FUN3D v13.4 Training Session 5: Visualization and Component Force and Moment Tracking Jan Carlson

Learning Goals

What we will cover

- Visualization overview (&sampling_parameters)
- Component force and moment tracking (&component_parameters)

Visualization Learning Goals

- What this will teach you
 - Run-time flow visualization output
 - Output on boundary surfaces
 - Output on user-specified "sampling" surfaces within the volume
 - Output of full volume data
 - Output generated by "slicing" boundary data "sectional" output
- What you will not learn
 - The plethora of output options available for visualization
 - Tecplot usage
- What should you already know
 - Basic flow solver operation and control

User Inputs for FUN3D

Input deck fun3d.nml

- The user is required to supply an input deck for FUN3D named fun3d.nml (fixed name)
- &sampling_parameters
- &sampling_output
- &component_parameters

List of Key Input/Output Files

- Input
 - Grid files (prefixed with project name, suffixes depend on grid format)
 - fun3d.nml
- Output
 - [project_name].grid_info
 - [project_name].forces
 - [project_name]_hist.dat
 - [project_name].flow
 - [project_name]_tec_sampling_geom[n].dat
 - [project_name]_fm_[component_name].dat
 - [project_name]_stream_info.dat

Background

- Datasets are getting simply too large to post-process in a traditional manner
- FUN3D allows visualization data to be generated as the solver is running
 - User specified frequency and output type
 - User specified output variables from a fairly extensive list
- Majority of output options are Tecplot-based
 - Volume output may also be generated in Fieldview, CGNS formats
- Note FUN3D also supports true insitu visualization at scale using the DoE VisIt package; however, this is not covered here
 - Intelligent Light is currently integrating VisIt's insitu capabilities with Fieldview

Selected Visualization Output Examples

- All of the visualization outputs require similar namelist-specified "frequency" N to activate:
 - In all cases, N = 0, 1, 2, 3, ...
 - N = 0 generates no output
 - N < 0 generates output only at the *end* of the run typically used for steady-state cases. The actual value of N is ignored
 - N > 0 generates output every Nth time step typically used to generate animation for unsteady flows; can also be used to observe how a steady flow converges

- Customizable output variables (except sliced boundary data):
 - Most variables are the same between the boundary surface, sampling and volume output options; boundary surface has a few extra
 - See manual for lists of all available variables
 - Default variables always include x, y, z, and the "primitive" flow variables u, v, w, and p (plus density if compressible)
 - Several "shortcut" variables: e.g., primitive_variables = rho, u, v, w, p
 - Must explicitly turn off the default variables if you don't want them (e.g., primitive_variables = .false.)
 - Variable selection for each co-processing option done with a different namelist to allow "mix and match"

 For boundary surface output, default is all solid boundaries in 3D and one y=const plane in 2D; alternate output boundaries selected with, e.g.:

```
&boundary_output_variables
number_of_boundaries = 3
boundary_list = '3,5,9' ! blanks OK as
delimiter too: '3 5 9'
! dashes OK as delimiter
too: '3-9'
```

- If you already have a converged solution and don't want to advance the solution any further, can do a "pass through" run:
 - set steps = 0 in &code_run_control
 - You must have a restart file ([project_name].flow)
 - Run the solver with the appropriate namelist input to get desired output
 - [project_name].flow will remain unaltered after completion

- Sampling output requires additional data to describe the desired sampling surface(s)
 - Specified in namelist &sampling_parameters
 - Surfaces may be planes, quadrilaterals or circles of arbitrary orientation, or may be spheres or boxes
 - Isosurfaces and schlierens also available
 - Points may also be sampled (special format for time histories, acoustics)
 - See manual for complete info
- Sliced boundary surface output requires additional data to describe the desired slice section(s)
 - Specified in namelist &slice_data
 - Always / only outputs x, y, z, C_p, C_{fx}, C_{fy}, C_{fz}
 - User specifies which (solid) boundaries to slice, and where
 - See manual for complete info
- Output files will be ASCII unless you have built FUN3D against the Tecplot library (exception: sliced boundary data is always ASCII)

- ASCII files have dat extension ٠
- Binary files have (.plt | .szplt) extension smaller files; load into Tecplot faster
- Boundary output file naming convention (T = time step counter): ٠
 - $[project_name]_tec_boundary_timestep[T](.dat|.plt|.szplt) if N > 0$
 - [project name] tec boundary(.dat|.plt|.szplt) if N < 0
- Volume output file naming convention (note: 1 file per processor P; for a single ٠ file, Fun3D needs to be linked with TecIO-MPI, a parallel version of tecio).
 - [project name] part[P] tec volume timestep[T](.dat|.plt|.szplt) if N > 0
 - [project_name]_part[P]_tec_volume(.dat|.plt|.szplt) if N < 0
- Sampling output file naming convention (one file per sampling geometry G):
 - [project_name]_tec_sampling_geom[G]_timestep[T](.dat|.plt|.szplt) if N > 0
 - [project name] tec sampling geom[G](.dat|.plt|.szplt) if N < 0</p>

Boundary Output Visualization Example

```
&global
 boundary animation freq = -1 Dump boundary vis at end of run
&boundary output variables
 primitive variables = .false.
                      = .true.
 ср
 yplus
                      = .true.
```

Turn off rho, u, v, w, p Turn on C_p Turn on y⁺

Sampling Visualization Example

```
&sampling parameters
 number of geometries
                        = 3
 type of geometry(1)
                        = 'plane'
 plane center(2,1)
                        = -234.243
 plane normal(2,1)
                        = 1.0
  sampling frequency(1) = -1
  type of geometry(2)
                        = 'sphere'
  sphere center(:,2)
  sphere radius(2)
                        = 20.0
  sampling frequency(2) = -1
  type of geometry(3)
                        = 'isosurface'
 isosurf variable(3)
                        = 'mach'
  isosurf value(3)
                        = 1.00
  sampling frequency(3) = -1
&sampling output variables
 primitive variables = .false.
 mach
                      = .true.
```

= 3Want 3 sampling geometries= 'plane'First geometry is a plane= -234.243Plane y-coordinate= 1.0Plane y-normal= -1Write at end of run= 'sphere'Second geometry is a sphere= 74.9,-107.7,50.Center x,y-z-coordinates= 20.0Sphere radius= -1Write at end of run= 'isosurface'Third geometry is an isosurface= 'mach'Isosurface will be based on Mach number= 1.00Isosurface defined by Mach=1= -1Write at end of run

Turn off rho, u, v, w, p Turn on Mach number

Volume Visualization Example

&global

```
volume_animation_freq = -1 Dump output at end of run
&volume output variables
  export_to='tecplot' Writes results to Tecplot file
            ! 'tec'
                         Writes results to a single ASCII Tecplot file
```


15

Slicing Visualization Example

```
&global
   slice_freq = -1
/
&slice_data
   nslices = 1
   slice_location(1) = -234.243
/
```

Dump output at end of run

```
Perform one slice
Coordinate of slice
```


Troubleshooting/FAQ

- I can see what look like ragged dark lines on sampling surfaces and volume data – what is that?
 - Duplicate information at partition boundaries is not removed; if surface is not completely opaque, double plotting locally doubles the opaqueness (duplicate info *is* removed from boundary surface output)
 - Turn off transparency in Tecplot
- When I dump out volume plot files in Tecplot format, I get a file for every processor is there a way around this?
 - Not currently. However, Tecplot can be easily told to load all of the files at once without having to individually select them all.
 - The team is working with Tecplot to develop their next generation of I/O API's, with special focus on massively parallel needs
 - Alternative: switch to Fieldview or CGNS output, which uses a single file

Component Force Tracking

Component Tracking Learning Goals

- What this will teach you
 - Namelist setup for grouping boundaries to get run-time forces and moments (F&M)
 - Solid boundary: skin friction and pressure force
 - Flow-through boundary/surface: momentum flux, pressure force, mass flow, average density, velocity, static and total pressure, static and total temperature, Mach number...
 - Output (Tecplot) and auxiliary diagnostic output
- What you will not learn
 - Tecplot usage
- What should you already know
 - Basic flow solver operation and control

Background

- [project_name]_hist.dat tracks the summation of all viscous solid walls
- [project_name].forces provides *final* force and moment for each boundary
- Need for calculating a time history of flow-through surface characteristics, such as average pressure, density, mass-flow, momentum flux, etc
- Need for mixing and matching different combinations of solid boundaries and flow-through surfaces for installation performance and propulsion-airframe-integration (PAI) studies.
- Need for extra diagnostic and analysis information for propulsion simulations: discharge coefficient, thrust ratio, ARP 1420, etc.

Files

Input deck: fun3d.nml

- The user is required to supply an input deck for FUN3D named fun3d.nml (fixed name)
- &sampling_parameters
- &sampling_output
- &component_parameters

Output

- [project_name]_fm_[component_name].dat
- [project_name]_stream_info.dat

- Multiple length scales
- Multiple time scales
- Monitor several aspects of the tunnel and model F&M
- Say I want to monitor mass flow, mass flow conservation and model lift and drag to evaluate solution convergence.

\$ c	at mit.m a	apbc	
1	3 aflr3/u	ıgrid	sio fun3d bc types
	1	4000	Inlet_Front
	2	4000	Inlet_Contraction
	3	4000	Test_Section
	4	4000	Diffuser_Part1
	5	4000	Diffuser_Part2
	6	4000	Diffuser_Extension
	7	4000	Fuselage
	8	4000	PortWing
	9	4000	StarboardWing
1	0	4000	Sting
1	1	4000	Mast
1	2	7011	BC_Inlet
1	3	5051	Outflow

&boundary_conditions

```
total_pressure_ratio(12) = 1.0252288
total_temperature_ratio(12) = 1.0071442
static_pressure_ratio(13) = 1.0181197
grid_units = 'feet'
```

```
&component parameters
    allow flow through forces = .true.
    list forces = .true.
    number of components = 4
    component count(1) = 1
    component input(1) = '12'
    component name(1) = 'Inflow'
    component count(2) = 1
    component input(2) = '13'
    component name(2) = 'Outflow'
    component count(3) = 2
    component input(3) = '12,13'
    component name(3) = 'Total'
    component count(4) = -1
    component input(4) = '7,8,9'
```

```
/
```

This will result in 4 ASCII Tecplot force and moment history files:

component name(4) = 'model'

mit_fm_inflow.dat
mit_fm_outflow.dat
mit_fm_total.dat
mit_fm_model.dat

1

&boundary_conditions

```
total_pressure_ratio(12) = 1.0252288
total_temperature_ratio(12) = 1.0071442
static_pressure_ratio(13) = 1.0181197
grid_units = 'feet'
```

```
&component_parameters
    allow_flow_through_forces = .true.
    list_forces = .true.
    number of components = 4
```

```
component_count(1) = 1
component_input(1) = '12'
component_name(1) = 'Inflow'
```

```
component_count(2) = 1
component_input(2) = '13'
component_name(2) = 'Outflow'
```

```
component_count(3) = 2
component_input(3) = '12,13'
component_name(3) = 'Total'
```

```
component_count(4) = -1
component_input(4) = '7,8,9'
component_name(4) = 'model'
```

```
/
```

This will result in 4 ASCII Tecplot force and moment history files:

```
mit_fm_inflow.dat
mit_fm_outflow.dat
mit_fm_total.dat
mit_fm_model.dat
```


&component parameters

Ş	cat	mit.mapbc	
	13	aflr3/ugrid	sio fun3d bc types
	1	4000	Inlet_Front
	2	4000	Inlet_Contraction
	3	4000	Test_Section
	4	4000	Diffuser_Part1
	5	4000	Diffuser_Part2
	6	4000	Diffuser_Extension
	7	4000	Fuselage
	8	4000	PortWing
	9	4000	StarboardWing
	10	4000	Sting
	11	4000	Mast
	12	7011	BC_Inlet
	13	5051	Outflow

&boundary_conditions

```
total_pressure_ratio(12) = 1.0252288
total_temperature_ratio(12) = 1.0071442
static_pressure_ratio(13) = 1.0181197
grid_units = 'feet'
```

This will result in 4 ASCII Tecplot force and moment history files:

allow flow through forces = .true.

= .true.

list forces

number of components = 4

component name(1) = 'Inflow'

component name(2) = 'Outflow'

component_input(3) = '12,13'
component name(3) = 'Total'

component_input(4) = '7,8,9'
component name(4) = 'model'

component_count(1) = 1
component input(1) = '12'

component_count(2) = 1
component input(2) = '13'

component count(3) = 2

component count(4) = -1

```
mit_fm_inflow.dat
mit_fm_outflow.dat
mit_fm_total.dat
mit_fm_model.dat
```


	& Comp
<pre>\$ cat mit.mapbc</pre>	a
13 aflr3/ugrid	sio fun3d bc types 1
1 4000	Inlet_Front n
2 4000	Inlet_Contraction
3 4000	Test_Section c
4 4000	Diffuser_Part1 🦯
5 4000	Diffuser_Part2
6 4000	Diffuser_Extension c
7 4000	Fuselage
8 4000	PortWing
9 4000	StarboardWing
10 4000	Sting c
11 4000	Mast
12 7011	BC_Inlet
13 5051	Outflow

&boundary_conditions

```
total_pressure_ratio(12) = 1.0252288
total_temperature_ratio(12) = 1.0071442
static_pressure_ratio(13) = 1.0181197
grid_units = 'feet'
```

```
component_parameters
   allow_flow_through_forces = .true.
   list_forces = .true.
   number_of_components = 4
```

```
component_count(1) = 1
component_input(1) = '12'
component_name(1) = 'Inflow'
```

```
component_count(2) = 1
component_input(2) = '13'
component_name(2) = 'Outflow'
```

```
component_count(3) = 2
component_input(3) = '12,13'
component_name(3) = 'Total'
```

```
component_count(4) = -1
component_input(4) = '7,8,9'
component_name(4) = 'model'
```

/

This will result in 4 ASCII Tecplot force and moment history files:

mit_fm_inflow.dat
mit_fm_outflow.dat
mit_fm_total.dat
mit_fm_model.dat

26

Example 1 – Model in Tunnel mit_fm_inflow.dat

Example 1 – Model in Tunnel mit_fm_total.dat

Example 1 – Model in Tunnel mit_fm_model.dat

Example 1 – Model in Tunnel mit_stream_info.dat

Contains averaged flow data and forces and moments in mesh, MKS and Imperial units.

Component/stream information for mit

Reynolds #	=	1.3129E+06	
Mach	=	0.19	
Iteration	=	175000	
grid_units	=	feet	
Tref	=	519.9	[R]
T_infinity	=	288.8	[K]
	=	519.9	[R]
r_infinity	=	1.1992	[kg/m^3]
	=	0.0749	[lbm/ft^3]
	=	0.002327	[slug/ft^3]
p_infinity	=	99431.9	[Pa]
	=	14.421	[lbf/sq.in.]
	=	2076.678	[lbf/sq.ft.]
a_infinity	=	340.70	[m/s]
	=	1117.79	[ft/s]
u_infinity	=	64.39	[m/s]
	=	211.26	[ft/s]
q_infinity	=	2486.3	[Pa]
	=	0.4	[lbf/sq.in.]
	=	51.9	[lbf/sq.ft.]
pt ref	=	101940.4	[Pa]
Tt ref	=	290.9	[K]

Example 1 – Model in Tunnel mit_stream_info.dat

Component 1 information:

Inflow

component_type (1)	= bou	ndary					
component_symmetry (1)	=	1.0					
shape direction (1)	=	0.000 0	.000 0.000)			
shape area	=	2838.48925	mesh^2,	263.70428	[m^2],	2838.48925	[ft^2]
shape area * symmetry	=	2838.48925	mesh^2,	263.70428	[m^2],	2838.48925	[ft^2]
average density	=	1.018	[Fun3d],	1.2204	[kg/m^3] ,	0.07619	[lbm/ft^3]
average velocity	=	0.022	[Fun3d],	7.4169	[m/s],	24.334	[ft/s]
average u velocity	=	0.022	[Fun3d],	7.4170	[m/s],	24.334	[ft/s]
average v velocity	=	-0.000	[Fun3d],	-0.0177	[m/s] ,	-0.058	[ft/s]
average w velocity	=	0.000	[Fun3d],	0.0160	[m/s] ,	0.052	[ft/s]
average static pressure	=	0.732	[Fun3d],	101902.920	[Pa] ,	14.780	[psi]
average total pressure	=	0.732	[Fun3d],	101937.303	[Pa] ,	14.785	[psi]
minimum total pressure	=	0.732	[Fun3d],	101865.816	[Pa],	14.774	[psi]
maximum total pressure	=	0.733	[Fun3d],	101997.086	[Pa],	14.793	[psi]
average total enthalpy	=	0.000	[Fun3d],	0.000	[J]		
average entropy	=	0.000	[Fun3d],	0.000	[J/K]		
average static temperature	=	1.007	[Fun3d],	290.877	[K],	523.579	[R]
average total temperature	=	1.007	[Fun3d],	290.905	[K],	523.629	[R]
mass flow	=	62.88518	[Fun3d],	2387.01562	[kg/s],	5262.46863	[lbm/s]

Example 2 – Nozzle Performance ASME calibration nozzle

NPR – nozzle pressure ratio NTR – nozzle temperature ratio

http://fun3d.larc.nasa.gov

Example 2 – Nozzle Performance

```
&component parameters
                                                              component input(4) = '0'
    number of components = 4
                                                               component type(4) = 'circle'
        area reference ct = 864. ! Aerodynamic units
                                                               component name(4) = 'survey'
                                                            circle center(1:3,4) = 7.999, 0.0, 0.0
         component count(1) = 1
                                                            circle normal(1:3,4) = 1.0, 0.0, 0.0
         component input(1) = '3'
                                                                circle radius(4) = 2.5
                                                           component symmetry(4) = 4.
         component name(1) = 'core'
                                                                 calculate cd(4) = T
      component symmetry(1) = 4.
                                                                  throat area(4) = 19.5087
                                                                          npr(4) = 2.00
         component count(2) = 1
                                                                          ntr(4) = 1.0
         component input(2) = '2'
                                                       calculate thrust ratio(4) = T
         component name(2) = 'shell'
                                                         allow flow through forces = T
      component symmetry(2) = 4.
                                                         list forces
                                                                                   = т
         component count(3) = 2
         component input(3) = '2,3'
          component name(3) = 'total'
      component symmetry(3) = 4.
                                      Quarter plane symmetry
                                                                                  Same format as
           calculate cd(3) = T
                                      Calculate discharge coefficient
            throat_area(3) = 19.5087 Throat area for Cd ( actual grid area )
                                                                                  sampling.
                     npr(3) = 2.00
                                      The set nozzle pressure ratio
                     ntr(3) = 1.0
                                      The set nozzle temperature ratio
 calculate thrust ratio(3) = T
                                      Calculate thrust ratio
```


Example 2 – Nozzle Performance asme_stream_info.dat

component = 3

total

component_type (3)	= bour	ndary					
component_symmetry (3)	=	4.0					
shape direction (3)	=	0.000 0.	000 0	0.000			
shape area	=	24.60585	mesh^2,	0.01587	[m^2],	0.17087	[ft^2]
shape area * symmetry	=	98.42340	mesh^2,	0.06350	[m^2],	0.68350	[ft^2]
average density	=	2.839	[Fun3d],	3.3276	[kg/m^3],	0.20774	[lbm/ft^3]
average velocity	=	0.080	[Fun3d],	27.7654	[m/s],	91.094	[ft/s]
average u velocity	=	0.119	[Fun3d],	41.3750	[m/s],	135.745	[ft/s]
average v velocity	=	-0.000	[Fun3d],	-0.0111	[m/s],	-0.036	[ft/s]
average w velocity	=	-0.000	[Fun3d],	-0.0111	[m/s],	-0.036	[ft/s]
average static pressure	=	1.414	[Fun3d],	199882.299	[Pa],	28.990	[psi]
average total pressure	=	1.429	[Fun3d],	201881.394	[Pa],	29.280	[psi]
minimum total pressure	=	1.415	[Fun3d],	199932.300	[Pa],	28.998	[psi]
maximum total pressure	=	1.430	[Fun3d],	202112.696	[Pa],	29.314	[psi]
average total enthalpy	=	0.000	[Fun3d],	0.000	[J]		
average entropy	=	0.000	[Fun3d],	0.000	[J/K]		
average static temperature	=	0.698	[Fun3d],	209.255	[K],	376.658	[R]
average total temperature	=	1.000	[Fun3d],	300.005	[K],	540.009	[R]

Example 2 – Nozzle Performance asme stream info.dat **component = 3** (continued) mass flow = 22.34347 [Fun3d], 5.86688 [kg/s], 12.93425 [lbm/s] Throat area = 19.50870 [Fun3d], 0.01259 [m²], 0.13548 [ft²] Ideal mass flow = 22.57958 [Fun3d], 5.92887 [kg/s] 13.07093 [lbm/s] Discharge coefficient = 0.990 _____ Axial X-momentum flux 2.66329 [Fun3D], 242.818 [N], 54.58759 [lbf] = Y-momentum flux -0.00071 [Fun3D], -0.065 [N], -0.01456 [lbf] = Z-momentum flux -0.00071 [Fun3D], -0.065 [N], -0.01458 [lbf] = X-pressure flux 66.10880 [Fun3D], 6027.279 [N], 1354.98631 [lbf] = Y-pressure flux 0.00000 [Fun3D], = 0.000 [N], 0.00000 [lbf] Z-pressure flux 0.00000 [Fun3D], 0.000 [N], 0.00000 [lbf] = Viscous forces 51.21752 [psf] 2.49887 [Fun3D], 227.827 [N], = Pressure forces 18.59011 [Fun3D], 1694.900 [N], 381.02873 [psf] = 432.24625 [psf] Total forces 21.08898 [Fun3D], = 1922.727 [N], Ideal thrust 21.17706 [Fun3D], 1930.757 [N], 434.05147 [psf] = Thrust ratio 0.996 = coefficient area 864.00000 mesh², 0.55742 [m^2] = 1234.286 [Fun3D], 112532.450 [N], 25298.30114 [psf], ptA* = Thrust coefficient 0.017 =

Example 2 – Nozzle Performance asme_stream_info.dat

component = 4

survey

component_type (4)	= cir	cle						
component_symmetry (4)	=	4.0						
shape direction (4)	=	1.000 0	.000	0.000				
shape area	=	4.87718	mesh^2	,	0.00315	[m^2],	0.03387	[ft^2]
shape area * symmetry	=	19.50872	mesh^2	,	0.01259	[m^2],	0.13548	[ft^2]
average density [lbm/ft^3]	=	1.237	[Fun3d],	1.4495	[kg/m^3],	0.09049	
average velocity	=	0.924	[Fun3d],	320.8319	[m/s],	1052.598	[ft/s]
average u velocity	=	0.923	[Fun3d],	320.4375	[m/s],	1051.304	[ft/s]
average v velocity	=	0.000	[Fun3d],	0.0000	[m/s],	0.000	[ft/s]
average w velocity	=	0.000	[Fun3d],	0.0000	[m/s],	0.000	[ft/s]
average static pressure	=	0.733	[Fun3d], 1	03561.733	[Pa],	15.020	[psi]
average total pressure	=	1.415	[Fun3d], 1	99969.692	[Pa],	29.003	[psi]
minimum total pressure	=	0.725	[Fun3d], 1	02399.840	[Pa],	14.852	[psi]
maximum total pressure	=	1.430	[Fun3d], 2	02026.637	[Pa],	29.301	[psi]
average total enthalpy	=	2.503	[Fun3d], 3	01727.286	[J]		
average entropy	=	-0.271	[Fun3d],	-109.027	[J/K]		
average static temperature	=	0.830	[Fun3d],	248.905	[K],	448.029	[R]
average total temperature	=	1.001	[Fun3d],	300.320	[K],	540.576	[R]

Example 2 – Nozzle Performance asme_stream info.dat

component = 4	(con	tinued)		
mass flow	=	22.29055 [Fun3d],	5.85298 [kg/s]	, 12.90361 [lbm/s]
Throat area	=	19.50870 [Fun3d],	0.01259 [m ²],	0.13548 [ft^2]
Ideal mass flow	=	22.57958 [Fun3d],	5.92887 [kg/s]	13.07093 [lbm/s]
Discharge coefficient	=	0.987		
Axial				
X-momentum flux	=	20.66137 [Fun3D],	1883.741 [N],	423.48180 [lbf]
Y-momentum flux	=	0.02509 [Fun3D],	2.288 [N],	0.51429 [lbf]
Z-momentum flux	=	0.02508 [Fun3D],	2.287 [N],	0.51414 [lbf]
X-pressure flux	=	0.36182 [Fun3D],	32.988 [N],	7.41602 [lbf]
Y-pressure flux	=	0.00000 [Fun3D],	0.000 [N],	0.00000 [lbf]
Z-pressure flux	=	0.00000 [Fun3D],	0.000 [N],	0.00000 [lbf]
Viscous forces	=	20.66137 [Fun3D],	1883.741 [N],	423.48180 [psf]
Pressure forces	=	0.36182 [Fun3D],	32.988 [N],	7.41602 [psf]
Total forces	=	21.02319 [Fun3D],	1916.729 [N],	430.89783 [psf]
Ideal thrust	=	21.12690 [Fun3D],	1926.184 [N],	433.02346 [psf]
Thrust ratio	=	0.995		
coefficient area	=	864.00000 mesh ² ,	0.55742 [m^2]	
p_t A*	=	1234.286 [Fun3D],	112532.450 [N],	25298.30114 [psf],
Thrust coefficient	=	0.017		

ARP 1420 Volume rake

Input for an inlet ARP 1420 analysis along with integrated flow data of circle.

component_count(2) = 1 component_input(2) = '0' ! No boundary associated with this input component_type(2) = 'circle' ! Add sampling information to AIP raking circle_center(1:3,2) = 2.995, 0.0, 0.0 circle_normal(1:3,2) = 1.0, 0.0, 0.0 circle_radius(2) = 1.0 component_name(2) = 'Inlet-2' component_symmetry(2) = 1.0 calculate_arp1420_distortion(2) = .true. inlet_distortion_boundary(2) = 0 number_of_rakes(2) = 8 number_of_rings(2) = 5

rake_points(2,1:3,1,1)=2.995000,0.000000,0.316228
rake_points(2,1:3,2,1)=2.995000,0.000000,0.547723
rake_points(2,1:3,3,1)=2.995000,0.000000,0.707107
rake_points(2,1:3,4,1)=2.995000,0.000000,0.836660
rake_points(2,1:3,5,1)=2.995000,0.000000,0.948683

etc.

ARP 1420 Boundary rake

Input for an inlet ARP 1420 analysis on an outflow boundary.

```
component_count(1) = 1
component_input(1) = '1' ! Print out flowfield information for boundary
component_name(1) = 'Inlet'
component_symmetry(1) = 1.0
calculate_arp1420_distortion(1) = .true.
inlet_distortion_boundary(1) = 1 ! Find rake data on this boundary
number_of_rakes(1) = 8
number_of_rings(1) = 5
rake_points(1,1:3,1,1)=3.000000,0.000000,0.316228
rake_points(1,1:3,2,1)=3.000000,0.000000,0.547723
rake_points(1,1:3,3,1)=3.000000,0.000000,0.707107
rake_points(1,1:3,4,1)=3.000000,0.000000,0.836660
rake_points(1,1:3,5,1)=3.000000,0.000000,0.948683
```

etc...

What Could Possibly Go Wrong?

<u>In General...</u>

- Do not hesitate to send questions to <u>fun3d-support@lists.nasa.gov</u>; we are happy to try to diagnose problems
 - Please send as much information about the problem/inputs/environment that you can, as well as all screen output and any error output
 - In extreme cases, we may request your grid and attempt to run a case for you to track down the problem
 - If you cannot send us a case due to restrictions, size, etc., a generic/smaller representative case that behaves similarly can be useful
 - Check the manual for guidance
- Ask the FUN3D user community, <u>fun3d-users@lists.nasa.gov</u>

What We Learned

- Overview of visualization output options and examples
- Overview of component F&M tracking and example

Don't hesitate to send questions our way!

fun3d-support@lists.nasa.gov

