FUN3D v12.4 Training Session 1: Welcome and Overview

Eric Nielsen

FUN3D Training Workshop

March 24-25, 2014

Monday, March 24

Meet and Greet	All	8:00-8:30
Session 1: Welcome and Overview	Eric Nielsen	8:30-9:00
Session 2: Compilation and Installation	Bill Jones	9:00-9:15
Session 3: Gridding, Solution, and Visualization Basics	Eric Nielsen	9:15-10:15
BREAK		10:15-10:45
Session 4: Boundary Conditions	Jan-Renee Carlson	10:45-11:15
Session 5: Turbulence Models	Jan-Renee Carlson	11:15-11:45
LUNCH		11:45-1:00
Session 6: Supersonic/Hypersonic Simulations (Perfect Gas)	Mike Park	1:00-1:30
Session 7: Code Development	Mike Park	1:30-3:30
BREAK		3:30-4:00
Session 8: Parameterization Tools	Bill Jones	4:00-5:00

FUN3D Training Workshop

March 24-25, 2014

Tuesday, March 25

Session 9: Adjoint-Based Design for Steady Flows	Eric Nielsen	8:00-9:30
BREAK		9:30-10:00
Session 10: Time-Dependent Simulations	Bob Biedron	10:00-10:30
Session 11: Dynamic Grid Simulations	Bob Biedron	10:30-11:00
Session 12: Suggar ++	Bob Biedron	11:00-12:00
LUNCH		12:00-1:15
Session 13: Overset Grid Simulations	Bob Biedron	1:15-1:45
Session 14: Adjoint-Based Design for Unsteady Flows	Eric Nielsen	1:45-3:15
BREAK		3:15-3:45
Session 15: Aeroelastic Simulations	Bob Biedron	3:45-4:15
Session 16: CFD/CSD Coupling	Jamshid Samareh (Remote from LaRC)	4:15-4:45
Session 17: Rotorcraft Simulations	Bob Biedron	4:45-5:00

All Material Available Online

- A formal FUN3D manual is available for the first time with the release of v12.4
 - NASA/TM-2014-218179
 - Subsequent releases will be accompanied by an updated manual
 - This first revision covers much of the basics
 - Quick Start
 - Installation
 - · BC's, Grids, Solvers, Adaptation, Design Optimization
 - Troubleshooting
 - · Extensive appendices for the major namelists, now extracted in real-time from source code
 - Additional material will continue to be added
- Eventually hope to add an accompanying document with tutorials
- A complete set of training material for FUN3D v11.1 is available at the FUN3D website
 - A bit dated, but majority of the content is still relevant
 - PDF copies of training slides
 - Pro-shot streaming video for all content in Quicktime and Flash formats
 - Video also available for Langley-developed parameterization packages
- The material presented here for v12.4 will be online at FUN3D website within a couple of days
 - Sessions chosen based on AFRL input

The FUN3D Development Team

fun3d-developers@lists.nasa.gov

- Consists of ~15 researchers across several branches at Langley
 - Computational AeroSciences Branch
 - Aerothermodynamics Branch
- Some people are full-time FUN3D, others part-time
 - Spectrum runs from full-time development to full-time applications
- Also external groups such as Georgia Tech, National Institute of Aerospace (NIA)
- Open to other interested parties joining us
 - Remote, real-time, read/write access to FUN3D repository is available

The FUN3D Support Team

fun3d-support@lists.nasa.gov

"Who sees my questions to the support alias?"

- Consists of 11 members of the development team
- All are NASA civil servants
 - Proprietary/sensitive data can be shared/discussed: all are bound by Trade Secrets Act
- Members: Bob Biedron, Jan-Renee Carlson, Peter Gnoffo, Dana Hammond, Bill Jones, Bil Kleb, Beth Lee-Rausch, Steve Massey, Eric Nielsen, Mike Park, Jeff White

Myth: Our job is to develop a production-level tool and support users. Reality: **None** of us are funded at **any** level to support users, maintain documentation, keep up a website, run training workshops, etc. The team is funded solely to perform their individual research efforts.

FUN3D Training Workshop

March 24-25, 2014

The FUN3D User Community

fun3d-users@lists.nasa.gov

- FUN3D widely used within NASA for projects across the speed range
 - Both engineering and research applications
 - Users routinely running on several thousand cores
- Distributed to hundreds of external organizations across academia, industry, DoD, and OGA's
 - Average about 100 distributions / year
 - Wide range of uses including aerospace, automotive, HPC, etc
 - · Many problems as complex, if not more so, than NASA's
 - Wide range of hardware being used
 - From RC enthusiasts on single workstation to groups generating matrices of hundreds of solutions on thousands of HPC nodes

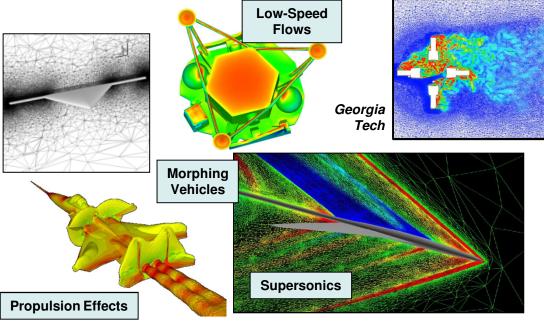
FUN3D Core Capabilities

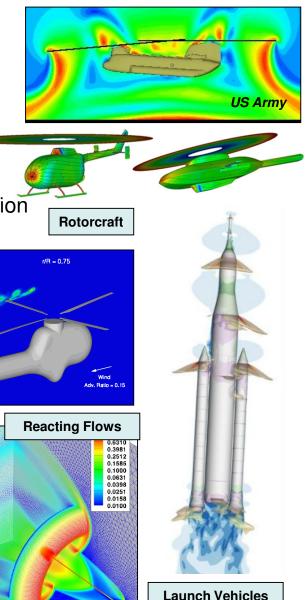
• Established as a research code in late 1980's; now supports numerous internal and external efforts across the speed range

 Solves 2D/3D steady and unsteady Euler and RANS equations on node-based mixed element grids for compressible and incompressible flows

Highly-scalable execution (80,000 cores on Cray XK7)

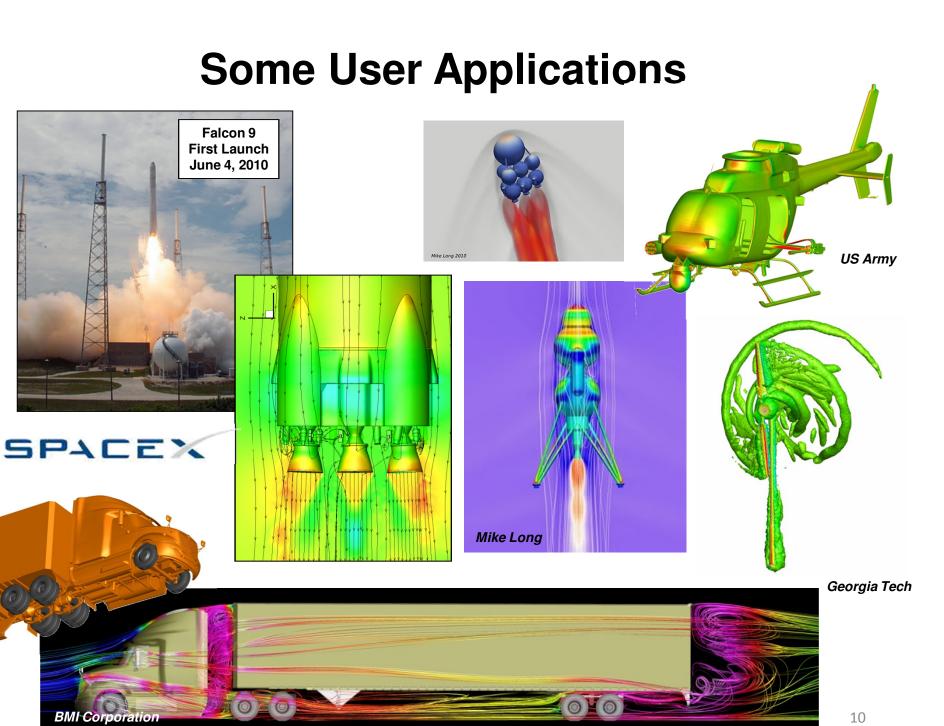
 General dynamic mesh capability: any combination of rigid / overset / morphing grids, including 6-DOF effects


Aeroelastic modeling using mode shapes, full FEM, CC, etc.

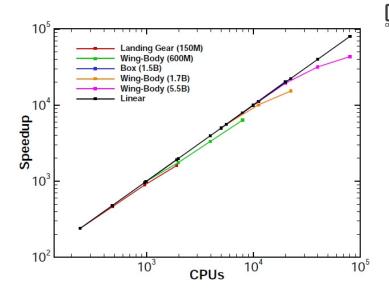

Constrained / multipoint adjoint-based design and mesh adaptation

 Distributed development team using agile/extreme software practices including 24/7 regression and performance testing

Capabilities fully integrated, online documentation, training


videos, tutorials

Some Recent NASA Applications



FUN3D and High-Performance Computing

FUN3D is used on a broad range of HPC installations around the country

Scaled to 80,000 cores on DoE's Cray XK7 'Titan' using grids containing billions of elements

Awarded the Gordon Bell Prize in a past collaboration with Argonne National Lab

- The material that will be shown here represents the current recommended best practices for the perfect gas option in FUN3D
- Simulations with real gas effects are not covered
- There are many capabilities in FUN3D that will not be covered here – if you do not see something, please ask about it
- There are always many research and development efforts also taking place within the code that are not described here

Questions?

