
FUN3D v14.0 Training
Aeroelasticity

Kevin Jacobson

Learning Goals

2

What we will cover:
• Updates to the FUN3D aeroelastic modal solver since version 13.4

• Modal mesh deformation
• GPU simulations with the modal solver
• Aeroelastic generic gas simulations

• Python interfaces for aeroelastic analysis
• Interacting with internal modal solver
• Coupling to an external structural solver

What we will not cover:
• Material covered in the 13.4 training (December 2018 Workshop)
• Structural modeling or load and displacement transfers
• Linearized Frequency Domain (separate training)

https://fun3d.larc.nasa.gov/training-7.html

Miscellaneous Updates since 13.4 Training (1/3)

3

• The 14.0 manual adds a section on the internal modal solver:

• Mode shape interpolation:
• In previous trainings, we have recommended Jamshid Samareh’s “Discrete Data Transfer

Between Dissimilar Meshes” as an option for mode shape interpolation when using the internal
modal solver.

• Since the previous training, Steve Massey has released an open-source Radial Basis Function
interpolation code:

• https://github.com/nasa/rbf
• This has become the primary tool of the Aeroelasticity Branch at Langley Research Center

https://github.com/nasa/rbf

Miscellaneous Updates since 13.4 Training (2/3)

4

• SLAT: a new linear solver for mesh deformation distributed with FUN3D 14.0
• GMRES solver from NASA
• Supports complex mode
• SLAT is the new default linear_solver if you do not compile with SPARSKIT

• SPARSKIT is still the default is FUN3D is configured with SPARSKIT

• Added an option to the prescribed motion of aeroelastic modes that allows a nonzero offset with
periodic motion, moddfl=1

• moddfl_offset(mode, body) = 0.0 sets the mean or offset
• moddfl_freq(mode, body) = 0.0 sets the frequency
• moddfl_amp(mode, body) = 0.0 sets the amplitude
• moddfl_t0(mode, body) = 0.0 sets the start time

Miscellaneous Updates since 13.4 Training (3/3)

5

• A new option is available to ignore grid velocity terms in the flux computation:
&global

ignore_grid_velocity = .false.

/

• Can speed up static aeroelastic simulations
• Only use ignore_grid_velocity = .true. for unsteady problems where you only care

about the final steady state like static aeroelastic analysis, which must be run in unsteady mode
with the internal modal structural solver
• We will use this in the BSCW example later in this training

Internal Modal Solver - Static Generalized Forces

6

• Since the previous training, there has been one change to an existing input in the
&aeroelastic_modal_data namelist.

Time Step

A
d

d
e

d
 G

e
n

e
ra

li
ze

d
 F

o
rc

e

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

• Prior to version 13.7, the modal solver input gforce0
applied a positive perturbation on the first step, then a
negative offset of the same magnitude during the rest of the
simulation.

• If using the offset to apply a non-aerodynamic load such
as weight, this gforce0 input would perturb the solution
at each simulation restart.

• In version 13.7 and later, this functionality was split into two inputs:
• gforce0(mode,body) = 0.0 applies a perturbation generalized force on the first step only.
• gforce_static(mode,body) = 0.0 applies a constant generalized force.

• When performing a restart, you should set gforce0 to 0.0 if you do not want to re-perturb the
solution.

gforce0=1.0 behavior prior to 13.7

Modal Mesh Deformation - Process (1/2)

7

• Because the modal structural solver and mesh deformation are linear, the modal mesh deformation
mode of the internal modal solver uses superposition to perform mesh deformation.

• The process:
1. For each mode, compute volume deformation for each mode displaced by a reference

amplitude, modal_ref_amp
2. Store the volume_mode_shape = (volume node displacements from #1) / modal_ref_amp
3. At each time step, the volume mesh = sum(modal_displacement x volume_mode_shape)

• The process is more efficient…
• One linear elasticity solution per mode, instead of performing one linear elasticity solution per

time step
• But, it requires additional memory: need to store all the volume mode shapes in memory, 3 x

(number of modes) x (nodes in the mesh)

Modal Mesh Deformation - Inputs (2/2)

8

• The modal mesh deformation is controlled by the &aeroelastic_modal_data namelist in
moving_body.input:

• It is activated with use_modal_deform = .true.

• The input modal_ref_amp(mode,body) = 1.0 sets the amplitude for each surface mode
when computing the volume mode shape. The volume mode shapes are normalized (step 2 on
previous slide), so this value can either be an estimate of the modal displacement expected
during the simulation or a simply small value.

• If you are going to run a multiple simulations with the same mode shapes and the same number of
processors, volume mode shapes can be written to files and read on subsequent simulations to
skip computing the volume modes.
• On the first simulation, set write_volume_modes = .true.

• On the subsequent simulation(s), set read_volume_modes = .true.

GPU Simulations with the Modal Solver

• A full training session on GPU-based simulations will be given later in the series
• Aeroelastic simulations with the internal modal solver are supported in the GPU path of FUN3D

• The GPU path requires using the modal mesh deformation, use_modal_deform = .true. in
&aeroelastic_modal_data and recompute_turb_dist = .false. in &global

• The other &aeroelastic_modal_data options are supported, such as moddfl
perturbations for Reduced Order Model generation

• The initial mesh deformations in the modal mesh deformation process are performed on the CPU
• The standard mode of the GPU path is one MPI rank or CPU core per GPU, which can make the

initial mesh deformation quite slow
• It is highly recommended to use the write_volume_modes and read_volume_modes when

performing GPU-based aeroelastic analysis
• Another way to mitigate this bottleneck is to use the NVIDIA Multi-Process Service (MPS) to

have multiple MPI ranks per GPU. See the GPU-based simulation training for more information

9

GPU and Modal Mesh Deformation Example (1/4)

• Example #1: Benchmark Supercritical Wing (Aeroelastic Prediction Workshop Series)
• Mesh and mode shapes available from the AePW2 website
• Other inputs in bscw directory of the tutorial tarball
• Standard flutter process (see Dec. 2018 training)

1. Steady jig shape analysis
2. Static aeroelasticity
3. Dynamic aeroelasticity

• Example features:
• Using the ignore_grid_velocity flag for static aeroelasticity
• Modal mesh deformation
• GPU aeroelastic analysis

• Remove the &gpu_support namelist if running on CPUs

10

https://nescacademy.nasa.gov/workshops/AePW2/public/BSCW/analystsInfo

GPU and Modal Mesh Deformation Example (2/4)

Step 1: Steady aerodynamics
• fun3d.nml:

&reference_physical_properties

temperature_units = "Kelvin"

mach_number = 0.74

reynolds_number = 278125.0

temperature = 304.911111

angle_of_attack = 0.0

gamma = 1.136

/

&nonlinear_solver_parameters

time_accuracy = "steady"

/

&code_run_control

steps = 1250

stopping_tolerance = 1.0E-15

restart_read = "off"

/

Iteration
R

e
s

id
u

a
l

500 1000
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Steady BSCW convergence history

11

Time

G
e

n
e

ra
li
ze

d
 D

is
p

la
c

e
m

e
n

t

0 0.5 1 1.5 2 2.5 3

-0.4

-0.2

0

0.2

0.4

Mode 1
Mode 2

GPU and Modal Mesh Deformation Example (3/4)
Step 2: Static aeroelastic analysis using the modal mesh deformation
• fun3d.nml:

&global
boundary_animation_freq = -1
moving_grid = .true.
ignore_grid_velocity = .true.
recompute_turb_dist = .false. ! must be false for GPU aeroelastic cases

/

! remove this namelist for CPU usage
&gpu_support
use_cuda = .true.
cuda_start_mps = .true.

/

• moving_body.input:
&aeroelastic_modal_data
nmode(1) = 2
uinf = 4508.4
grefl = 1.0
qinf = 1.1736111
freq(1,1) = 20.92
freq(2,1) = 32.67
gmass(1,1) = 1.0
gmass(2,1) = 1.0
damp(1,1) = 0.99999
damp(2,1) = 0.99999

use_modal_deform = .true.
write_volume_modes = .true.
modal_ref_amp(1,1) = 0.1
modal_ref_amp(2,1) = 0.1

/

Static aeroelastic BSCW modal history
Run commands:
cp ../steady/*flow .
mpiexec nodet_mpi --aeroelastic_internal > static.out

12

GPU and Modal Mesh Deformation Example (4/4)
Step 3: Dynamic aeroelastic analysis
• fun3d.nml:

&nonlinear_solver_parameters
time_accuracy = "2ndorderOPT"
time_step_nondim = 12.1876
subiterations = 15

/
&global
boundary_animation_freq = -1
moving_grid = .true.
ignore_grid_velocity = .false.
recompute_turb_dist = .false. ! must be false for GPU aeroelastic cases

/

• moving_body.input:
&aeroelastic_modal_data
nmode(1) = 2
uinf = 4508.4
grefl = 1.0
qinf = 1.1736111
freq(1,1) = 20.92
freq(2,1) = 32.67
gmass(1,1) = 1.0
gmass(2,1) = 1.0
gvel0(1,1) = 5.0
gvel0(2,1) = 5.0
damp(1,1) = 0.0
damp(2,1) = 0.0
use_modal_deform = .true.
read_volume_modes = .true.

/

Run commands:
cp ../static/*flow .
cp ../static/*restart .
cp ../static/*volume_modes* .
cp ../static/*hist* .
mpiexec nodet_mpi --aeroelastic_internal > dynamic.out

Time

G
e

n
e

ra
li
ze

d
 D

is
p

la
c

e
m

e
n

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

-1

-0.5

0

0.5

1

1.5

Mode 1
Mode 2

Static and dynamic aeroelastic
BSCW modal history

13

Aeroelastic Generic Gas Simulations (1/2)

14

• Version 14.0 introduces support for modal aeroelastic analyses with the generic gas path
• Since modal solver inputs are dimensional, there is nothing special about the modal solver inputs

for a generic gas case
• Generic gas + modal aeroelastic analysis is supported on GPUs

• Example #2: generic waverider - static aeroelastic analysis
• Using perfect gas model through the generic gas path
• Step 1: Steady analysis

• fun3d.nml:
&reference_physical_properties

! Mach 8, 30km

dim_input_type = 'dimensional-SI'

velocity = 2414.19760583 ! m/s

density = 0.0180153131776 ! kg/m^3

angle_of_attack = 5.0

temperature = 226.65 ! K

temperature_units = "Kelvin"

/

• tdata:
perfect_gas

Static aeroelastic displacements of the semispan waverider model

Aeroelastic Generic Gas Simulations (2/2)

15

Step 2: Static aeroelastic analysis
• fun3d.nml:
&governing_equations

eqn_type = 'generic’
viscous_terms = 'turbulent’

/
&reference_physical_properties

! Mach 8, 30km
dim_input_type = 'dimensional-SI'
velocity = 2414.19760583 ! m/s
density = 0.0180153131776 ! kg/m^3
angle_of_attack = 5.0
temperature = 226.65 ! K
temperature_units = "Kelvin”

/

• moving_body.input:
&aeroelastic_modal_data

nmode(1) = 4
uinf = 2414.19760583
qinf = 52499.7759999
.
.
.

/

• uinf is used in the flow-to-structural time step scaling and should be consistent with fun3d.nml
• qinf scales the forces and can be varied, although it is then not a match-point aeroelastic analysis

Time

G
e

n
e

ra
li
ze

d
 D

is
p

la
c

e
m

e
n

t

0 0.05 0.1 0.15 0.2
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Mode 1
Mode 2
Mode 3
Mode 4

Modal displacement histories
Run commands:
cp ../steady/*flow .
mpiexec nodet_mpi --aeroelastic_internal > static.out

Python Interfaces

16

• The FUN3D python interfaces are for more coupling flexibility without the need for modifying the
FUN3D source code

• More flexibility means fewer guardrails (easier to break FUN3D)
• This is an advanced topic. You should:

• Feel very comfortable with modal aeroelastic analysis in FUN3D
• Be willing to debug Python code with MPI operations

• General guidelines:
1. Run a single FUN3D analysis per script

• Much of FUN3D was written without reentry in mind
2. Do not use multiple instances of the solver simultaneously

• The FORTRAN variables in FUN3D are global data that will overwrite each other across
instances

3. Command line options are not passed to FUN3D when driven via Python
• Some may be provided to the initialization as a Python dictionary

4. FUN3D indices (body number, mode number, etc.) are 1-based

Compiling FUN3D Python Extension Modules

17

• Require Python packages: cython, numpy, mpi4py
• FUN3D external dependencies need to be compiled with the -fPIC (ParMETIS, Zoltan, etc.)
• FUN3D configuration options:

• ../configure --enable-python --enable-shared [other options]

• Getting FUN3D to use your Python setup:
• The FUN3D configure script will search your PATH for python, cython, and python-config
• If it cannot them or finds the wrong ones, environment variables can be used:
PYTHON the Python interpreter
PYTHON_CONFIG Path to python-config
CYTHON Path to cython

• Example configuration for a Python build of FUN3D:
../configure --prefix=`pwd` \

--with-mpi=/path/to/mpi \
--with-parmetis=/path/to/parmetis \
--enable-python \
--enable-shared \
PYTHON_CONFIG=/usr/local/pkgs-modules/Python_3.9.5/bin/python3-config \
PYTHON=/usr/local/pkgs-modules/Python_3.9.5/bin/python \
CYTHON=/usr/local/pkgs-modules/Python_3.9.5/bin/cython

Common Issues Compiling Python

18

1. Mismatch of mpi for mpi4py and FUN3D
• Check the mpi backend of your mpi4py build with this command:

• python -c "import mpi4py; import os; a = mpi4py.__path__[0]; print(a); os.system(f'cat {a}/mpi.cfg’)”

• If the output of this does not match the mpi your FUN3D installation was configured with, either
reinstall mpi4py or reconfigure and reinstall FUN3D to use your mpi4py’s mpi

2. Mismatch of python-config (or cython) with python
• Sometimes you’ll have python3 in your path, but the first python-config found is a system default

path (often a python 2 version)
• Use the PYTHON_CONFIG environment variable to specific the proper python-config

Post Installation Setup and Running

19

Post installation setup:
• The python module is installed in [prefix]/lib/python[version]/site-packages/fun3d

• Add [prefix]/lib/python{version}/site-packages to your PYTHONPATH
export PYTHONPATH=[prefix]/lib/python[version]/site-packages:${PYTHONPATH}

Running a python script with FUN3D:
• Set up a [script].py that calls the FUN3D API
• FUN3D python simulations do not use nodet_mpi:

mpiexec python [script].py

• Apart from command line options, inputs and outputs for FUN3D python drivers are identical to the
normal executable

• Sometimes python jobs hang with a runtime failure occurs at the python level.
• Keep an eye on your python jobs as you debug the script

Python Interfaces – Basic Flow Solve

20

from mpi4py import MPI

from fun3d.solvers import Flow

flow = Flow()

flow.initialize(comm=MPI.COMM_WORLD)

for _ in range(200):

flow.iterate()

flow.post()

1. Instantiate the FUN3D flow solver
2. Initialize the solver

• Read the mesh and namelist, allocate
and initialize the solutions, etc.

3. Loop over the iterations
• Call coupling interfaces in this loop
• Do not iterate more than the number

of steps in fun3d.nml
4. Call the post function

• Write the restart file, final visualization

Python Interfaces - Internal Modal Solver (1/2)

21

• moddfl = 6 in &aeroelastic_modal_data set for modes to be controlled from python
• Use a python dictionary to set aeroelastic_internal

• Remember FUN3D won’t read command line arguments when driven by python
• Modal input and output is done with interface from the fun3d module:

• from fun3d import interface

• interface.aeroelastic_push_modal_displacement(body, mode, gdisp)

• Set the modal displacement for a specific mode on this time step. Call before iterate()
• body and mode are 1-based indices (match moving_body.input indices)
• gdisp is a scalar. Loop over this interface function to drive multiple modes
• Generalized velocity and acceleration internally are backed out using BDF2.

• state = interface.aeroelastic_pull_modal_state(body, mode)

• Get the modal state. Called after iterate()
• state is size 4: [gdisp, gvel, gaccel, gforce]

Python Interfaces - Internal Modal Solver (2/2)

22

• Basics of using the modal solver interfaces:

from mpi4py import MPI
from fun3d.solvers import Flow
from fun3d import interface

command_line_options = {"aeroelastic_internal": True}

flow = Flow()
flow.initialize(kwargs=command_line_options, comm=MPI.COMM_WORLD)

body = 1
for step in range(nsteps):

mode = 1
gdisp = 0.5 * step / nsteps
interface.aeroelastic_push_modal_displacement(body, mode, gdisp)

flow.iterate()

mode = 2
state = interface.aeroelastic_pull_modal_state(body, mode)

Coupling to External Solvers with Python

23

FUN3D parts of the process:
1. Instantiate the Flow() object and call initialize()
2. Get the initial coordinates (and connectivity) out of FUN3D
3. Time loop

1. Set rigid and/or deform motion into FUN3D
2. Call iterate()
3. Get nodal forces on surface

4. Call post()
• Surface motion and forces are distributed but all inputs and outputs are in the same order

• FUN3D inputs and output on each rank of python will only be the nodes owned by that rank
• Some ranks will not contain surface patches
• Synchronization of halo data is performed inside FUN3D

• This mode of FUN3D is not compatible with the GPU flow solver

General Aeroelastic Interfaces - Surface Nodes

24

num_nodes = flow.extract_surface_num(body)

• Get the number of surface nodes on this rank

if num_nodes > 0:

• Only call the next two functions if nodes are on this rank

x, y, z = flow.extract_surface(num_nodes, body)

• Get the surface node coordinates on this rank

ids = flow.extract_surface_id(num_nodes, body)

• Global ID numbers of surface nodes on this rank

• The run_with_connectivity.py example shows how to get the surface
connectivity if your load and displacement transfer scheme needs it

General Aeroelastic Interfaces - Surface Connectivity (1/2)

25

The connectivity interfaces return the node ids that make up the triangular and quadrilateral surface elements
• Only the owned faces are included for each rank
• The node ids are the global ids from the volume mesh (match the ids in the original mesh file)
• One of the tutorials shows how to create connectivity based on surface node numbering if necessary

num_tris = flow.extract_tri_face_num(body=ibody)

if num_tris > 0:

tri_conn = flow.extract_tri_face_connectivity(num_tris, body)

num_quads = flow.extract_quad_face_num(body)

if num_quads > 0:

quad_conn = flow.extract_quad_face_connectivity(num_quads, body)

General Aeroelastic Interfaces - Surface Connectivity (2/2)

26

In version 14.0, there is a bug in the surface connectivity interfaces that will be corrected future versions:
In fun3d/Python/extension/fun3d/_flow/funtofem_wrapper.pyx make the following changes:

def extract_tri_face_connectivity(int nfaces, int body):
cdef np.ndarray conn = np.zeros([nfaces,3], dtype=int np.int32, order="F")
extract_tri_face_connectivity_f2f(nfaces, <int *> conn.data, body)
return conn

def extract_quad_face_connectivity(int nfaces, int body):
cdef np.ndarray conn = np.zeros([nfaces,4], dtype=int np.int32, order="F")
extract_quad_face_connectivity_f2f(nfaces, <int *> conn.data, body)
return conn

General Aeroelastic Interfaces - Motion and Forces

27

if "deform" in mesh_movement:

if num_nodes > 0:

flow.input_deformation(dx, dy, dz, body)

• Set x, y, z displacements for the surface nodes on this rank

if "rigid" in mesh_movement:

transform = np.eye(4, order="F") # example matrix

flow.input_rigid_transform(transform, body)

• Set the standard 4x4 transformation matrices for rigid motion. See section 7.3 of the
manual

if num_nodes > 0:

fx, fy, fz = flow.extract_forces(num_nodes, body)

• Get arrays of x, y, z force coefficients for the surface nodes on this rank
• Multiply by the dynamic pressure, q∞, to get the dimensional loads

Python Thermal Interfaces

28

if num_nodes > 0:

flow.input_wall_temperature(temperature, body)

• Set the wall temperature distribution for the surface nodes on this rank
• temperature should be normalized: T/Tref

if num_nodes > 0:

cqx, cqy, cqz = flow.extract_heat_flux(num_nodes, body)

• Get the nondimensional area-weighted heat flux at the surface nodes
• Integrated over the surface faces as normal to the surface then distributed to the

nodes of the face
• Multiply by the reference power ½ ⍴ref Uref

3 to get dimensional heat flow (Watts for SI)

• Thermal coupling only supported with viscous wall boundaries (4000)

Python Coupling Examples (1/2)

29

• The tutorial tarball for this session contains examples to show different aspects of using the python
interfaces

• external_motion subdirectory:
• run_basic_motion.py – demonstrates the basics of driving the motion and getting forces

for aeroelastic problems
• run_collect_on_root.py – extends the run_basic_motion.py to show how to couple

to solvers that need the surface data on a single rank
• run_with_connectivity.py – extends the run_basic_motion.py to show how to

extract the surface connectivity
• run_with_fsi_subiterations.py – extends the run_basic_motion.py to show how

to perform fluid-structure interaction subiterations
• external_motion_two_bodies subdirectory:

• run.py – external motion with multiple bodies in the same problem
• thermal subdirectory:

• run.py – using the thermal coupling interfaces

Python Coupling Examples (2/2)

30

• internal_aeroelastic subdirectory:
• run.py – demonstrates the basics of using the interfaces for internal modal solver interactions

• bc_interface subdirectory:
• run.py – demonstrates how to drive a 7011 (subsonic inflow) boundary

• mpiexec python [script].py to run any of the examples
• The examples have detailed comments in the python scripts
• If you have questions about any of the python interfaces or examples:

• Email fun3d-users@lists.nasa.gov for questions that can be discussed among the FUN3D
community

• Email fun3d-support@lists.nasa.gov for questions involving proprietary matters

mailto:fun3d-users@lists.nasa.gov
mailto:FUN3D-support@nasa.gov

What We Learned

31

• Updates to FUN3D modal aeroelastic capabilities since version 13.4
• Modal mesh deformation
• GPU simulations with the modal solver
• Aeroelastic generic gas simulations

• How to use the FUN3D Python interfaces for coupled or externally driven analysis
• Interacting with internal modal solver
• Coupling to external structural solvers

