RootRadius  BladeChord   FlapHinge    LagHinge 
         4     26.8330      2.6666       1.741      0.0466      0.0466 
 LiftSlope  alpha, L=0         cd0         cd1         cd2 
      6.28        0.00       0.002        0.00        0.00 
    CL_max      CL_min      CD_max      CD_min       Swirl 
      1.50       -1.50        1.50       -1.50           0 
    Theta0  ThetaTwist     Theta1s     Theta1c  Pitch-Flap 
       0.0        0.00         0.0         0.0        0.00 
 # FlapHar       Beta0      Beta1s      Beta1c 
         0         0.0         0.0         0.0 
    Beta2s      Beta2c      Beta3s      Beta3c 
       0.0         0.0         0.0         0.0 
  # LagHar      Delta0     Delta1s     Delta1c 
         0         0.0         0.0         0.0 
   Delta2s     Delta2c     Delta3s     Delta3c 
      0.0          0.0         0.0         0.0 

 

FUN3D Training Workshop 
June 20-21, 2015  17 

Key: 
Required for rigid and elastic 
Required for untrimmed rigid 
Unused (must have a value)   

http://fun3d.larc.nasa.gov 

 Input For Articulated-Blade Simulations (1/2) 
•  Except as noted, inputs pertain to both untrimmed/rigid-blades and 

trimmed/elastic blades 

•  Run as time-dependent, so will need to set time step as per slide 13 

•  Required additional fun3d.nml input 
  &global 
   moving_grid = .true. 
   slice_freq  = 1             (optional if rigid untrimmed) 
/ 
&rotor_data 
   overset_rotor = .true. 
/ 
&overset_data 
   overset_flag       = .true. 
   dci_on_the_fly     = .true.  (potentially optional if rigid) 
   dci_period         = 360     (assuming 1 deg. per time step)  
   reuse_existing_dci = .true.  
/ 

FUN3D Training Workshop 
June 20-21, 2015  18 



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   10	
  

http://fun3d.larc.nasa.gov 

 Input For Articulated-Blade Simulations (2/2) 
•  The moving_body.input file is somewhat simplified since much of the 

motion description is handled by rotor.input – all we need do is define 
the moving bodies and provide the SUGGAR++ xml file if required 
  &body_definitions 
   n_moving_bodies     = 4 (e.g. for 4-bladed rotor) 
   body_name(1)        = ‘rotor1_blade1’ (same as in xml file) 
   n_defining_bndry(1) = 2 
   defining_bndry(1,1) = 3 
   defining_bndry(1,2) = 4 
   mesh_movement(1)    = ‘rigid+deform’ (or just ‘rigid’ for 

                                        for rigid blade case) 
   …             (etc. for blades 2-4) 
/ 
&composite_overset_mesh 
   input_xml_file = “Input.xml_0”  (potentially optional if rigid  
/                                   and have precomputed dci) 

•  Note: motion_driver not set in  &body_definitions (in contrast to 
any other moving grid case); also no &forced_motion input 

FUN3D Training Workshop 
June 20-21, 2015  19 

http://fun3d.larc.nasa.gov 

 CAMRAD Considerations 
•  User must set up basic CAMRAD II scripts; the RUN_LOOSE_COUPLING 

script provided with FUN3D requires 3 distinct, but related CAMRAD scripts 
–  basename_ref.scr  

•   Used to generate the reference motion data used by CAMRAD 
•   Set this file to use rigid blades; zero collective/cyclic; no trim 

–   basename_0.scr 
•  Used for coupling/trim cycle “0”  
•  Set up for elastic blades with trim; use CAMRAD aerodynamics 

exclusively (no delta airloads input); simplest aero model will suffice 
–  basename_n.scr 

•   Used for all subsequent coupling/trim cycles 
•   Set up for elastic blades with trim; use same simple CAMRAD 

aerodynamics but now with delta airloads input 

  

 

FUN3D Training Workshop 
June 20-21, 2015  20 



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   11	
  

http://fun3d.larc.nasa.gov 

 Blade Surface “Slicing” 
•  Boundary surface (rotor blade) slicing is required for coupled CFD/CSD 

simulations; also useful for rigid-blade cases -  this is what generates the 
data in rotor_1.onerev.txt  

$slice_data 

 replicate_all_bodies    = .true.           ! do the following the same on all blades  

 output_sectional_forces = .false.          ! just lots of data we usually don’t need 

 tecplot_slice_output    = .false.          ! ditto 

 slice_x(1)              = .true.,          ! x=const slice – in original blade coords  

 nslices                 = -178,            ! no. slices; “-” means give start and delta 

 slice_location(1)       = 2.8175,          ! x-location to slice (starting slice) 

 slice_increment         = .13416666666     ! delta slice location each successive slice 

 n_bndrys_to_slice(1)    = 1,               ! 1 bndry to search 

 bndrys_to_slice(1,1)    = 2,               ! indicies:(slice,bdry) lumping made life easy 

 slice_frame(1)          = 'rotor1_blade1', ! ref. frame in which to slice - use body name 

 te_def(1)               = 20,              ! look for 2 corners in 20 aft-most segments 

 le_def(1)               = 30,       ! search 30 fwd-most pts for one most distant from TE  

 chord_dir(1)            = -1,              ! Recall goofy original blade coord system  

/ 
•  Note: “slicing” useful for applications other than rotorcraft; see website 

 

FUN3D Training Workshop 
June 20-21, 2015  21 

http://fun3d.larc.nasa.gov 

 Untrimmed Rigid-Blade Simulations 
•  Overview of the basic steps 

1. Prepare rotor blade and fuselage grids, with proper axis orientation 

2. Set up the rotor.input file based on flight conditions 

3. Run the dci_gen utility to create a composite mesh and initial dci data 

4. Set up fun3d.nml and moving_body.input files 

5. Optionally set up the &slice_data namelist  in the fun3d.nml file 

6. Run the solver; the number of time steps required is case dependent – 
usually at least 3 revs for rigid blades 

 

FUN3D Training Workshop 
June 20-21, 2015  22 



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   12	
  

http://fun3d.larc.nasa.gov 

 Trimmed, Elastic-Blade Simulations 
•  Overview of the basic steps; steps 1-4 are the same as for the untrimmed 

rigid-blade case; use of CAMRAD is assumed 
5. Set up the &slice_data namelist; set slice_freq = 1 not optional 
6. Set up the 3 CAMRAD run-script templates 
7. Set up the RUN_LOOSE_COUPLING run script (a c-shell script geared to 

PBS environments); user-set data is near the top – sections 1 and 2 
8. Set up the fun3d.nml_initial and fun3d.nml_restart files 

used by the run script; typically set the time steps in the initial file to 
cover 2 revs, and 2/Nblade revs in restart version 

9. Before using the run script make sure all items it needs are in place; 
script checks for missing items, but it gets old having to keep restarting 
because you forgot something! 

10. Number of coupling cycles required for trim will vary, but 8-10 is typical 
for low-moderate thrust levels; high thrust cases near thrust boundary 
may require 10-15; user judges acceptable convergence 

FUN3D Training Workshop 
June 20-21, 2015  23 

http://fun3d.larc.nasa.gov 

  RUN_LOOSE_COUPLING Directory Tree 

FUN3D Training Workshop 
June 20-21, 2015  24 

Run Directory 
Script executed here 

FUN3D runs here 

CAMRAD 

Reference 

Trim_0 

Trim_1 

Trim_0 

Trim_1 

Principal 
solver files 

archived here 
at end of  

each trim cycle 

CAMRAD 
and interface 

codes run 
here and 

output stored 
here for each 

trim cycle 
. 
. 
. 

. 

. 

. 

Script creates 
all subdirectories 



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   13	
  

http://fun3d.larc.nasa.gov 

 Postprocessing  

FUN3D Training Workshop 
June 20-21, 2015  25 

psi
0 90 180 270 360

-0.02

0

0.02
M2CM - mean

r/R = 0.865

psi
0 90 180 270 360

-0.15

-0.05

0.05

0.15
C9020
15M Nodes

M2CN - mean

psi
0 90 180 270 360

-0.02

0

0.02
M2CX - mean

Sample Plots Possible Via 
process_rotor_airloads.f90 

Output 

psi

Ti
p
E
la
st
ic
Tw
is
t,
de
g

0 90 180 270 360-4

-2

0

2
HART-II MN
CFD+CSD

http://fun3d.larc.nasa.gov 

 Non-Inertial Reference Frame (1/2) 
•  For isolated, rigid an improvement in solution efficiency may be obtained 

by transforming to a coordinate system that rotates with the rotor 

•  FUN3D implements a very limited subset of possible non-inertial frames: 

–  Constant rotation rate 

–  Free-stream flow limited to  

•  Quiescent (e.g. rotor in hover) 

•  Flow aligned with axis of rotor (e.g ascending/descending rotor; 
prop in forward flight at 0 AoA) 

•  In this noninertial rotating frame, the flow is assumed steady 

•  Can be used in conjunction with overset grids to allow pitch/collective 
changes to rotor without re-gridding 

•  The noninertial capability has other limited applications in addition to 
rotors – e.g. aircraft in a steady loop 

FUN3D Training Workshop 
June 20-21, 2015  26 



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   14	
  

http://fun3d.larc.nasa.gov 

 Non-Inertial Reference Frame (2/2) 
•  fun3d.nml input for non-inertial frame solutions (example for rotor 

spinning about z-axis) 
  &noninertial_reference_frame 
   noninertial = .true. 
   rotation_center_x = 0.0  !rotation axis passes through this pt. 
   rotation_center_y = 0.0 
   rotation_center_z = 0.0 
   rotation_rate_x   = 0.0 
   rotation_rate_x   = 0.0 
   rotation_rate_z   = 0.2 
/ 

•  The nondimensional rotation rate is determined as shown on slide 11 
•  Flow-visualization output (boundary, volume, sampling) will be relative to 

the non-inertial frame 

FUN3D Training Workshop 
June 20-21, 2015  27 

http://fun3d.larc.nasa.gov 

   

FUN3D Training Workshop 
June 20-21, 2015  28 


