
7/7/2017

FUN3D Training Workshop 1

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

FUN3D v13.1 Training

Session 4:

Gridding, Solution, and

Visualization Basics

Eric Nielsen

1

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Learning Goals

What we will cover

• Basic gridding requirements and formats

• Nondimensionalizations and axis conventions

• Basic environment for running FUN3D

• FUN3D user inputs

• Running FUN3D for typical steady-state RANS cases

– Compressible transonic turbulent flow over a wing-body using a
tetrahedral VGRID mesh

– Turbulent flow over a NACA 0012 airfoil section

• Things to help diagnose problems

• Visualization overview

What we will not cover

• Other speed regimes

• Unsteady flows

2

7/7/2017

FUN3D Training Workshop 2

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Gridding Considerations

• FUN3D is a node-based discretization
– To get similar resolution when comparing with a cell-centered code, you must

use a finer grid
• E.g., on a tetrahedral grid, the grid for FUN3D must be ~2 times finer on the surface,

and ~6 times finer in the volume mesh to be fair

– This is critical when comparing with cell-centered solvers
– Hanging nodes are not currently supported

• FUN3D integrates all of the way to the wall for turbulent flows
– Wall function grids are not adequate
– Goal is to place first grid point at y+=1

• Base y on a flat plate estimate using your Reynolds number; can examine result in
solver output and tweak as necessary

• Users employ all of the common grid generators – VGRID,
AFLR2/AFLR3/SolidMesh, ICEM, Pointwise, etc.

• FUN3D also supports point-matched, multiblock structured grids through
Plot3D file input

– Subject to certain grid topologies:
• Singularities treated – i.e., hexes with collapsed faces converted to prisms
• But hexes with 180 internal angles cause FUN3D discretization to break down (LSQ)

• FUN3D can convert tetrahedral VGRID meshes to mixed elements
• FUN3D can convert any mixed element grid into tetrahedra using command

line option ‘--make_tets’

3

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Supported Grid Formats

4

Grid Format Formatted Unformatted
Supports mixed

elements

Direct load or

converter
File extension(s)

FAST X X Direct .fgrid, .mapbc

VGRID
(single or multisegment)

X Direct .cogsg, .bc, .mapbc

AFLR3 X
X

Also Binary
X Direct

.ugrid/.(l)r8.ugrid/.(l)b8.ugrid,

.mapbc

FUN2D X Direct .faces

Fieldview v2.4,

v2.5, v3.0
X X X

Direct
(Some details of format

not supported)

.fvgrid_fmt, .fvgrid_unf,

.mapbc

Felisa X Direct .gri, .fro, .bco

Point-matched,

multiblock Plot3D
X X

Hexes,

degenerates
Converter .p3d, .nmf

CGNS Binary X Converter .cgns

The development team can work with you to handle other formats as needed

7/7/2017

FUN3D Training Workshop 3

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Boundary Condition Input File

5

• Where required, the FUN3D .mapbc file takes the form:

Number of boundary patches

Boundary patch index BC index Family name

• The BC index may be either a 4-digit FUN3D-style index or a GridTool-style

index

• The family name is optional, but must be present if the user requests patch

lumping by family

3

1 4000 Wing

2 5000 Farfield

3 6662 Symmetry plane

• Exception: The .mapbc format for VGRID meshes follows the

GridTool/VGRID format

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Nondimensionalization

• Notation: * indicates a dimensional variable, otherwise dimensionless;

the reference flow state is usually free stream (“ “), but need not be

• Define reference values:

– = reference length of the physical problem (e.g. chord in ft)

– = corresponding length in your grid (dimensionless)

– = reference density (e.g. slug/ft3)

– = reference molecular viscosity (e.g. slug/ft-s)

– = reference temperature (e.g. oR, compressible only)

– = reference sound speed (e.g. ft/s, compressible only)

– = reference velocity (e.g. ft/s)

• Space and time are made dimensionless in FUN3D by:

–

(compressible) (incompressible)

6

ref

*

ref

*

Tref

*

x x * /(Lref

* /Lref)

Lref

*

Lref

aref

*

Uref

*

t t*aref

* /(Lref

* /Lref)

t t*Uref

* /(Lref

* /Lref)

7/7/2017

FUN3D Training Workshop 4

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Nondimensionalization (cont)

• For the compressible flow equations the dimensionless variables are:

– so

– so

– so

– so

– so

– so

– From the equation of state and the definition of sound speed:

• The input Reynolds number in FUN3D is related to the Reynolds number

of the physical problem by

reynolds_number = where

i.e. reynolds_number is a Reynolds number per unit grid length

7

a a* /aref

*

T T* /Tref

*

e e* /(ref

* aref

*2)

u u * /aref

*

P P* /(ref

* aref

*2)

u
ref
 u

ref

*
/aref

* Mref

Pref Pref

* /(ref

* aref

*2) 1/

aref 1

Tref 1

eref eref

* /(ref

* aref

*2) 1/((1)) Mref

2 /2

T P / a2

Reref /Lref

Reref ref

* Uref

* Lref

* /ref

*

 * /ref

*

ref 1

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Setting the Reynolds Number Input

8

• Frequent cause of confusion, even for developers

• Need to know what characteristic length your Reynolds number is

based on – mean aerodynamic chord, diameter, etc.

• Your input Reynolds number is based on the corresponding length

of that “feature” in your computational grid

• Example: You want to simulate a Reynolds number of 2.5 million

based on the MAC:

– If the length of the MAC in your grid is 1.0 grid units, you would input

Re=2500000 into FUN3D

– If the length of the MAC in your grid is 141.2 grid units (perhaps these

physically correspond to millimeters), you would input 2500000/141.2,

or Re=17705.4 into FUN3D

7/7/2017

FUN3D Training Workshop 5

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

FUN3D Axis Convention

9

• FUN3D coordinate system differs from the standard wind coordinate system

by a 180º rotation about the y-axis

• Positive x-axis is toward the “back” of the vehicle (downstream)

• Positive y-axis is out the “right wing”

• Positive z-axis is “upward”

• The freestream angle of attack and yaw angle are defined as shown

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Runtime Environment
• “Unlimit” your shell (also good idea to put this in any queue scripts):

$ ulimit unlimited # for bash

$ unlimit # for c shell

• If unformatted or binary, what “endianness” does your grid file have?

– E.g., VGRID files are always big endian, regardless of platform

– If your compiler supports it, FUN3D will attempt to open files using an
open(convert=…) syntax

– Most compilers support some means of conversion

• Either an environment variable or compile-time option, depending on what

compiler you’re using

• E.g., Intel compiler can be controlled with an environment variable
F_UFMTENDIAN = big

• Memory required by solver: rough rule of thumb is 3-3.5 GB per million

points (not cells!)

– Conversely, 200k-300k points per 1 GB of memory

• Users generally partition into smaller domains than this, but be aware of these

numbers

– This memory estimate will be higher if visualization options are used, etc

10

7/7/2017

FUN3D Training Workshop 6

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

User Inputs for FUN3D

11

Input deck fun3d.nml

• The user is required to supply an input deck for FUN3D named fun3d.nml

(fixed name)

• This filename contains a collection of Fortran namelists that control FUN3D

execution – all namelist variables have default values as documented

• But user will need to set at least some high-level variables, such as the project

name

Command Line Options (CLOs)

• CLOs always take the form --command_line_option after the executable

name

– Some CLOs may require trailing auxiliary data such as integers and/or reals

• User may specify as many CLOs as desired

• CLOs always trump fun3d.nml inputs

• CLOs available for a given code in the FUN3D suite may be viewed by using
--help after the executable name

• Most CLOs are for developer use; namelist options are preferred where

available

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

• For this case, we will assume that someone has provided a set of

VGRID files containing the mesh

– f6fx2b_trn.cogsg, f6fx2b_trn.bc, and f6fx2b_trn.mapbc

• It is always a good idea to examine the .mapbc file first to check the

boundary conditions and any family names
– Note that specific boundary conditions will be covered in a separate session

12

7/7/2017

FUN3D Training Workshop 7

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

13

#Thu Mar 11 13:42:40 2010

#bc.map

Patch # BC Family #surf surfIDs Family

#---

1 3 3 0 0 Box

2 3 3 0 0 Box

3 3 3 0 0 Box

4 3 3 0 0 Box

5 3 3 0 0 Box

6 4 4 1 15 Wing

7 4 4 1 15 Wing

8 4 4 1 17 Wing

9 4 4 1 17 Wing

10 4 4 1 15 Wing

11 4 4 1 13 Fuselage

12 4 4 1 21 Fuselage

13 4 4 1 11 Fuselage

14 4 4 1 11 Fuselage

15 4 4 1 12 Fuselage

16 4 4 1 12 Fuselage

17 4 4 1 15 Wing

18 4 4 1 15 Wing

19 4 4 1 15 Wing

20 4 4 1 15 Wing

21 4 4 1 17 Wing

22 4 4 1 17 Wing

23 4 4 1 16 Wing

24 4 4 1 15 Wing

25 4 4 1 17 Wing

26 4 4 1 8 Fuselage

27 4 4 1 16 Wing

28 4 4 1 16 Wing

29 4 4 1 16 Wing

30 4 4 1 16 Wing

31 4 4 1 18 Wing

32 4 4 1 18 Wing

33 4 4 1 17 Wing

34 4 4 1 18 Wing

35 4 4 1 18 Wing

36 4 4 1 1 Wing

37 4 4 1 18 Wing

38 4 4 1 18 Wing

39 4 4 1 18 Wing

40 4 4 1 22 Fuselage

41 1 1 0 0 Symmetry

42 4 4 1 10 Fuselage

43 4 4 1 9 Fuselage

44 4 4 1 14 Fuselage

45 4 4 1 23 Fuselage

46 4 4 1 19 Wing

47 4 4 1 20 Wing

48 4 4 1 27 Fairing

49 4 4 1 29 Fairing

50 4 4 1 28 Fairing

51 4 4 1 30 Fairing

• For this case, the VGRID/GridTool-style

.mapbc file is as shown

• Surface grid consists of 51 patches

• Note that VGRID/GridTool-style BC’s are

specified

• Family names are also as shown

(required in this format)

• FUN3D does not use the other columns

of data

• If you cannot easily visualize your mesh

to set appropriate boundary conditions,

one easy approach is to set them all to

inflow/outflow, then run a single time step

of FUN3D with boundary visualization

activated – then set patch BC’s as

needed for actual simulation

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

• Now we will look at the minimum set of user inputs needed in
fun3d.nml to run this case

14

7/7/2017

FUN3D Training Workshop 8

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

15

&project

project_rootname = 'f6fx2b_trn’ Project name

/

&raw_grid

grid_format = 'vgrid’ Read a set of VGRID files

/

&reference_physical_properties

mach_number = 0.75 Sets freestream Mach number

reynolds_number = 17705.40 Sets Reynolds number

angle_of_attack = 1.0 Sets freestream angle of attack

temperature = 580.0 Sets freestream temperature

temperature_units = "Rankine” Uses Rankine temperature units for input

/

&code_run_control

restart_read = 'off’ Perform a cold start

steps = 500 Perform 500 time steps
/

&force_moment_integ_properties

area_reference = 72700.0 Sets reference area

x_moment_length = 141.2 Sets length for normalizing y-moments

y_moment_length = 585.6 Sets length for normalizing x-, z-moments

x_moment_center = 157.9 Sets x-moment center

z_moment_center = -33.92 Sets z-moment center

/

&nonlinear_solver_parameters

schedule_cfl = 10.0 200.0 CFL for meanflow is ramped from 10.0 to 200.0

schedule_cflturb = 1.0 30.0 CFL for turbulence is ramped from 1.0 to 30.0
/

All in

grid units

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

16

• We now have the boundary conditions and input deck set up to run
FUN3D

• To execute FUN3D, we use the following basic command line syntax:

mpirun ./nodet_mpi

– Note your environment may require slightly different syntax:

• mpirun vs mpiexec vs aprun vs …

• May need to specify various MPI runtime options:

• -np #

• -machinefile filename

• -nolocal

• Others

7/7/2017

FUN3D Training Workshop 9

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

17

• Using 1 Intel Haswell node (24 cores), this case runs in 2-3 minutes

• The top of the screen output will include an echo of your fun3d.nml, as well

as some preprocessing information:

FUN3D 12.7-74063 Flow started 05/18/2015 at 06:09:15 with 24 processes FUN3D version, start time, job size

[Echo of fun3d.nml]

The default "unformatted" data format is being

used for the grid format "vgrid". VGRID input is being used

... nsegments,ntet,nnodesg 1 2994053 513095 Grid contains 2,994,053 tets and 513,095 points

cell statistics: type, min volume, max volume, max face angle Min/max cell volumes, max internal face angles

cell statistics: tet, 0.41152313E-06, 0.66593449E+11, 179.973678915

cell statistics: all, 0.41152313E-06, 0.66593449E+11, 179.973678915

... PM (64,skip_do_min) : 0 F

... Calling ParMetis (ParMETIS_V3_PartKway) 0 F

... edgeCut 140453 # of edges cut by partitioning (measure of communication)

... Time for ParMetis: .2 s

... Constructing partition node sets for level-0... 2994053 T

... Edge Partitioning

... Boundary partitioning....

... Reordering for cache efficiency....

... Write global grid information to f6fx2b.grid_info

... Time after preprocess TIME/Mem(MB): 1.60 180.52 180.52 1.6 secs required to preprocess the mesh

NOTE: kappa_umuscl set by grid: .00

Grid read complete

Repaired 82 nodes of symmetry plane 6662, max deviation: 0.172E-03

y-symmetry metrics modified/examined: 23601/23601

Distance_function unique ordering T 20000000

construct partial boundary...nloop= 1

find closer surface edge...

find closer surface face...

Wall spacing: 0.766E-03 min, 0.120E-02 max, 0.115E-02 avg Min/max/avg wall spacing statistics

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

18

• At this point, time stepping commences

• For each time step:

– The L2-norm of the density|turbulence equation is red|blue; max and location are also included

– Lift and drag are reported in green

• “Done.” indicates execution is complete

Iter density_RMS density_MAX X-location Y-location Z-location

turb_RMS turb_MAX X-location Y-location Z-location

1 0.567454200028342E+00 0.28035E+02 0.16377E+03 -0.16562E+03 0.20117E+02

0.764159584901741E+04 0.13249E+07 0.79654E+04 -0.88280E+04 0.25675E+02

Lift 0.103222129717669E+00 Drag 0.646514468368827E+00

2 0.300676687726037E+00 0.12718E+02 0.29226E+03 -0.72487E+02 -0.12411E+02

0.753354469872627E+04 0.12868E+07 0.79654E+04 -0.88280E+04 0.25675E+02

Lift 0.146830367737086E+00 Drag 0.721243419758588E+00

.

.

.

499 0.235098406158263E-04 0.44827E-02 0.63496E+04 -0.38199E+04 0.18712E+04

0.799698877237297E-01 0.12961E+02 0.46732E+04 -0.15204E+04 0.26710E+03

Lift 0.556610229549889E+00 Drag 0.388376897833650E-01

500 0.232908407834686E-04 0.44201E-02 0.63496E+04 -0.38199E+04 0.18712E+04

0.789246351974423E-01 0.12785E+02 0.46732E+04 -0.15204E+04 0.26710E+03

Lift 0.556607946389416E+00 Drag 0.388374809483346E-01

Writing f6fx2b_trn.flow (version 11.8) lmpi_io 2

inserting current history iterations 500

Time for write: .0 s

Done.

7/7/2017

FUN3D Training Workshop 10

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

19

• FUN3D provides a couple of text files with basic statistics and summary data:

– f6fx2b_trn.grid_info File containing basic mesh statistics and partitioning info

– f6fx2b_trn.forces File containing force breakdowns by boundary and totals

• FUN3D also produces:

f6fx2b_trn_hist.dat Tecplot file with residual, force convergence histories

f6fx2b_trn.flow Solver restart information

• For this particular case, the mean

flow and turbulence residuals are

reduced by ~5 orders of

magnitude over 500 time steps

• Lift and drag come in after a few

hundred time steps

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

NACA 0012 Airfoil

20

• For this case, we have been given a set of

binary, big endian AFLR3 files

– 0012.b8.ugrid, 0012.mapbc

– For computations in 2D mode
• Grid must be one-element wide in the y-direction

(except when using FUN2D format)

• Grid must contain only prisms and/or hexes

• First check the .mapbc file
– The y-planes must be separate boundary patches

and should be given BC 6662

4

1 4000

2 5000

3 6662

4 6662

0012.mapbc

7/7/2017

FUN3D Training Workshop 11

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

NACA 0012 Airfoil

21

&project

project_rootname = '0012’

/

&raw_grid

grid_format = 'aflr3’ Read an AFLR3 grid

twod_mode = .true. Execute in 2D mode
/

&reference_physical_properties

mach_number = 0.80

reynolds_number = 1.e6

angle_of_attack = 1.25

temperature = 580.0

temperature_units = "Rankine"

/

&code_run_control

restart_read = 'off'

steps = 5000

/

&force_moment_integ_properties

area_reference = 0.1

x_moment_center = 0.25

/

&nonlinear_solver_parameters

schedule_cfl = 10.0 200.0

schedule_cflturb = 1.0 10.0

/

&global

boundary_animation_freq = -1

/

• fun3d.nml is shown here

• FUN2D grid format will

automatically be executed

in 2D mode; all others

must be explicitly put in

2D mode

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

NACA 0012 Airfoil

22

FUN3D 12.7-74063 Flow started 05/18/2015 at 09:06:46 with 24 processes

[Echo of fun3d.nml]

The default "stream" data format is being Binary AFLR3 format is the default

used for the grid format "aflr3".

Preparing to read binary AFLR3 grid: 0012.b8.ugrid Binary AFLR3 grid being read

nnodes 116862 Grid contains 116,862 points

ntface,nqface 204510 14607 Grid contains 204,510 tris, 14,607 quads

ntet,npyr,nprz,nhex 0 0 102255 7047 Grid contains 102,255 prisms, 7,047 hexes

cell statistics: type, min volume, max volume, max face angle Cell stats now broken out by cell type

cell statistics: prz, 0.16960303E-06, 0.52577508E-01, 164.861624007

cell statistics: hex, 0.83173480E-09, 0.12843645E-04, 123.906431556

cell statistics: all, 0.83173480E-09, 0.52577508E-01, 164.861624007

... PM (64,skip_do_min) : 0 F

... Calling ParMetis (ParMETIS_V3_PartKway) 0 F

... edgeCut 11490

... Time for ParMetis: .1 s

... checking for spanwise edge cuts.

... Constructing partition node sets for level-0... 109302 T

... Edge Partitioning

... Boundary partitioning....

... Euler numbers Grid:1 Boundary:0 Interior:0

... Reordering for cache efficiency....

... ordering edges for 2D.

... Write global grid information to 0012.grid_info

... Time after preprocess TIME/Mem(MB): 0.31 90.82 90.82

NOTE: kappa_umuscl set by grid: .00

Grid read complete

Using 2D Mode (Node-Centered) Solver running in 2D mode

Distance_function unique ordering T 20000000

construct partial boundary...nloop= 1

find closer surface edge...

find closer surface face...

Wall spacing: 0.100E-03 min, 0.100E-03 max, 0.100E-03 avg

7/7/2017

FUN3D Training Workshop 12

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

NACA 0012 Airfoil

23

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

List of Key Input/Output Files

• Input

– Grid files (prefixed with project name, suffixes depend on grid format)

– fun3d.nml

• Output

– [project].grid_info

– [project].forces

– [project]_hist.dat

– [project].flow

24

7/7/2017

FUN3D Training Workshop 13

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

What Could Possibly Go Wrong?

Problem

• Common complaint from VGRID meshes during initial preprocessing

phase at front end of solver:

25

Checking volume-boundary connectivity...

stopping...unable to find common element for face 1 of

boundary 3

boundary nd array 46 17368 334315

node,locvc 46******************************

node,locvc_type 46 tet tet tet tet tet

node,locvc 17368************************************

node,locvc_type 17368 tet tet tet tet tet tet

• This is due to a very old VGRID bug that causes an incompatibility
between the .cogsg and .bc files

– Compile and run utils/repair_vgrid_mesh.f90 to generate a valid

.bc file to replace your original one

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

What Could Possibly Go Wrong?

Problem

• Common complaint from unformatted/binary meshes during initial

preprocessing phase at front end of solver:

26

Read/Distribute Grid.

forrtl: severe (67): input statement requires too much data, unit 16100,

file /misc/work14/user/FUN3D/project.cogsg

• Check the endianness of the grid and your environment/executables

Problem

• Unexpected termination, especially during preprocessing or first time

step

– Are your shell limits set?

– Do you have enough local memory for what you are trying to run?

7/7/2017

FUN3D Training Workshop 14

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

What Could Possibly Go Wrong?
Problem

• Solver diverges or does not converge

– Problem-dependent, very tough to give general advice here

– Sometimes require first-order iterations (primarily for high speeds)

– Sometimes require smaller CFL numbers

– Sometimes require alternate flowfield initialization (not freestream) in

some subregion of the domain: e.g., chamber of an internal jet

– Check your boundary conditions and gridding strategy

– Perhaps your problem is simply unsteady

Problem

• Solver suddenly dies during otherwise seemingly healthy run

– Sometimes useful to visualize solution just before failure

– Is it a viscous case on a VGRID mesh? Try turning on
large_angle_fix in &special_parameters namelist (viscous flux

discretization degenerates in sliver cells common to VGRID meshes)

– Is it a turbulent flow on a mesh generated using AFLR3? Look for

“eroded” boundary layer grids near geometric singularities – AFLR3

sometimes has trouble adding viscous layers near complex corners, etc

27

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

What Could Possibly Go Wrong?

28

In General…

• Do not hesitate to send questions to fun3d-support@lists.nasa.gov ;

we are happy to try to diagnose problems

– Please send as much information about the problem/inputs/environment

that you can, as well as all screen output, any error output, and
config.log

– In extreme cases, we may request your grid and attempt to run a case for

you to track down the problem

– If you cannot send us a case due to restrictions, size, etc, a

generic/smaller representative case that behaves similarly can be useful

– Check the manual for guidance

• Ask the FUN3D user community, fun3d-users@lists.nasa.gov

mailto:fun3d-support@lists.nasa.gov
mailto:fun3d-users@lists.nasa.gov

7/7/2017

FUN3D Training Workshop 15

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Visualization Learning Goals

• What this will teach you

– Run-time flow visualization output

• Output on boundary surfaces

• Output on user-specified “sampling” surfaces within the volume

• Output of full volume data

• Output generated by “slicing” boundary data - “sectional” output

• What you will not learn

– The plethora of output options available for visualization

– Tecplot usage

• What should you already know

– Basic flow solver operation and control

29

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Background

• Datasets are getting simply too large to post-process in a traditional

manner

• FUN3D allows visualization data to be generated as the solver is

running

• User specified frequency and output type

• User specified output variables from a fairly extensive list

• Majority of output options are Tecplot-based

– Volume output may also be generated in Fieldview, CGNS

formats

• Note FUN3D also supports true in-situ visualization at scale using

the DoE VisIt package; however, this is not covered here

– Intelligent Light is currently integrating VisIt’s in-situ capabilities

with Fieldview

30

7/7/2017

FUN3D Training Workshop 16

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Selected Visualization Output Examples

31

x

C
p

-0.5 -0.25 0 0.25 0.5 0.75 1

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

y/b = 0.08

y/b = 0.38

y/b = 0.68

y/b = 0.99

Sliced Boundary Output

Iso-surfaces

Schlieren,

boundary output

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Visualization Overview

• All of the visualization outputs require similar namelist-specified

“frequency” N to activate:

– In all cases, N = 0, 1, 2, 3, …

• N = 0 generates no output

• N < 0 generates output only at the end of the run - typically used

for steady-state cases. The actual value of N is ignored

• N > 0 generates output every Nth time step - typically used to

generate animation for unsteady flows; can also be used to

observe how a steady flow converges

32

7/7/2017

FUN3D Training Workshop 17

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Visualization Overview

• Customizable output variables (except sliced boundary data):

– Most variables are the same between the boundary surface, sampling

and volume output options; boundary surface has a few extra

– See manual for lists of all available variables

– Default variables always include x, y, z, and the “primitive” flow

variables u, v, w, and p (plus density if compressible)

– Several “shortcut” variables: e.g.,

primitive_variables = rho, u, v, w, p

– Must explicitly turn off the default variables if you don’t want them
(e.g., primitive_variables = .false.)

– Variable selection for each coprocessing option done with a different

namelist to allow “mix and match”

33

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Visualization Overview
• For boundary surface output, default is all solid boundaries in 3D and

one y=const plane in 2D; alternate output boundaries selected with, e.g.:

&boundary_output_variables

number_of_boundaries = 3

boundary_list = ‘3,5,9’ ! blanks OK as

delimiter too: ‘3 5 9’

! dashes OK as delimiter

too: ‘3-9’

/

• If you already have a converged solution and don’t want to advance the

solution any further, can do a “pass through” run:

– set steps = 0 in &code_run_control

– You must have a restart file ([project].flow)

– Run the solver with the appropriate namelist input to get desired

output

– [project].flow will remain unaltered after completion

34

7/7/2017

FUN3D Training Workshop 18

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Visualization Overview
• Sampling output requires additional data to describe the desired

sampling surface(s)

– Specified in namelist &sampling_parameters

– Surfaces may be planes, quadrilaterals or circles of arbitrary

orientation, or may be spheres or boxes

– Isosurfaces and schlierens also available

– Points may also be sampled

– See manual for complete info

• Sliced boundary surface output requires additional data to describe the

desired slice section(s)

– Specified in namelist &slice_data

– Always / only outputs x, y, z, Cp, Cfx, Cfy, Cfz

– User specifies which (solid) boundaries to slice, and where

– See manual for complete info

35

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Visualization Overview

• Output files will be ASCII unless you have built FUN3D against the

Tecplot library (exception: sliced boundary data is always ASCII)

– ASCII files have .dat extension

– Binary files have .plt extension - smaller files; load into Tecplot faster

– Boundary output file naming convention (T = time step counter):

• [project]_tec_boundary_timestepT.dat if N > 0

• [project]_tec_boundary.dat if N < 0

– Volume output file naming convention (note: 1 file per processor P)

• [project]_partP_tec_volume_timestepT.dat if N > 0

• [project]_partP_tec_volume.dat if N < 0

– Sampling output file naming convention (one file per sampling

geometry G):

• [project]_tec_sampling_geomG_timestepT.dat if N > 0

• [project]_tec_sampling_geomG.dat if N < 0

36

7/7/2017

FUN3D Training Workshop 19

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Boundary Output Visualization Example

37

&global

boundary_animation_freq = -1 Dump boundary vis at end of run

/

&boundary_output_variables

primitive_variables = .false. Turn off rho, u, v, w, p

cp = .true. Turn on Cp

yplus = .true. Turn on y+

/

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Sampling Visualization Example

38

&sampling_parameters

number_of_geometries = 3 Want 3 sampling geometries

type_of_geometry(1) = 'plane‘ First geometry is a plane

plane_center(2,1) = -234.243 Plane y-coordinate

plane_normal(2,1) = 1.0 Plane y-normal

sampling_frequency(1) = -1 Write at end of run

type_of_geometry(2) = 'sphere’ Second geometry is a sphere

sphere_center(1,2) = 74.9 Center x-coordinate

sphere_center(2,2) = -107.7 Center y-coordinate

sphere_center(3,2) = 50.0 Center z-coordinate

sphere_radius(2) = 20.0 Sphere radius

sampling_frequency(2) = -1 Write at end of run

type_of_geometry(3) = 'isosurface’ Third geometry is an isosurface

isosurf_variable(3) = 'mach’ Isosurface will be based on Mach number

isosurf_value(3) = 1.00 Isosurface defined by Mach=1

sampling_frequency(3) = -1 Write at end of run
/

&sampling_output_variables

primitive_variables = .false. Turn off rho, u, v, w, p

mach = .true. Turn on Mach number
/

7/7/2017

FUN3D Training Workshop 20

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Volume Visualization Example

39

&global

volume_animation_freq = -1 Dump output at end of run

/

&volume_output_variables

export_to='tecplot’ Send results to Tecplot file

/

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Slicing Visualization Example

40

&global

slice_freq = -1 Dump output at end of run

/

&slice_data

nslices = 1 Perform one slice

slice_location(1) = -234.243 Coordinate of slice

/

7/7/2017

FUN3D Training Workshop 21

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Troubleshooting/FAQ

• I can see what look like ragged dark lines on sampling surfaces and

volume data – what is that?

– Duplicate information at partition boundaries is not removed; if

surface is not completely opaque, double plotting locally doubles the

opaqueness (duplicate info is removed from boundary surface

output)

– Turn off transparency in Tecplot

• When I dump out volume plot files in Tecplot format, I get a file for every

processor – is there a way around this?

– Yes, in &volume_output_variables add: export_to = ‘tec’

– The team is working with Tecplot to develop their next generation of

I/O APIs, with special focus on massively parallel needs

– Alternative: switch to Fieldview or CGNS output, which uses a single

file

41

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

What We Learned

• Basic gridding requirements and file formats

• Runtime environment

• How to set up boundary conditions and very basic FUN3D input decks

• How to run a tetrahedral RANS solution for a wing-body VGRID mesh

• How to perform a 2D mixed element airfoil solution using an AFLR3

grid

• Some unhealthy things to watch for and possible remedies

• Overview of visualization output options and examples

42

Don’t hesitate to send questions our way!

fun3d-support@lists.nasa.gov

mailto:fun3d-support@lists.nasa.gov

