FUN3D v12.4 Training

Session 5: Turbulent Flow Simulations

Jan Carlson

http://fun3d.larc.nasa.gov

Learning Goals

- Discuss some broad guidelines for turbulence models.
- List of available turbulence models (calorically perfect gas)
- Discuss the typical namelist parameters used.
- Show some sections of fun3d.nml namelists used for turbulent flow simulations.
- The detailed theory of turbulence models will not be covered in this session.
- Pros and cons of each model will not be discussed either due to time limitations.
 - All of the models will likely work some of the time.
 - But none of the models will work all of the time.

The List Steady flow simulations

- One-equation
 - Spalart-Allmaras (sa), Recherche Aerospatiale, No. 1, 1994.
 - Negative Spalart-Allmaras (sa-neg), ICCFD7-1902, 2012.
- Two-equation
 - Menter-SST (sst), AIAAJ (32), 1994.
 - Menter-SST with vorticity source term (sst-v), NASA-TM-103975, 1992.
 - Menter-SST from 2003 (sst-2003), Turbulence, Heat and Mass Transfer 4.
 - Wilcox k-omega (wilcox2006), AIAAJ (46), 2008.
 - Wilcox k-omega (wilcox1998), Turbulence Modeling for CFD, 1998.
 - Wilcox k-omega (wilcox1988), AIAAJ (26), 1988.
 - Nonlinear k-omega (EASMko2003-S), J Aircraft (38), 2001.

The List Steady flow simulations

- Four-equation
 - Langtry-Menter transition model (gamma-ret-sst), AIAA-2005-0522.
- Seven-equation
 - Wilcox Stress-omega RSM (WilcoxRSM-w2006), Turbulence Modeling for CFD, 2006.

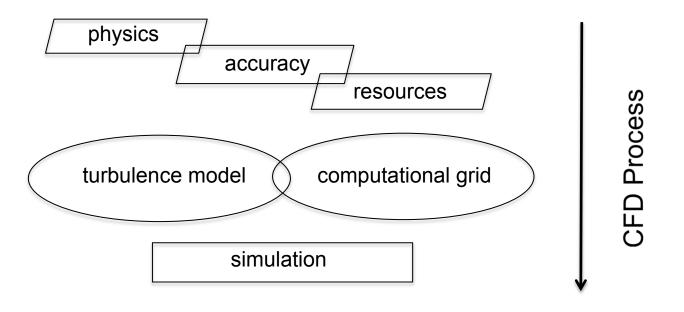
Other references and detailed explanations of the models can be found at the turbulence modeling website:

http://turbmodels.larc.nasa.gov

The List

Time accurate flow simulations

- One-equation
 - Detached eddy simulations, (des, des-neg), TCFD (20), 2006.
- Two-equation
 - Hybrid RANS-LES (hrles), AIAA-2008-3854.



General usage guidelines

Simulations of turbulence flows 'decisions' based on:

- Flow physics
 - to characterize the flow features (turbulence, high gradients, etc.)
- Computational requirements
 - to evaluate the grid's resolution required for a certain accuracy

http://www.stanford.edu/class/me469b/handouts/turbulence.pdf, slide 51

General usage guidelines

- Appropriate spacing of the mesh on viscous solid walls must be used.
 - Generally accepted spacing is between .1 and 2.5 wall units.
 - Many problems may have multiple scales, so no one physical distance for the first node spacing will suit the whole problem.
- Generate a mesh with appropriate resolution to model the problem (within the limits of the available computational resources).
 - Try not to expand the mesh spacing too quickly away from a viscous wall.
 - Typically the more curvature in the physical geometry, the higher concentration of mesh.
- One-equation models like Spalart-Allmaras tend to be very robust, cover a very wide range of flow situations and are a compromise between simplicity and accuracy.
- Multi-equation models like the Menter-SST or RSM require more computational resources, but are more physically complete and can add more accuracy to the solution...though YMMV.

General usage guidelines

- Solutions to a steady state are adequate for many problems.
- Depending upon the flow physics of the simulation, though, timeaccurate solutions may be required.

Namelists

fun3d.nml

For turbulent flow simulations, depending upon the turbulence model and problem the following namelists within fun3d.nml are used.

- &governing_equations
- &turbulent_diffusion_models
- &spalart
- &gammaretsst

Spalart-Allmaras

fun3d.nml

```
&governing_equations
  eqn_type = 'cal_per_compress'
  viscous_terms = 'turbulent'
/
&turbulent_diffusion_models
  turbulence_model ='sa' !default
! current 1-eqn options: 'sa-neg', 'des','des-neg'
  turb_compress_model ='none'
! current options: 'ssz' ! (Ref. AIAA-95-0863, Shur et al.)
/
```


Spalart-Allmaras

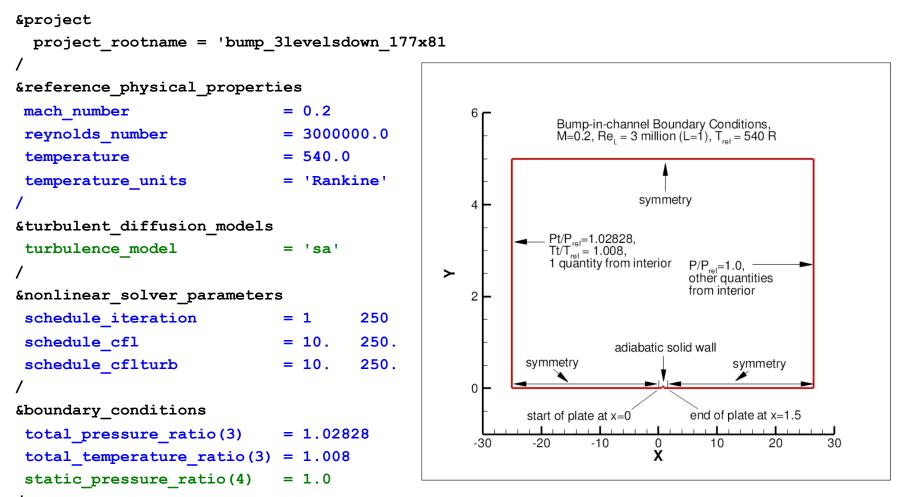
fun3d.nml

```
&spalart
turbinf = 3.0
  ! free stream value for spalart model
ddes = .false.
  ! for activating delayed DES model
ddes mod1 = .false.
  ! Mod to DDES, Ref. AIAA Paper 2010-4001
       = .false.
sarc
  ! Ref. AIAAJ, Vol.38, No.5, 2000, pp.784-792.
sarc cr3 = 0.6
  ! constant associated with SARC model
```


Menter-SST

fun3d.nml

```
&governing equations
  eqn_type = 'cal per compress'
  viscous terms = 'turbulent'
&turbulent diffusion models
 turbulence model ='sst'
!other options: 'sst-v', 'sst-2003', 'gamma-ret-sst'
 'hrles'
&gammaretsst
 set k inf w turb intsty percnt = 0.2 ! (percent)
 set w inf w eddyviscosity = 1.0 ! (nondim)
 transition 4eqn on
                                = .true.
   ! toggles transition
```



Sample fun3d.nml

Subsonic bump using S-A

http://turbmodels.larc.nasa.gov/bump.html

Sample fun3d.nml

Time accurate simulation using a S-A based DES model

```
&turbulent_diffusion_models
    turbulence_model = 'des'
/
```

```
&nonlinear_solver_parameters
    time_accuracy = '2ndorderOPT'
    time_step_nondim = 0.10
    pseudo_time_stepping = 'on'
    subiterations = 10
    schedule_iteration = 1 100
    schedule_cfl = 5. 5.
    schedule_cflturb = 5. 5
```

Details of running a time accurate simulations are covered in Session 12.

EOF

Turbulent flow simulations with Fun3D

Several turbulence model options are available in V12.4

Namelist nomenclature has been discussed.

Caveats:

Meshing and turbulence model decisions are highly dependent on the degree of fidelity and accuracy desired.

The desired aspects, though, may not fit inside the resources available.

