
http://fun3d.larc.nasa.gov
FUN3D Training Workshop

December 11-12, 2018 1

Li Wang
Bob Biedron

FUN3D v13.4 Training

Session 17:
Rotorcraft Simulations

http://fun3d.larc.nasa.gov

Session Scope
•  What this will cover

–  Overview of actuator-disk models for rotorcraft
–  Overview of setup for “first principles” articulated-blade rotorcraft

simulations using overset grids
•  Rigid Blades
•  Elastic Blades / Loose Coupling to Rotorcraft Comprehensive Codes

•  What will not be covered
–  Rotorcraft Comprehensive Code set up and operation
–  All the many critical setup details for the “first principles” approach

•  What should you already know
–  Basic time-accurate and dynamic-mesh solver operation and control
–  Rudimentary rotorcraft aeromechanics (collective, cyclic…)

2 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Introduction
•  Background

–  FUN3D can model a rotor with varying levels of fidelity/complexity
•  Actuator disk – low-fidelity representation of the rotor - when only the

overall rotor influence on the configuration is needed
•  Articulated-blade system (cyclic pitch, flap, lead-lag), with or without

aeroelastic effects – if detailed rotor airloads are needed
•  Rotating noninertial frame – steady-state problem for rigid, isolated,

fixed-pitch blades
–  Aeroelastic effects require coupling with a rotorcraft “comprehensive”

analysis (CA) code
•  CA solver can also provide rotor trim

•  Compatibility
–  Coupled to CAMRAD II, DYMORE (Open Source) and RCAS CA codes

•  Status
–  Less experience / testing with RCAS than with CAMRAD II / DYMORE
–  Interface provided for US Army’s HELIOS rotorcraft framework

3 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Time-Averaged Actuator-Disk Simulations (1/3)
•  Actuator disk method utilizes momentum and energy equation source terms

to represent the influence of the disk
– Original implementation by Dave O’Brien (GIT Ph.D. Thesis)
– HI-ARMS implementation (SMEMRD) by Dave O’Brien ARMDEC adds

trim and ability to use C81 airfoil tables (Not covered)
•  Simplifies grid generation – actuator disk is automatically embedded in

computational grid
•  Grid refinement in the vicinity of actuator surface improves accuracy - cell

sizes of “background” grid should be similar to cell sizes of actuator disk
•  Any number of actuator disks can be modeled
•  Requires the --rotor command line option for standard actuator disk
•  For SMEMRD, use hiarms_flag=.true. in &hiarms_actuator_disk

namelist (fun3d.nml) - user must request SMEMRD; not in FUN3D
distribution

4 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Time-Averaged Actuator-Disk Simulations (2/3)
•  Different disk loading models available

–  RotorType = 1 actuator disk
•  LoadType = 1 constant Δp (specified thrust coefficient CT)
•  LoadType = 2 linearly increasing Δp to blade tip (specified CT)
•  LoadType = 3 blade element based (computed CT)
•  LoadType = 4 user specified sources, not recommended
•  LoadType = 5 CT and CQ radial distributions provided in a file
•  LoadType = 6 Goldstein distribution with optional swirl (specified CT

and CQ)
–  RotorType = 2 actuator blades (time-accurate) Not Functional

5 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Time-Averaged Actuator-Disk Simulations (3/3)
•  Actuator disk implementation compatible with the standard steady-state

flow solver process (compressible and incompressible)
– Standard grid formats for the volume grids
– Standard solver input deck (fun3d.nml)
– Standard output is available (project.forces,
project_hist.dat, project_tec_boundary.plt)

– Expect similar solution convergence as a standard steady-state case
•  Screen output includes “Rotor Force Summary” info at each iteration

•  Standard actuator disk model is activated in the command line by
-–rotor

– Rotor input deck file (rotor.input) is required in the local directory
– rotor.input contains disk geometry and loading specifications
– The disk geometry and loading are output in plot3d format in files
source_grid_iteration#.p3d and
source_data_iteration#.p3d

6 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

 rotor.input File
•  Constant/linear loading needs only a subset of the data in the file data

(manual defines variables)
 # Rotors Uinf/Uref Write Soln Force Ref Moment Ref ! Below we set Uref = Uinf
 1 1.000 1500 0.001117 0.001297 ! Adv Ratio = Uinf/Utip
=== Main Rotor === ! So here Utip/Uref = 1/AR
Rotor Type Load Type # Radial # Normal Tip Weight
 1 2 50 180 0.0
 X0_rotor Y0_rotor Z0_rotor phi1 phi2 phi3
 0.696 0.0 0.322 0.00 -0.0 0.00
 Utip/Uref ThrustCoff TorqueCoff psi0 PitchHing/R DirRot
 19.61 0.0064 0.00 0.0 0.0 0
 # Blades TipRadius RootRadius BladeChord FlapHinge/R LagHinge/R
 4 0.861 0.207 0.066 0.051 0.051
 LiftSlope alpha, L=0 cd0 cd1 cd2
 0.0 0.00 0.002 0.00 0.00
 CL_max CL_min CD_max CD_min Swirl
 0.00 0.00 0.00 0.00 0
 Theta0 ThetaTwist Theta1s Theta1c Pitch-Flap
 0.0 0.00 0.0 0.0 0.00
 # FlapHar Beta0 Beta1s Beta1c
 0 0.0 0.0 0.0
 Beta2s Beta2c Beta3s Beta3c
 0.0 0.0 0.0 0.0
 # LagHar Delta0 Delta1s Delta1c
 0 0.0 0.0 0.0
 Delta2s Delta2c Delta3s Delta3c
 0.0 0.0 0.0 0.0

7

Key:
Required for constant/linear actuator disk
Addt’l data for blade element or “first
principles” simulations
(all items must have a value, even if
unused)

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Robin Fuselage with Actuator Disk

8

Green: surface mesh from
FUN3D input mesh

Red: disk mesh generated with resolution
#Radial x #Normal (azimuthal!!) from rotor.input

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Incompressible Robin/Actuator Disk

9

Advance Ratio = 0.051 (Uinf/Utip)
Thrust coefficient CT = 0.0064
Angle of attack = 0o Shaft angle = 0o

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

Articulated-Blade Simulations
•  “First Principles” – rotor flow is computed, not modeled

–  Requires moving, overset grids; blades may be rigid or elastic
•  Elastic-blade cases must be coupled to a rotorcraft CA (aka Computational

Structural Dynamics, CSD) code such as CAMRAD, DYMORE or RCAS
– The CA code provides trim solution in addition to blade deformations
– The “interface” to CAMRAD is through standard OVERFLOW
rotor_N.onerev.txt and motion.txt type files - translator codes
are maintained and distributed by Dr. Doug Boyd, NASA Langley
(contact d.d.boyd@nasa.gov)

– The interface to DYMORE is similar, through DeltaAirloads.dat,
DymoreTotalAirloads.dat and Deflections.dat type files
- interface codes are maintained by Prof. Olivier Bauchau, U. Maryland

– RCAS coupling does not require any translator codes (RCAS API)
– FUN3D has postprocessing utility codes (utils/Rotorcraft/)
– Many small details - we will not have time to cover

10 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

CFD/CA – Loose (Periodic) Coupling

11

Coupling Process CA -> CFD

CFD -> CA

CFD/CAMRAD loose coupling implemented via
shell script with error checking

motion.txt file (blade elastic motion) and
 rotor_onerev.txt file (aero loads) common to

FUN3D and OVERFLOW for coupling with CAMRAD

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

CFD/CA – Tight Coupling

FUN3D Training Workshop
December 11-12, 2018

•  FUN3D can also couple with CA codes in
a tightly coupled manner
–  Similar to a loosely coupled

procedure, but...
–  Frequent airloads-displacements data

exchange between CFD and CA
codes, .e.g., once per time step

–  CFD airloads applied to CA directly
–  Separated solution processes

•  Support coupling with DYMORE and
RCAS (less experience)
–  All data transferred in memory

through interfaces - no file I/O

Time Step n

CFD Airloads
f n-1

Interfaces

FUN3D

Create Surface Spline Functions

Obtain Surface
Motions Ts n

Extract Rigid
Motions Tr n

Reposition
Surface grid

Ts nXs

Move Overset
Component
grids Tr nX

Solve Mesh Elasticity Xn

CSD
Motion data

un

Solve Flow Problem Qn

CFD Airloads
f n Boundary Slicing Procedures

CFD/CSD tight-coupling algorithm

Exit

http://fun3d.larc.nasa.gov

•  Typically define the flow reference state for rotors based on the tip
speed; thus in rotor.input, set Utip/Uref = 1.0 (data line 4)

•  This way, Uinf/Uref (data line 1) is equivalent to Uinf/Utip, which is the
Advance Ratio, and is usually specified or easily obtained

•  Since the reference state corresponds to the tip, the mach_number in
the fun3d.nml file should be the tip Mach number, and the
reynolds_number should be the tip Reynolds number

•  Nondimensional rotation rate: not input directly, but it is output to the
screen; you might want to explicitly calculate it up front as a later check:

 (rad/s, the rotor radius)

 and recall (compressible)
 so with and taking ()

 (compressible)

 (incompressible)

 Rotor-Specific Nondimensional Input (1/2)

13

€

Ω* =Utip
* /R*

€

Ω=Ω*(Lref
* /Lref) /aref

*

€

aref
* =Uref

* /Mref

€

Lref
* = R*

€

Ω = Mref (Utip
* /Uref

*) /R

€

Ω =Utip
* /Uref

* /R
€

R*

FUN3D Training Workshop
December 11-12, 2018

Lref = R

http://fun3d.larc.nasa.gov

 Rotor-Specific Nondimensional Input (2/2)
•  Nondimensional time step:

 time for one rev: (s)

 and recall (compressible)

 so with we have

 (nondim time / rev)

 For N steps per rotor revolution:

 (compressible)

 (incompressible)

•  Note: the azimuthal change per time step is output to the screen in the
Rotor info section. Make sure this is consistent, to a high degree of
precision (say at least 4 digits), with your choice of N steps per rev –
you want the blade to end up very close to 360 deg. after multiple revs!

•  Formulas above are general, but recall we usually have ref = tip, at least
for compressible flow

14

€

T* = 2π /Ω* = 2π R* /Utip
*

€

t = t*aref
* (Lref /Lref

*)

€

T = aref
* (R /R*)2π R* /Utip

* = 2π R /(MrefUtip
* /Uref

*)

€

Δ t = 2π R /(NMrefUtip
* /Uref

*)
€

Lref
* = R*

€

Δ t = 2π R /(NUtip
* /Uref

*)

FUN3D Training Workshop
December 11-12, 2018

Note new easy Δt input introduced in slide 19

http://fun3d.larc.nasa.gov

dci_gen Preprocessor (1/3)
•  A rudimentary code to simplify rotorcraft setup (/utils/Rotocraft/dci_gen)

–  Uses libSUGGAR++ routines
–  Takes a single blade grid and a single fuselage / background grid

(extending to far field) and assembles them into an N-bladed rotorcraft
–  Requires rotor.input file (number of blades defined there)
–  Creates the SUGGAR++ XML file (Input.xml_0) needed by FUN3D
–  Generates, using libSUGGAR++ calls, the initial (t = 0) dci file and

composite grid needed by FUN3D
–  Generates the composite-grid “mapbc” files needed by FUN3D
–  Component grids must be oriented as shown on following slide

•  Blade must have any “as-built” twist incorporated
•  If grids do not initially meet the orientation criteria, can use

SUGGAR++ to rotate them before using dci_gen

15 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

dci_gen Preprocessor (2/3)

HART II Component Grids

16 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

dci_gen Preprocessor (3/3)
HART II Composite Grid

17 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

 rotor.input File
•  Articulated rotors need only a subset of the data (manual defines variables)

 # Rotors Uinf/Uref Write Soln Force Ref Momment Ref ! Below we set Uref = Utip
 1 0.245 1500 1.0 1.0 ! Adv Ratio = Uinf/Utip
=== Main Rotor === ! So here Uinf/Uref = AR
Rotor Type Load Type # Radial # Normal Tip Weight
 1 1 50 180 0.0
 X0_rotor Y0_rotor Z0_rotor phi1 phi2 phi3
 0.0 0.0 0.0 0.00 0.0 0.00
 Utip/Uref ThrustCoff TorqueCoff psi0 PitchHinge DirRot
 1.0 0.0064 0.00 0.0 0.0466 0
 # Blades TipRadius RootRadius BladeChord FlapHinge LagHinge
 4 26.8330 2.6666 1.741 0.0466 0.0466
 LiftSlope alpha, L=0 cd0 cd1 cd2
 6.28 0.00 0.002 0.00 0.00
 CL_max CL_min CD_max CD_min Swirl
 1.50 -1.50 1.50 -1.50 0
 Theta0 ThetaTwist Theta1s Theta1c Pitch-Flap
 0.0 0.00 0.0 0.0 0.00
 # FlapHar Beta0 Beta1s Beta1c
 0 0.0 0.0 0.0
 Beta2s Beta2c Beta3s Beta3c
 0.0 0.0 0.0 0.0
 # LagHar Delta0 Delta1s Delta1c
 0 0.0 0.0 0.0
 Delta2s Delta2c Delta3s Delta3c
 0.0 0.0 0.0 0.0

18

Key:
Required for rigid and elastic
Additional for untrimmed rigid
Unused (must have a value)

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

 Input For Articulated-Blade Simulations (1/2)
•  Except as noted, inputs pertain to both untrimmed/rigid-blades and

trimmed/elastic blades

•  Run as time-dependent, so will need to set time step as per slide 14

•  Required additional fun3d.nml input
 &global
 moving_grid = .true.
 slice_freq = 1 (optional if rigid untrimmed)
/
&rotor_data
 overset_rotor = .true.
/
&overset_data
 overset_flag = .true.
 dci_on_the_fly = .true. (potentially optional if rigid)
 dci_period = 360 (assuming 1 deg. per time step)
 reuse_existing_dci = .true.
/
&nonlinear_solver_parameters
 time_step_dpsi = 1.0 (azimuthal deg. per time step)
/

19 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

 Input For Articulated-Blade Simulations (2/2)
•  The moving_body.input file is somewhat simplified since much of the

motion description is handled by rotor.input – all we need do is to
define the moving bodies and provide the SUGGAR++ XML file if required
 &body_definitions
 n_moving_bodies = 4 (e.g., for 4-bladed rotor)
 body_name(1) = ‘rotor1_blade1’ (same as in xml file)
 n_defining_bndry(1) = 2
 defining_bndry(1,1) = 3
 defining_bndry(1,2) = 4
 mesh_movement(1) = ‘rigid+deform’ (or just ‘rigid’ for

 for rigid blade case)
 … (etc. for blades 2-4)
/
&composite_overset_mesh
 input_xml_file = “Input.xml_0” (potentially optional if rigid
/ and have precomputed dci)

•  Note: motion_driver not set in &body_definitions (in contrast to
any other moving-grid case); also no &forced_motion input

20 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

 CAMRAD Considerations
•  User must set up basic CAMRAD II scripts; the RUN_LOOSE_COUPLING

script provided with FUN3D requires 3 distinct, but related CAMRAD scripts
–  basename_ref.scr

•  Used to generate the reference motion data used by CAMRAD
•  Set this file to use rigid blades; zero collective/cyclic; no trim

–  basename_0.scr
•  Used for coupling/trim cycle “0”
•  Set up for elastic blades with trim; use CAMRAD aerodynamics

exclusively (no delta airloads input); simplest aero model will suffice
–  basename_n.scr

•  Used for all subsequent coupling/trim cycles
•  Set up for elastic blades with trim; use same simple CAMRAD

aerodynamics but now with delta airloads input

21 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

DYMORE Considerations
•  For coupling with DYMORE, fsi_tight_coupling.input file is

required - both loose and tight coupling procedures

•  You can put all DYMORE input decks under the FUN3D run directory - but

suggest to create a subdirectory to store all DYMORE input decks (and
outputs); in the above example, ./dymore5_baseline is the
subdirectory

•  Note that more info will be added to fsi_tight_coupling.input file
for FUN3D/DYMORE multidisciplinary design optimization (referred to
Multidisciplinary Design Session)

22 FUN3D Training Workshop
December 11-12, 2018

./dymore5_baseline/uh60_4bl.dym ! Main DYMORE input
1.0 ! grid unit ratio
1 ! ramping parameters for motions

http://fun3d.larc.nasa.gov

 Blade Surface “Slicing”
•  Boundary surface (rotor blade) slicing is required for coupled CFD/CA

simulations; also useful for rigid-blade cases - this is what generates the
data in rotor_1.onerev.txt, rotor_1.onerev_inertial.txt

$slice_data

 replicate_all_bodies = .true. ! do the following the same on all blades

 output_sectional_forces = .false. ! just lots of data we usually don’t need

 tecplot_slice_output = .false. ! ditto

 slice_x(1) = .true., ! x=const slice – in original blade coords

 nslices = -178, ! no. slices; “-” means give start and delta

 slice_location(1) = 2.8175, ! x-location to slice (starting slice)

 slice_increment = .13416666666 ! delta slice location each successive slice

 n_bndrys_to_slice(1) = 1, ! 1 bndry to search

 bndrys_to_slice(1,1) = 2, ! indicies:(slice,bdry) lumping made life easy

 slice_frame(1) = 'rotor1_blade1', ! ref. frame in which to slice - use body name

 te_def(1) = 20, ! look for 2 corners in 20 aft-most segments

 le_def(1) = 30, ! search 30 fwd-most pts for one most distant from TE

 chord_dir(1) = -1, ! Recall goofy original blade coord system

/
•  Note: “slicing” useful for applications other than rotorcraft; see website

23 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

 Untrimmed Rigid-Blade Simulations
•  Overview of the basic steps

1. Prepare rotor blade and fuselage grids, with proper axis orientation

2. Set up the rotor.input file based on flight conditions

3. Run the dci_gen utility to create a composite mesh and initial dci data

4. Set up fun3d.nml and moving_body.input files

5. Optionally set up the &slice_data namelist in the fun3d.nml file

6. Run the solver; the number of time steps required is case dependent –
usually at least 3 revs for rigid blades

24 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

 Trimmed, Elastic-Blade Simulations (1/2)
•  Overview of the basic steps; steps 1-4 are the same as for the untrimmed

rigid-blade case; use of CAMRAD is assumed
5. Set up the &slice_data namelist; set slice_freq = 1 not optional
6.  In &rotor_data namelist, set
comprehensive_rotor_coupling=‘camrad’

7. Set up the 3 CAMRAD run-script templates as per slide 21
8. Set up the RUN_LOOSE_COUPLING run script (a c-shell script geared to

PBS environments); user-set data is near the top – sections 1 and 2
9. Set up the fun3d.nml_initial and fun3d.nml_restart files

used by the run script; typically set the time steps in the initial file to
cover 2 revs, and 2/Nblade revs in restart version

10. Before using the run script make sure all items it needs are in place
11. Number of coupling cycles required for trim will vary, but 8-10 is typical

for low-moderate thrust levels; high thrust cases near thrust boundary
may require 10-15; user judges acceptable convergence

25 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

 Trimmed, Elastic-Blade Simulations (2/2)
•  Overview of the basic steps; steps 1-5 are the same as for CAMRAD case;

use of DYMORE is assumed (loose coupling)
6.  Set up &rotor_data namelist; set
 comprehensive_rotor_coupling = ‘dymore’
 niters_cfd(1,1:2) = 360, 180

- number of CFD time steps used for 1st and all subsequent loose-coupling
iterations before airloads transferred to DYMORE

7. Set up fsi_tight_coupling.input file as per slide 22
8. Run DYMORE static analysis (no wind)
9. Run DYMORE dynamic analysis (i.e., no delta airloads; using internal

low-fidelity aerodynamics) to get initial blade deflections with trim
10. Run FUN3D - total number of CFD time steps for all coupling iterations

is controlled by steps parameter in &code_run_control namelist
•  FUN3D runs tight coupling - in &rotor_data namelist, set
comprehensive_rotor_coupling = ‘dymore_tight’; in
fsi_tight_coupling.input file, set DYMORE input name accordingly

26 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

 RUN_LOOSE_COUPLING Directory Tree
(CAMRAD)

27

Run Directory
Script executed here

FUN3D runs here

CAMRAD

Reference

Trim_0

Trim_1

Trim_0

Trim_1

Principal
solver files

archived here
at end of

each trim cycle

CAMRAD
and interface

codes run
here and

output stored
here for each

trim cycle
.
.
.

.

.

.

Script creates
all subdirectories

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

 Postprocessing (utils/Rotorcraft/)

28

psi
0 90 180 270 360

-0.02

0

0.02
M2CM - mean

r/R = 0.865

psi
0 90 180 270 360

-0.15

-0.05

0.05

0.15
C9020
15M Nodes

M2CN - mean

psi
0 90 180 270 360

-0.02

0

0.02
M2CX - mean

Sample Plots Possible Via
process_rotor_airloads.f90

Output

psi

Ti
p
E
la
st
ic
Tw
is
t,
de
g

0 90 180 270 360-4

-2

0

2
HART-II MN
CFD+CSD

FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

 Noninertial Reference Frame (1/2)
•  For isolated, rigid an improvement in solution efficiency may be obtained

by transforming to a coordinate system that rotates with the rotor

•  FUN3D implements a very limited subset of possible noninertial frames:

–  Constant rotation rate

–  Free-stream flow limited to

•  Quiescent (e.g., rotor in hover)

•  Flow aligned with axis of rotor (e.g., ascending/descending rotor;
prop in forward flight at 0 AoA)

•  In this noninertial rotating frame, the flow is assumed steady

•  Can be used in conjunction with overset grids to allow pitch/collective
changes to rotor without regridding

•  The noninertial capability has other limited applications in addition to
rotors – e.g., aircraft in a steady loop

29 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

 Noninertial Reference Frame (2/2)
•  fun3d.nml input for noninertial frame solutions (example for rotor

spinning about z-axis)
 &noninertial_reference_frame
 noninertial = .true.
 rotation_center_x = 0.0 !rotation axis passes through this pt.
 rotation_center_y = 0.0
 rotation_center_z = 0.0
 rotation_rate_x = 0.0
 rotation_rate_y = 0.0
 rotation_rate_z = 0.2
/

•  The nondimensional rotation rate is determined as shown on slide 13
•  Flow-visualization output (boundary, volume, sampling) will be relative to

the noninertial frame

30 FUN3D Training Workshop
December 11-12, 2018

http://fun3d.larc.nasa.gov

31 FUN3D Training Workshop
December 11-12, 2018

