FUN3D v13.4 Training
Session 19: Multidisciplinary Design

Li Wang
Session Scope

• What this will cover
 – Overview of multidisciplinary optimization of rotors with flexible blades
 • Coupling with rotorcraft Comprehensive Analysis code (DYMORE)
 – Overview of aeroacoustics optimization for rotorcraft noise reduction
 • Coupling with noise propagation and analysis code (ANOPP2)

• What will not be covered
 – DYMORE operation
 – ANOPP2 operation

• What should you already know
 – Basic aerodynamic shape optimization
 – Surface parametrization
 – Time-dependent aerodynamic simulations
 – Overset-dynamic-deforming grid operations
 – Rudimentary rotorcraft aeromechanics
Introduction

• Background
 – Analysis of aircraft systems involves many disciplines: aerodynamics, structural dynamics, aeroacoustics, etc. - rotorcraft aeromechanics is a typical example
 – Gradient-based, multidisciplinary design optimization (MDO) requires sensitivity analysis for all disciplines
 – Adjoint-based sensitivity analysis capabilities for
 • Coupled aero/structure FUN3D/DYMORE system
 • Coupled aero/acoustics FUN3D/ANOPP2 system

• Status
 – FUN3D/DYMORE
 • Loosely and tightly coupled for analysis / only tightly coupled for sensitivity
 • Complex-variable sensitivities for DYMORE, quadratic dependence on time steps, adjoint formulation is ongoing
 – FUN3D/ANOPP2
 • Initial assessment, gaining experience
FUN3D/DYMORE – Overview (1/2)

• DYMORE is an established Comprehensive Analysis code
 – Open-source nonlinear flexible multibody dynamics code
 – Developed and managed by Prof. Olivier Bauchau at U. of Maryland
 – Provides static, dynamic, stability, and trim analyses of rotorcraft configurations
 – FE structural dynamics, low-fidelity internal aerodynamics model

• Best practice MDO for rotorcraft analysis
 – Loose-coupling trimmed solution initializes tight-coupling analysis
 • Alleviates initial transients effects
 • Eliminates nonphysical structure blade defections
 – Design time interval is set within the FIRST rotor revolution
 • Shortens CFD simulation
 • Comparable cost for DYMORE and FUN3D flow sensitivities
 – Affordable computational cost for MDO of rotorcraft in level-flight conditions
 – Verification for long-time simulations in periodic regime
FUN3D/DYMORE – Overview (2/2)

• FUN3D drives DYMORE sensitivity analysis
 – Most efficient if number of processing cores is equal to (or greater than) total DYMORE DOFs (6 DOFs per airstation)

• FUN3D drives sensitivities to control parameters, e.g., collective and cyclic pitch controls
 – Use DYMORE input decks in FUN3D fsi_tight_coupling.input file (cover in slide 8)

• Design parameters
 – Shape design parameters (referred to earlier sessions)
 – Pitch control angles
 • Set in trimming.data and the upper/lower bounds
 • Initialized (radians) by loose-coupling solutions for baseline configuration
 • Automatically updated in DYMORE input decks during optimization
FUN3D/DYMORE – Compilation

• Compiling DYMORE 5
 – Add -DCOMPLEX_STEP to CFLAGS parameter in DYMORE 5 makefile
 – Provide access to hdf5 module: LIB=/path/to/hdf5/libhdf5.so
 – Generated static library with name libdymore.a

• Compiling FUN3D
 – Use --with-hdf5=/path/to/hdf5 and --with-dymore=/path/to/dymore
 – FUN3D needs the following libraries in those locations:
 • libhdf5.so, consistent with hdf5 library used for DYMORE
 • libdymore.a, complex mode enabled (may be soft link)
 – Use other necessary links for rotorcraft simulations and optimization, e.g.,
 --with-dirtlib=/path/to/dirtlib, --with-suggar=/path/to/suggar,
 and --with-SNOPT=/path/to/snopt (if using SNOPT optimizer)
 – After compilation, config.h file should have #define HAVE_DYMORE_HYBRID 1
FUN3D/DYMORE – Inputs (1/2)

- Follow conventions of body definitions in FUN3D `moving_body.input` file
 - Forward path defines bodies with *composite* motions, e.g.,
    ```
    &body_definitions
    output_transform = .true., ! output transform matrix (rigid)
    body_name(1) = 'rotor1_bladel', ! name must be in quotes
    mesh_movement(1) = 'rigid+deform', ! for elastic rotor
    ...
    ```
 - Adjoint path defines *component* motions for one body and builds “*parent-child*” relationship, e.g.,
    ```
    &body_definitions
    output_transform = .true., ! optional for output
    body_name(1) = 'rotor1_bladel', ! name must be in quotes
    mesh_movement(1) = 'rigid', ! parent component
    mesh_id(1) = 1 ! actual moving-body index
    ...
    body_name(2) = 'rotor1_bladel', ! name must be in quotes
    mesh_movement(2) = 'deform', ! child component
    parent_name(2) = 'rotor1_bladel' ! name of the parent
    mesh_id(2) = 1 ! actual moving-body index
    ...
    ```
FUN3D/DYMORE – Inputs (2/2)

• Add to fsi_tight_coupling.input file DYMORE 5 (main) input decks to enable computation of trim derivatives

 ./dymore5_uh60/uh60_4bltight.dym ! Main DYMORE input
 1.0
 1
 ./dymore5_uh60/uh60_4blrd.dym ! enabling kinematics dv.
 ./dymore5_uh60/uh60_4bltighttrimDV1.dym ! (theta0 i 1.0e-50)
 ./dymore5_uh60/uh60_4bltighttrimDV2.dym ! (thetalc i 1.0e-50)
 ./dymore5_uh60/uh60_4bltighttrimDV3.dym ! (thetals i 1.0e-50)
 29 35 41 ! line numbers for theta0, thetalc, thetals entries

• Trim constraints defined in rubber.data file, including rotor thrust, rolling and pitching moments (design-function names are, rtr_thrust, cmx, and cmy, respectively)

• Surface parameterization and shape design parameters are described (referred to earlier sessions)
FUN3D/DYMORE – Design Example (1/2)

HART-II rotorcraft in descent flight, Adv. Ratio = 0.15, AOA = 4.5°

Gradient-based optimization: minimize rotor power, subject to thrust and rolling and pitching moments constraints

Design parameters: 8 twist, 36 camber, 35 thickness, (thickness at blade tip deactivated), and 3 trim control angles

Overset mesh: 7 million nodes

Four design outputs: objective function (rotor power) and three constraints (rotor thrust, rolling and pitching moments)

Design outputs defined within 1st rotor revolution

One design cycle takes 7 wall-clock hours on ~2000 processing cores
Objective

Power reduction

3.23% Reduction

Design Cycle

C₀

After 13 design cycles: rotor power reduced by 3.23%; all constraints satisfied

Long-term simulations: improved performance preserved; trim conditions maintained

Baseline

Optimized

25%

35%

46%

56%

68%

77%

88%

98%

Baseline

Optimized

Blade cross-section geometry (3:1 scale)
FUN3D/ANOPP2 – Overview (1/2)

• ANOPP2 - Aircraft NOise Prediction Program toolkit developed at NASA
 – Noise propagation and prediction methods
 – Various acoustic noise metrics at a set of observer locations
 • User-interface codes specify the acoustic function and observer locations
 • FUN3D only uses Ffowcs Williams and Hawkings (FWH) acoustics models in ANOPP2
 – Sensitivity analysis

• FUN3D/ANOPP2 analysis
 – FUN3D solves the flow equations and outputs flow data on disk
 • Dimensionalized quantities: surface pressure and geometry data, physical times, etc.
 - use &fwh_acoustic_data namelist in fun3d.nml file as per slide 14
 – ANOPP2 reads data from disk, computes acoustic metrics

• FUN3D/ANOPP2 sensitivity analysis
 – ANOPP2 computes acoustic sensitivities wrt pressure and surface grid, sends them to FUN3D to form RHS for adjoint equations
 – FUN3D solves adjoint equations, computes sensitivities to design parameters
FUN3D/ANOPP2 – General Info (2/2)

• Configuring FUN3D/ANOPP2
 – Use `--with-anopp2=/path/to/anopp2` and `--with-anopp2-user=/path/to/anopp2_user`
 – FUN3D needs the following libraries (may be soft links):

    ```
    libANOPP2.so, libAFFI.so and libAFAI.so
    ```

 and interface codes (may be soft links):

    ```
    ANOPP2.api.f90, AFFI.api.f90, and AFAI.api.f90
    ```
 – Set the environment variable `LD_LIBRARY_PATH`, e.g.,

    ```
    setenv LD_LIBRARY_PATH ${{LD_LIBRARY_PATH}}:/path/to/anopp2
    ```

    ```
    setenv LD_LIBRARY_PATH ${{LD_LIBRARY_PATH}}:/path/to/anopp2_user
    ```
 – ANOPP2 user-interface codes specify directory for CFD output data. Soft link is more convenient than copying data from flow-run directory.
FUN3D/ANOPP2 – Inputs (1/2)

• Control of ANOPP2 acoustic function
 – Set design function as `anopp2` in `rubber.data` file

Cost function (1) or constraint (2)
 1
If constraint, lower and upper bounds
 0.0 0.0
Number of components for function 1
 1
Physical timestep interval where function is defined
 361 1080 ! time-step interval for funct. eval.

Composite function weight, target, and power
 1.0 0.0 1.0
Components of function 1: boundary id (0=all)/name/value/weight/target/power
 0 anopp2 1.0 1.0 0.0 2.0
Current value of function 1
 1.0
Current derivatives of function wrt global design variables
 0.0
...
 – Set control angles (in deg.) in `trimming.data` file
 – Specify `trim_control(ibody) = 'design'` in `&body_definitions` namelist in FUN3D `moving_body.input` file
FUN3D/ANOPP2 – Inputs (2/2)

• Control of flow data (binary) output

 – use &fwh_acoustic_data namelist in fun3d.nml file

 &fwh_acoustic_data
 anopp2_data_format = .true.
 an2_length_factor = 1.000 ! dimensionalization
 an2_c_ref = 340.297
 an2_rho_ref = 1.225
 an2_write_normals = .false.
 an2_double_precision = .true.
 an2_start_iter = 361 ! starting timestep
 an2_stop_iter = 1080 ! last timestep for output
 fwh_data_freq = 1
 append_to_prior_data = .false.
 n_fwh_bndry = -1
 fwh_bndry_list = '1,3,5,7' ! boundaries for output
 geom_time_variation(1) = 'aperiodic_all'
 data_time_variation(1) = 'aperiodic_all'

• After completion of flow solve, [project]_00#_anopp2.bin files should be in the flow-run directory; # denotes specific boundary
Gradient-based optimization: minimize unweighted overall sound pressure level (in dB) at observer, subject to thrust and rolling and pitching moments constraints

After 5 design cycles: 1 dB noise reduction; all constraints satisfied

Design parameters: 8 twist, 36 camber, 35 thickness as per slide 9
Session Summary

• MDO for FUN3D/DYMORE and FUN3D/ANOPP2 systems
• Key inputs and controls for setting up a rotorcraft design optimization based on the MDO systems
• Design optimization demonstrations showing basic capabilities
 – Constrained Aero/Structure design for rotor power reduction
 – Constrained Aero/Acoustics design for low-noise rotorcraft design
• We would like to help you if you are interested in MDO using FUN3D