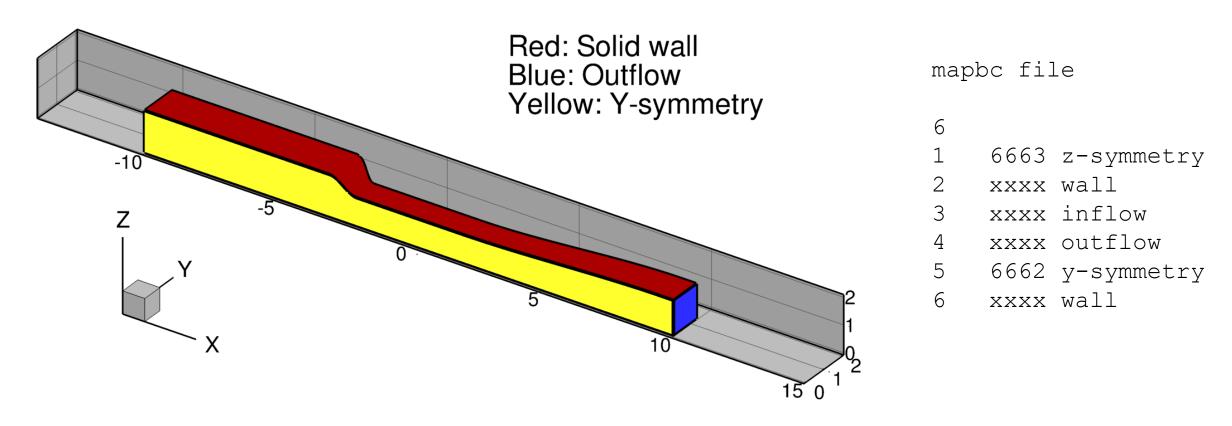
FUN3D v14.0 Training: A Few Attractive Additional Features for Internal Flow Simulations*

Jan Carlson Spring 2023

*Features applicable to external flow simulations as well.

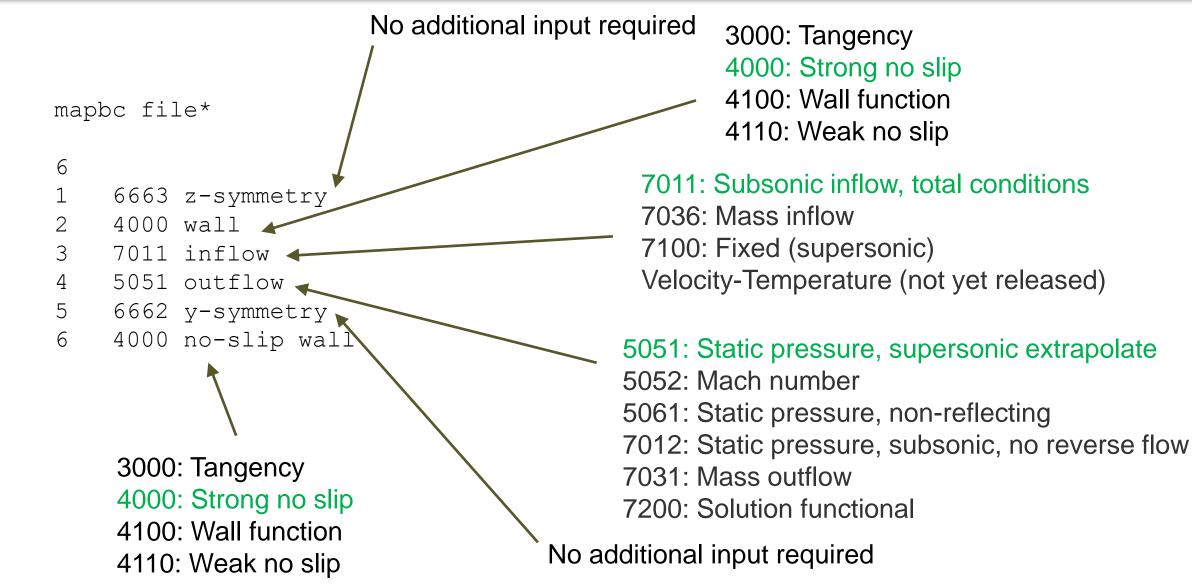
- Typical boundary conditions for internal flows
- Individual component performance tracking
- Back pressure controller
- Porous media modeling
- Three simple "turbofan" engine models

- Simple internal flow
 - Initial solution using fixed boundary conditions
 - Assessing solution development via component tracking
 - Adjusting flow conditions using a back pressure controller
 - Adding honeycomb/heat exchanger modeling using a porous media method
 - Readjusted flow conditions using the controller
- Simple engine model
 - Coupling boundary conditions



- External and mixed external/internal flows
 - Far-field freestream exists, but can be different from the reference
 - $M_{\infty} = M_{ref}$ (notable exception being many rotorcraft simulations)
 - $p_{\infty} = p_{ref} = 1/\gamma$

•
$$p_{t\infty} = p_{\infty} \left(1 + \frac{1}{2}(\gamma - 1)M_{\infty}^2\right)^{\gamma/\gamma - 1}$$


- Internal flows
 - No far-field freestream exists
 - Reference conditions *can* be different than "freestream", but...
 - The pressure field may or may not be uniquely defined (depends upon the choice of boundary conditions)

Perspective View of Converging-Diverging Duct

- ¹/₄-plane symmetric model
- Flow from left to right
- Boundary faces: 1, bottom; 2, top; 3, left; 4, right; 5: this side; 6: that side.

Boundary Condition Types

6

*Not all combinations work or work well.

- With no far-field boundaries, there is no "freestream"
- For most simulations, it is useful to define "freestream/infinity" as the condition existing in the area of interest, e.g., a test section or the area minimum, at any particular moment in time
- When using the total conditions—static pressure inflow-outflow combination for boundary types:
 - The values of the total pressure and temperature at the inflow are determined using the isentropic relations with the reference Mach number (thinking as an external flow), i.e.,
 - $p_t/p_{ref} = f(M_{ref})$
 - $T_t/T_{ref} = f(M_{ref})$
 - The freestream conditions can be modulated to compensate for viscous losses in the flow by using the back pressure at the outflow boundary to achieve $M_{\infty} = M_{ref}$

A complete listing of the fun3d.nml file

fun3d.nml

&project
project_rootname = 'baseline'
/
 &governing_equations
 eqn_type = 'compressible'
 viscous_terms = 'turbulent'
/
 &turbulent_diffusion_models
 turbulence_model = 'sa-neg'
/
 &raw_grid
 grid_format = 'aflr3'
/

&inviscid_flux_method flux_limiter = 'none' ! default flux_construction = 'roe' ! default flux_construction_lhs = 'consistent' ! default is 'vanleer'

```
&nonlinear_solver_parameters
schedule_iteration = 1 1000
schedule_cfl = 1. 50.
schedule_cflturb = 1. 20.
```

&code_run_control
steps = 25000
restart_write_freq = 100
stopping_tolerance = 1.0e-15
restart_read = 'off' ! 'on'

fun3d.nml

```
&global
boundary animation freq = -1. ! output solution on boundaries at job end
&boundary output variables
number of boundaries = -1 ! determine number of boundaries out from boundary list
boundary list = '1-6' ! list of boundaries to be included
              = T ! add these parameters
 ptot
 htot
              = T
 ttot
              = T
q criterion
                 = T
yplus
              = T
&sampling_parameters
number of geometries = 2
 type of geometry(1) = 'line' ! sample the solution between points p1 line and p2 line
       label(1) = 'centerline'
   p1 line(1:3,1) = -1000.0 0.01 0.01
   p2 line(1:3,1) = 1000.0 0.01 0.01
   variable_list(1) = 'x,y,z,rho,u,v,w,p,ptot,ttot,htot,mach' ! extract these parameters
sampling frequency(1) = -1 ! write file at end of run
 type of geometry(2) = 'volume points' ! extract single points of data from the volume
 number of points(2) = 2
sampling frequency(2) = 1 ! sample every iteration/timestep
     points(:,2,1) = -0.5,0.01, 0.01 ! point 1 location
     points(:,2,2) = 0.5,0.01, 0.01 ! point 2 location
   variable list(2) = 'p,ptot,u,mach' ! extract these parameters
        plot(2) = 'serial history' ! format list as ASCII output list of data
```


&component_parameters ! track F & M, as well as, allow_flow_through_forces = T ! parameters such as mass flow, Mach number, list_forces = T ! pressure, and temperature

! track six components in this example, some are boundaries, ! some are slices through the mesh number of components = 6

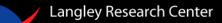
component_name(1) = 'inflow' ! component label component_input(1) = '3' ! inflow boundary boundary number(s) component_count(1) = -1 ! extract count from component_input list component_symmetry(1) = 4 ! quarter-plane symmetric grid

component_name(2) = 'outflow' ! component label component_input(2) = '4' ! outflow boundary number(s) component_count(2) = 1 ! here the count is explicitly set component_symmetry(2) = 4 ! quarter-plane symmetric grid

component_name(3) = 'total' ! combine inflow and outflow for mass flow component_input(3) = '3,4' ! imbalance as a convergence indicator component count(3) = -1

component_count(4) = 1 ! sample the middle of the test component_input(4) = '0' ! section for conditions component_type(4) = 'circle' ! geometry cut will be a circle circle_center(1:3,4) = 0.0, 0.0, 0.0 ! center of circle (x,y,z) circle_normal(1:3,4) = 1.0, 0.0, 0.0 ! direction normal to plane of circle circle_radius(4) = 3.0. ! radius of circle component_name(4) = 'throat' ! component label component symmetry(4) = 4 ! guarter-plane symmetry component_count(5) = 1 ! sample at Sta. -9. component_input(5) = '0' ! component not a boundary component_type(5) = 'circle' circle_center(1:3,5) = -9.0, 0.0, 0.0 circle_normal(1:3,5) = 1.0, 0.0, 0.0 circle_radius(5) = 10.0 component_name(5) = 'Sta.1' ! component label component symmetry(5) = 4

component_count(6) = 1 ! sample at Sta. -7. component_input(6) = '0' ! component not a boundary component_type(6) = 'circle' circle_center(1:3,6) = -7.0, 0.0, 0.0 circle_normal(1:3,6) = 1.0, 0.0, 0.0 circle_radius(6) = 10.0 component_name(6) = 'Sta.2' ! component label component_symmetry(6) = 4 /

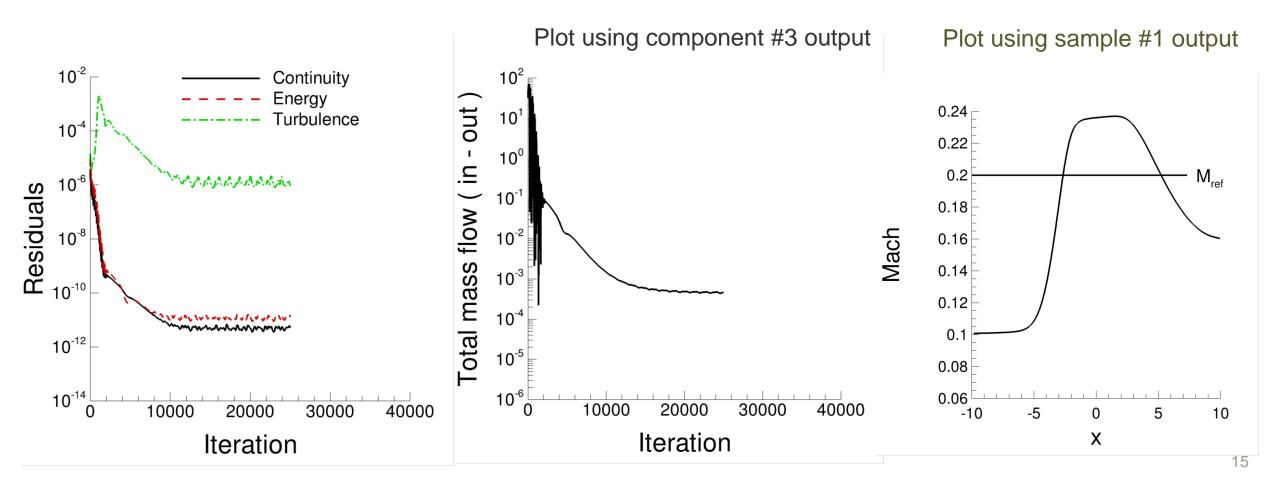

fun3d.nml

```
&reference physical properties
 mach number = 0.2 ! Reference condition
 reynolds number = 5.0e+6 ! 1/[m]
 temperature = 288.15 ! Reference static temperature
 temperature units = 'Kelvin'
 &boundary conditions
         grid units = 'meters'
    wall temperature(2) = -1. ! pseudo-adiabatic condition
     wall temp flag(2) = T
    wall temperature(6) = -1. ! pseudo-adiabatic condition
     wall temp flag(6) = T
  total_pressure_ratio(3) = 1.02828 ! M = 0.2 using (p_t/p) isentropic equation
total temperature ratio(3) = 1.00800 \mid M = 0.2 using (T t/T) isentropic equation
 static pressure ratio(4) = 1.010 ! first guess
! solution functional
 dynamic boundary conditions = .false. ! Set to true to engage the boundary condition controller
boundary functional name(4) = 'back pressure' ! name of boundary condition used by the controller
      field point1(4,:) = 0.0, 0.01, 0.01 ! survey point
    update_frequency(4) = 500
&flow initialization
  number of volumes = 1
  type of volume(1) = 'sphere' ! V-Parr type initialization
    center(1:3,1) = 0.0 0.0 0.0
      radius(1) = 50.0
       rho(1) = 1.00
        u(1) = 0.10
         c(1) = 1.0
```

Useful Files Output From This Simulation

Useful diagnostic files

- [project_name] _hist.dat
 - Solution residuals
 - Simulation total, viscous, and pressure components of forces and moments
- [project_name]_fm_[component_name].dat
 - User defined component force and moment histories
 - "Flow through" area weighted statistics
 - Mass flow, density, velocity, Mach number,
 - Temperature, Total temperature
 - p/p_{ref} , p_{total}/p_{ref} ,
 - RMS temperature (generic gas path only)
 - X-momentum flux, Y-momentum flux, Z-momentum flux
- [project_name]_[boundary number]_controller.dat
 - History file of the PID-controller when the back pressure controller is engaged



- Plots
 - Residual history
 - Mass flow conservation
 - Centerline Mach number
- Components output

First Pass

• First guess on back pressure, $p_{back} = p_{outflow}/p_{ref} = 1.010$, is a little low, pushing the centerline Mach number at X = 0.0 to close to $M_{\infty} = 0.24$. The desired condition is $M_{\infty} = M_{ref} = 0.20$.

[project_name]_stream_info.dat

Component performance summaries

FUN3D 14.0-8c4c24db0e Flow started 02/10/2023 at 09:25:56 with 400 processors.

Component/stream information for project: baseline	a_infinity = 340.29 [m/s]
	= 1116.45 [ft/s]
Iteration = 25000	= 761.22 [miles/hour]
Grid units = meters	u_infinity = <u>68.059</u> [m/s]
l_ref = 1.0000	= 223.290 [ft/s]
	= <u>152.243</u> [miles/hour]
Free stream:	v_ref = 0.00 [m/s]
Reynolds # = 5.0000E+06 per meters	q_infinity = <mark>3044.611</mark> [Pa]
Mach (reference) = 0.200	= 0.442 [lbf/sq.in.]
(farfield) = 0.2000 (Mach_reference * vinf_ratio)	= <u>63.588</u> [lbf/sq.ft.]
cv = 717.633 [J/kg-k]	rho*a^2 infinity = <u>152230.550</u> [Pa]
cp = 1004.686 [J/kg-k]	= 22.079175 [lbf/sq.in.]
gamma = 1.400	= <u>3179.40114</u> [lbf/sq.ft.]
Molecular weight = 28.9645 [kg/kmol]	p,t_infinity = <u>111811.3</u> [Pa]
R (specific) = 287.0530 [J/kg-K]	= <u>16.217</u> [lbf/sq.in.]
Equation type: cal_perf_compress	= 2335.227 [lbf/sq.ft.]
Viscous terms: turbulent	= <u>1.0283</u> [Fun3d]
Chemical kinetics: not applicable	T,t_infinity = <u>290.5</u> [K]
Thermal energy: not applicable	= 522.8 [R]
T_infinity = 288.1 [K]	= 63.1 [F]
= 518.7 [R]	bulk viscosity = <u>1.78940E-05</u> [kg/m-sec]
= 59.0 [F]	= <u>1.0000</u> [non-dimensional]
temperature_ref = 288.1 [K]	
r_infinity = 1.3146 [kg/m^3]	Time step (dt) = 0.0000 [non-dimensional]
= 0.82068E-01 [lbm/ft^3]	(dt/a_inf) = 0.0000 [s]
= 0.25507E-02 [slug/ft^3]	Reference areas :
rho_ref = 0.0000 [kg/m^3]	aerodynamic = 1.0000 mesh ² , 1.000
p_infinity = 108736.107 [Pa]	propulsion = 1.0000 mesh^2, 1.0000
= 15.770839 [lbf/sq.in.]	
= 2271.00081 [lbf/sq.ft.]	Summary of plenum gas properties
	Boundary T_total Avg. Mol. wt R_specific

properties gamma species

[m^2]

1.0000 1.0000 [m^2]

.....

.....

[project_name]_stream_info.dat

inflow

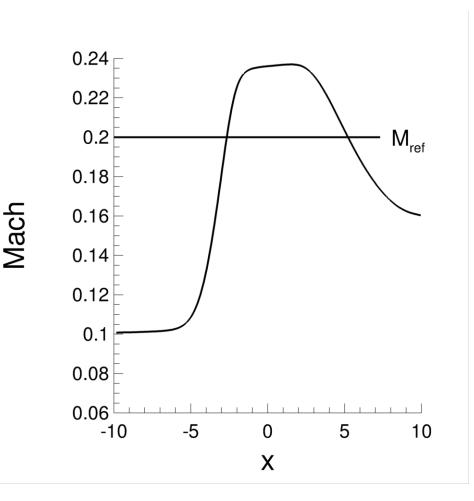
component_type (1) = boundary component_symmetry (1) = 4.0
shape direction $(1) = 0.000 0.000$
shape area = 2.25000E+00 mesh^2, 2.25000E+00 [m^2], 2.42188E+01 [ft^2]
shape area * symmetry = 9.00000E+00 mesh^2, 9.00000E+00 [m^2], 9.68752E+01 [ft^2]
average density = 1.015 [Fun3d], 1.3343 [kg/m^3], 0.08330 [lbm/ft^3]
average u velocity = 0.101 [Fun3d], 34.3469 [m/s], 112.687 [ft/s]
average v velocity = -0.000 [Fun3d], -0.0149 [m/s], -0.049 [ft/s]
average w velocity = -0.000 [Fun3d], -0.0149 [m/s], -0.049 [ft/s]
average static pressure = 0.729 [Fun3d], 111021.870 [Pa], 16.102 [psi]
velocity magnitude = 0.101 [Fun3d], 34.3469 [m/s], 112.687 [ft/s]
local speed of sound = 1.003 [Fun3d], 341.3070 [m/s], 1119.774 [ft/s]
local Mach number = 0.101
average total pressure = 0.734 [Fun3d], 111811.079 [Pa], 16.217 [psi]
minimum total pressure = 0.729 [Fun3d], 111026.497 [Pa], 16.103 [psi]
maximum total pressure = 0.735 [Fun3d], 111931.415 [Pa], 16.234 [psi]
average cp * Tt = 2.5200 [Fun3d], 2.91816E+05 [J/kg]
average cp * T = 2.5149 [Fun3d], 2.91226E+05 [J/kg]
average entropy = 0.34074E-06 [Fun3d], 0.13693E-03 [J/K]
average static temperature = 1.006 [Fun3d], 289.868 [K], 521.762 [R]
average total temperature = 1.008 [Fun3d], 290.455 [K], 522.819 [R]
mass flow = 0.92200 [Fun3d], 412.45502 [kg/s], 909.30767 [lbm/s]
mass flow (corrected) = 0.83886 [Fun3d], 375.26552 [kg/s], 827.31886 [lbm/s]
$: \operatorname{sqrt}(T_{\operatorname{total}} / T_{\operatorname{std.}}) = 1.004$

: p_total / p_std. = 1.103

[project_name]_stream_info.dat


Flow-through

X-momentum flux	=	0.93081	E-01 [Fun3D), <mark>0</mark> .	142E+	- <mark>05</mark> [N]	, 3	185.5	[lbf]
Y-momentum flux	=	-0.40299	E-04 [Fun3D), - <mark>6</mark>	5.13	[N],	-1.37	91	[lbf]
Z-momentum flux	=	-0.40299	<mark>E-04</mark> [Fun3D), - <mark>6</mark>	5.13	[N],	-1.37	91	[lbf]
Delta X-pressure flux	=	0.13514	[Fun3D],	0.20	6E+05	[N],	4624	4.7	[lbf]
Delta Y-pressure flux	=	0.0000	[Fun3D],	0.00	[N],	. 0.	0000	[lbf]	
Delta Z-pressure flux	=	0.0000	[Fun3D],	0.00	[N],	0.	0000	[lbf]	


Totals


X-Viscous forces = 0.93081E-01 [Fun3D], 0.142E+05 [N], 3185.5 [lbf] 4.654 [1/Q infinity]
Y-Viscous forces = -0.40299E-04 [Fun3D], -6.13 [N], -1.3791 [lbf] -0.002 [1/Q infinity]
Z-Viscous forces = -0.40299E-04 [Fun3D], -6.13 [N], -1.3791 [lbf] -0.002 [1/Q infinity]
Delta X-Pressure forces = 0.13514 [Fun3D], 0.206E+05 [N], 4624.7 [lbf] 6.757 [1/Q infinity]
Delta Y-Pressure forces = 0.0000 [Fun3D], 0.00 [N], 0.0000 [lbf] 0.000 [1/Q infinity]
Delta Z-Pressure forces = 0.0000 [Fun3D], 0.00 [N], 0.0000 [lbf] 0.000 [1/Q infinity]
X-vacuum forces = 0.33581E-04 [Fun3D], 5.11 [N], 1.1492 [lbf]
Y-vacuum forces = 0.0000 [Fun3D], 0.00 [N], 0.0000 [lbf]
Z-vacuum forces = 0.0000 [Fun3D], 0.00 [N], 0.0000 [lbf]
X-Total forces = 0.22822 [Fun3D], 0.347E+05 [N], 7810.2 [lbf] 11.411 [1/Q infinity]
Y-Total forces = -0.40299E-04 [Fun3D], -6.13 [N], -1.3791 [lbf] -0.002 [1/Q infinity]
Z-Total forces = -0.40299E-04 [Fun3D], -6.13 [N], -1.3791 [lbf] -0.002 [1/Q infinity]
atan $(F_y / F_x) = -0.10117E-01[deg.]$
atan $(F_z / F_x) = -0.10117E-01[deg.]$
Rotated X-Total forces = 0.22822 [Fun3D], 0.347E+05 [N], 7810.2 [lbf] 11.411 [1/Q infinity]
Rotated Y-Total forces = -0.40299E-04 [Fun3D], -6.13 [N], -1.3791 [lbf] -0.002 [1/Q infinity]
Rotated Z-Total forces = -0.40299E-04 [Fun3D], -6.13 [N], -1.3791 [lbf] -0.002 [1/Q infinity]
atan (F_y,rot / F_x,rot) = -0.10117E-01[deg.]
atan (F_z,rot / F_x,rot) = -0.10117E-01[deg.]

Total force=0.22822[Fun3D],0.347E+05 [N],7810.2[lbf]11.411 [1/Q infinity]Total vacuum force=0.93115E-01 [Fun3D],0.142E+05 [N],3186.6[lbf]4.656 [1/Q infinity]

- The freestream Mach number is high due to a low value of the back pressure, p_{back} = p_{outflow}/p_{ref} = 1.010, being a bit low
- Tactics to bring $M_{\rm \infty}$ down to $M_{\rm ref}$
 - Manual trial and error
 - This often is the more expedient course of action for simulations with long or unknown response times
 - PID-control process
 - Takes some trial and error to determine the controller coefficients for new problems
 - Allows for automation of a series of simulations

Engage The Controller: update #1 fun3d.nml

Set dynamic_boundary_conditions to .true. in the fun3d.nml file

Edit the [project_name].mapbc file

mapbc file

6

1 6663 z-symmetry

2 4000 wall

3 7011 inflow

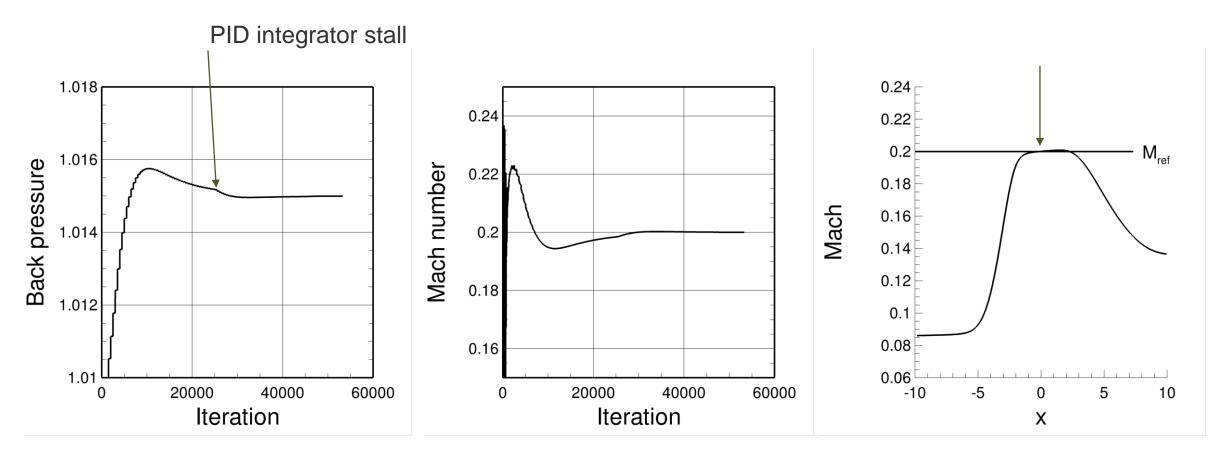
4 7200 outflow solution functional

5 6662 y-symmetry

6 4000 no-slip wall

Create a new, separate namelist file: controller.nml

&tunnel_control



- Back pressure history
- Test section Mach number history
- Centerline Mach number

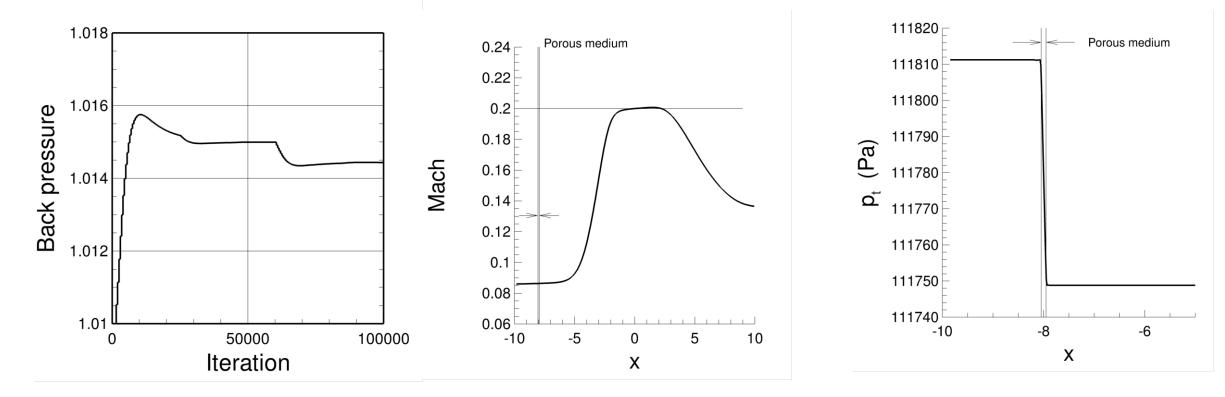
- Back pressure and Mach number output from [project_name]_[boundary]_controller.dat
- Centerline plot using the same sampling output file as previously discussed

Example of Porous Media Modeling

- Add a screen/honeycomb model in the upstream section
- Keep the back pressure controller active
- Examine back pressure history and centerline Mach number
- Plot centerline total pressure

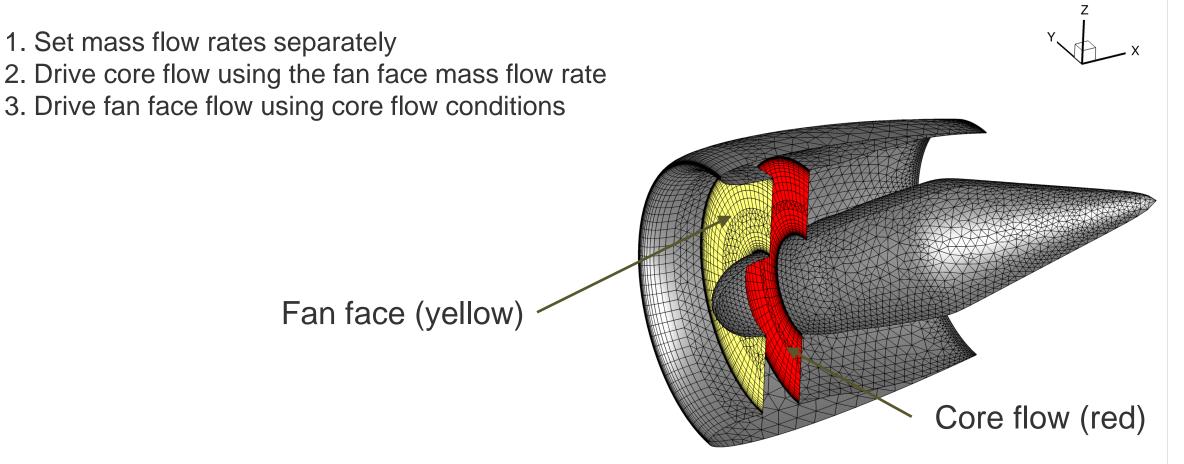
Honeycomb Model: update #2 fun3d.nml

- Add a model of a honeycomb in the upstream portion of the tunnel
- &filters is part of the fun3d.nml file


&filters

```
passive filter flag = T ! activate porous media model
     number of fences = 1 ! list fences (volumetric) first
                       = 1.0 ! default
             gain(1)
     permeability(1)
                       = 1.0E+35 ! essentially no viscous part
   fence thickness(1) = 0.1 ! meters
 ! pressure loss factor (continuity, x-mom, y-mom, z-mom)
pressure loss factor(1,:) = 0.0 1.0 0. 0. ! [1/m]
     fence shape(1)
                       = 'hex' !
        corners(1, 1, :) = -8.05
                                        0.00
                                 0.0
        corners(1, 2, :) = -7.95
                                        0.00
                                 0.0
        corners(1, 3, :) = -7.95
                                 1.50
                                       0.00
        corners(1, 4, :) = -8.05
                                 1.50
                                       0.00
        corners(1, 5, :) = -8.05 0.0
                                       1.50
        corners(1, 6, :) = -7.95
                                 0.0
                                       1.50
        corners(1, 7, :) = -7.95
                                      1.50
                                 1.50
        corners(1, 8, :) = -8.05
                                  1.50
                                       1.50
```

/


- To maintain the requested centerline Mach number, the back pressure must shift to compensate for the total pressure loss incurred by porous medium (honeycomb) model
- In this example, approximately 60 Pa total pressure drop simulated. The pressure loss is a function of the local dynamic pressure, $\Delta p_t / \Delta x = C q_{local}$

Three Simple Engine Simulations

Matching mass flow rates for a simple single stream engine

Engine 1: Set mass flow rates separately

• Fan – boundary condition number 7031

Langley Research Center

- Core boundary condition number 7036
- When using these boundary conditions, the input should be in units of grid units squared.
- From the reference conditions: $\rho_{ref} c_{ref} = 106.84 \text{ kg/s-m}^2$
- Suppose the target mass flow rate is $\dot{m}_{target} = 2.183$ kg/s
- To convert to FUN3D units: $\dot{m}_{target} / \rho_{ref} c_{ref} = 2.0435e-2 1/m^2$

= 31.675 1/inch^2

Configure boundary condition namelist

```
&boundary_conditions
    grid_units = 'inches'
    massflow(1) = 31.675 ! core
    massflow(2) = 31.675 ! fan
    wall_temp_flag(3) = .true. ! no-slip
    wall_temperature(3) = -1.0
/
```

fun3d.nml for Engine 1

&global volume_animation_freq = -1

boundary_animation_freq = -1 /

&reference_physical_properties
mach_number = 0.72
reynolds_number = 136721 ! 1/[in]
temperature = 392.4
temperature_units = 'Rankine'
/

&governing_equations viscous_terms = 'turbulent' /

&turbulent_diffusion_models turbulence_model = 'sa-neg' reynolds_stress_model = 'qcr2020' use_diff_element = T

&spalart turbinf = 3.0 /

&debug weighted_lsq_diffusion_m = .true. weighted_lsq_diffusion_t = .true. /

&code_run_control steps = 50000 restart_read = 'off' stopping_tolerance = 1.0e-15 &linear_solver_parameters linear_projection = .false. /

&nonlinear_solver_parameters
time_accuracy = 'steady'
schedule_iteration = 1 250
schedule_cfl = 1. 50.
schedule_cflturb = 1. 20.
/

&inviscid_flux_method flux_limiter = 'none' flux_construction = 'roe' /

&boundary_conditions grid_units = 'inches' massflow(1) = 31.675 ! core massflow(2) = 31.675 ! fan wall_temp_flag(3) = .true. ! no-slip wall_temperature(3) = -1.0 /

&component_parameters

allow_flow_through_forces = T number_of_components = 5

component_count(1) = 1
component_input(1) = '2'
component_name(1) = 'inlet'
component_symmetry(1) = 2.

28

fun3d.nml for Engine 1

component_count(2) = 1
component_input(2) = '1'
component_name(2) = 'exit'
component_symmetry(2) = 2.

component_count(3) = 2
component_input(3) = '1,2'
component_name(3) = 'balance'
component_symmetry(3) = 2.

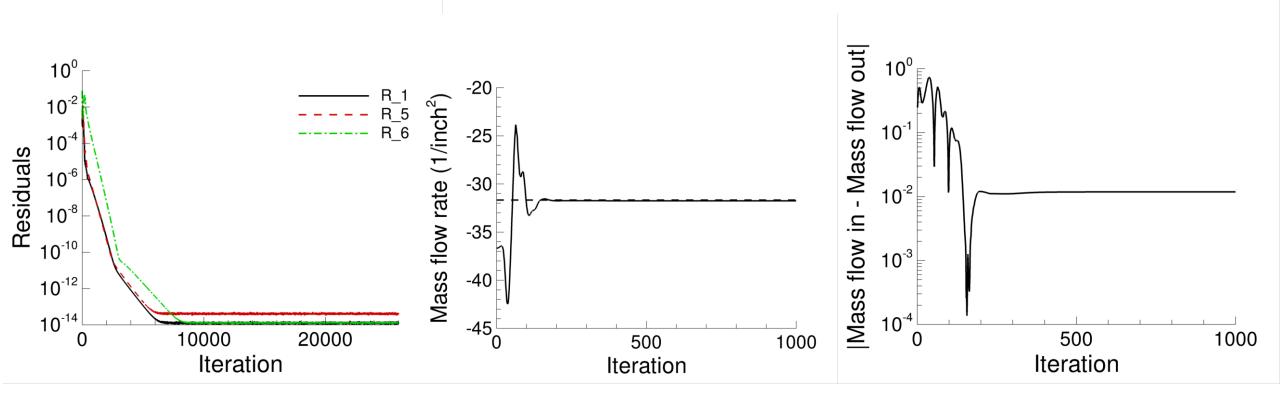
component_count(4) = 3
component_input(4) = '1,2,3'
component_name(4) = 'total'
component_symmetry(4) = 2.

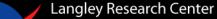
component_count(5) = 1
component_input(5) = '3'
component_name(5) = 'nacelle'
component_symmetry(5) = 2.

&volume output variables export to = 'tec' х = .true. = .true. У = .true. z primitive variables = .true. mach = .true. ptot = .true. ttot = .true.

&boundary_output_variables number_of_boundaries = 5 boundary_list = '1-5' primitive_variables = .true. mach = .true. ttot = .true. ptot = .true. uavg = .true. vavg = .true. wavg = .true. /

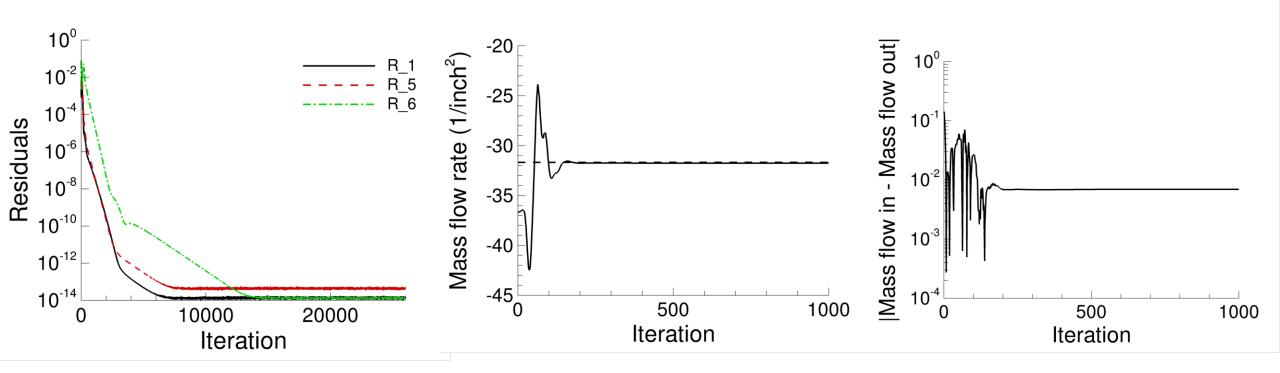
&project project_rootname = 'engine_only' /


&raw_grid grid_format = 'aflr3' data_format = 'stream' patch_lumping = 'family' /


&force_moment_integ_properties
 area_reference = 95.0
 x_moment_center = 0.0
 y_moment_center = 0.0
 z_moment_center = 0.0
/

Engine 1: Solution convergence

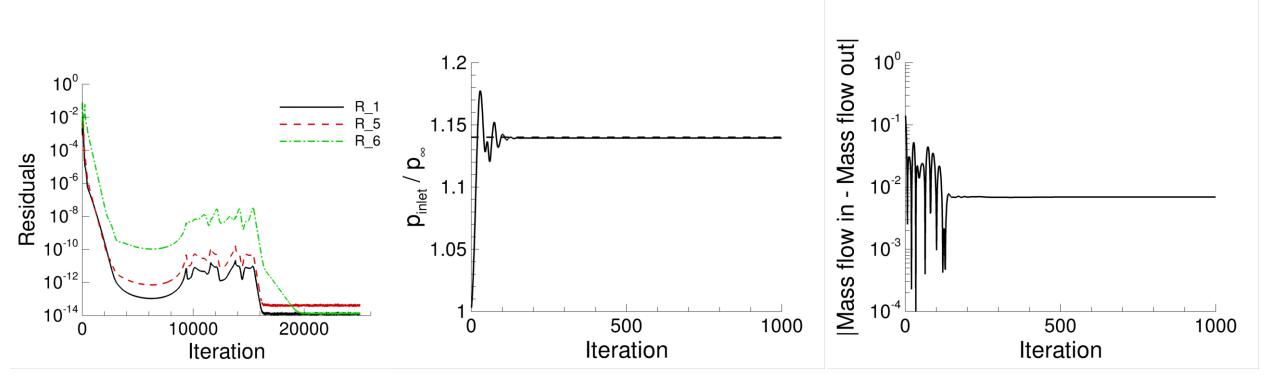
- Iterative convergence
- Mass flow rate achieved $\approx 0.2\%$
- Inlet and core flow balanced $\approx 0.6\%$




Engine 2a: Drive core flow via the fan face flow

- Fan boundary condition number 7031
- Core boundary condition number 7036
- Fan boundary condition the same as Engine1
- No need to set core boundary condition value
- Configure mass flow rate matching

- Iterative convergence
- Mass flow rate achieved $\approx 0.2\%$
- Inlet and core flow balanced $\approx 0.3\%$

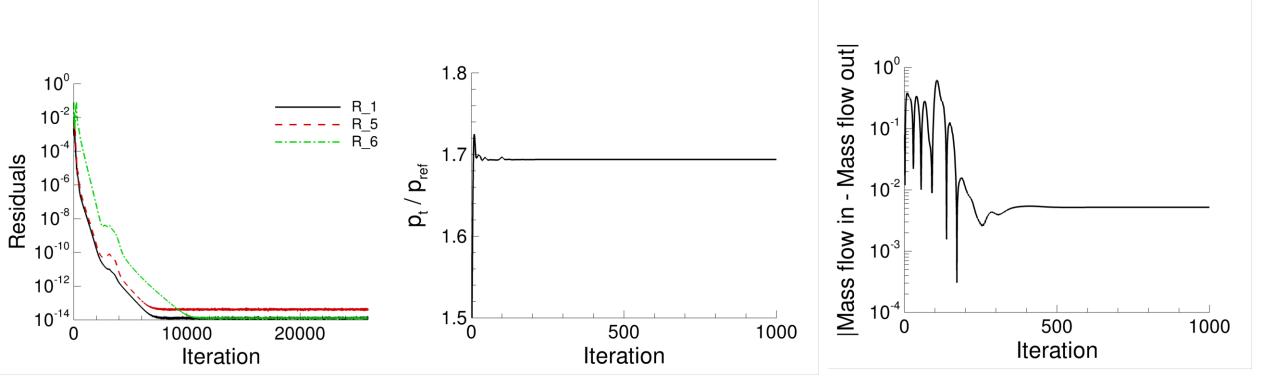


Engine 2b: Drive core flow via the fan face flow

- Fan boundary condition number 7012
- Core boundary condition number 7036
- Fan boundary condition the same as Engine1
- No need to set core boundary condition value
- Configure mass flow rate matching

Engine 2b: Solution convergence

- Iterative convergence
- Static pressure ratio achieved $\approx 0.05\%$
- Inlet and core flow balanced $\approx 0.3\%$



Engine 3: Drive fan flow via the core flow

- Fan boundary condition number 7031
- Core boundary condition number 7011
- Set the core total pressure and temperature
- Configure mass flow rate matching

Engine 3: Solution convergence

- Iterative convergence
- Total pressure ratio achieved $\approx 0.05\%$
- Inlet and core flow balanced $\approx 0.3\%$

- Sketched out of some boundary conditions that can be used for internal flows
- F & M and flow tracking using component parameters
- An example using the back pressure controller
- An example of using the porous media model
- Discussed three simple "turbofan" engine models

- "Inflow/Outflow Boundary Conditions with Application to FUN3D," NASA-TM-2011-208444
- "Boundary Condition Study for the Juncture Flow Experiment in the NASA Langley 14x22-Foot Subsonic Wind Tunnel," AIAA-2017-4126
- "FUN3D and USM3D Analysis of the Propulsion Aerodynamic Workshop 2018 S-duct Test Case," AIAA-2019-3848
- "Setting Boundary Conditions For Slotted Throat Wind Tunnels Using Calorically Imperfect Gas Assumptions," AIAA-2022-0807