Session 6: Incompressible Simulations

Beth Lee-Rausch

FUN3D Training Workshop April 27-29, 2010

Learning Goals

- What this will teach you
 - How to set up and run steady-state incompressible turbulent simulations
 - Non-dimensionalization
 - Choosing the artificial compressibility parameter
 - Problem set up
 - Visualization
- What you will not learn
 - Rotorcraft (actuator disk), time-accurate: covered in follow-on sessions
 - Inviscid simulations
- What should you already know
 - Basic steady-state solver operation and control
 - Basic flow visualization

Setting

- Background
 - Incompressible capability extension of the compressible formulation- uses same solver mechanics
 - Target is external flow applications no buoyancy terms
 - Non-dimensionalization is different from the compressible equations
 - Incompressible code is faster and has better convergence than low mach number compressible simulations
- Compatibility
 - Fully compatible for viscous steady-state flows: mixed elements, 2D/3D, time-accurate, adjoint design/ adaptation, actuator disk, SST turbulence model has a bug for incompressible
 - Overset grids and moving grids not currently compatible for incompressible flows
 - Has a limited sub-set of boundary conditions: Standard set is available FUN3D Training Workshop

http://fun3d.larc.nasa.gov

April 27-29, 2010

Incompressible Equations

- FUN3D uses the method of artificial compressibility (β)
 - See Anderson AIAA 95-1740 (website Publications section)
 - Pseudo-time derivative of pressure added to continuity eq.
 - Temperature and density assumed constant so no energy eq. is solved
 - At steady-state divergence of velocity approaches zero coupling disappears
 - Steady solutions depends on β through inviscid flux eigenvectors where larger values correspond to increased dissipation (β range 1-15)

$$\frac{\partial (\mathbf{Q}V)}{\partial t} + \oint_{dV} (\mathbf{F}_{i} - \mathbf{F}_{v}) \cdot \hat{\mathbf{n}} dS = 0 \qquad \mathbf{Q} = [p, u, v, w]^{T}$$
$$\mathbf{F}_{i} = \begin{bmatrix} \beta(u - W_{x}) \\ u(u - W_{x}) + p \\ v(u - W_{x}) \\ w(u - W_{x}) \end{bmatrix} \hat{\mathbf{i}} + \begin{bmatrix} \beta(v - W_{y}) \\ u(v - W_{y}) \\ u(v - W_{y}) \\ v(v - W_{y}) + p \\ w(v - W_{y}) \end{bmatrix} \hat{\mathbf{j}} + \begin{bmatrix} \beta(w - W_{z}) \\ u(w - W_{z}) \\ v(w - W_{z}) \\ w(w - W_{z}) + p \end{bmatrix} \hat{\mathbf{k}}$$

Nondimensionalization

- Notation: * indicates a dimensional variable, otherwise dimensionless; the reference flow state is *usually* free stream (" ∞ "), but need not be
- Define reference values:
 - $L_{ref}^{*} = \text{reference length of the physical problem (e.g. chord in ft)}$ $- L_{ref} = \text{corresponding length in your grid (dimensionless)}$ $- <math>\rho_{ref}^{*} = \text{reference density (e.g. slug/ft^3)}$ $- \mu_{ref}^{*} = \text{reference molecular viscosity (e.g. slug/ft-s)}$ $- T_{ref}^{*} = \text{reference temperature (e.g. °R, compressible only)}$ $- a_{ref}^{*} = \text{reference sound speed (e.g. ft/s, compressible only)}$ $- U_{ref}^{*} = \text{reference velocity (e.g. ft/s)}$
- Space and time are made dimensionless in FUN3D by:

$$-\vec{x} = \vec{x}^* / (L_{ref}^* / L_{ref}) \quad t = t^* a_{ref}^* / (L_{ref}^* / L_{ref}) \quad t = t^* U_{ref}^* / (L_{ref}^* / L_{ref})$$
(incompressible) (incompressible)

http://fun3d.larc.nasa.gov

FUN3D Training Workshop April 27-29, 2010

Nondimensionalization (cont)

• For the *incompressible-flow* equations the dimensionless variables are:

$$-\rho$$
 and T are **constant** (no buoyancy terms)

$$-\vec{u} = \vec{u}^* / U_{ref}^* \qquad \text{so } |\vec{u}|_{ref} = 1$$
$$-P = (P^* - P_{norm}^*) / (\rho_{ref}^* U_{ref}^{*2})$$

so the nondimensional free stream pressure is equal to 1

$$P_{norm}^* = P_{\infty}^* - \rho_{ref}^* U_{ref}^{*2}$$
 $C_p = 2(P-1)$

- It is possible for the non-dimensional pressure to be negative
- The input Reynolds number has the same definition for both compressible and incompressible flow
- The nondimensional time in FUN3D is related to physical time by:

$$- t = t^* U^*_{ref} (L_{ref}/L^*_{ref})$$
 (incompressible)

- Usually you have $L_{ref}/L_{ref}^* = 1^*$, but need not e.g. typical 2D airfoil
- L_{ref}/L_{ref}^* factor results from Re in FUN3D defined *per unit grid length*

NASA

FUN3D Training Workshop April 27-29, 2010

Example 1- Incompressible Turbulent Flow on a Tetrahedral Wing-Body Mesh

- Same case that was used for the compressible demo
- Only need to change &governing_equations namelist and remove mach_number from &reference_physical_properties

```
&governing_equations
viscous_terms = "turbulent"
eqn_type = "cal_perf_incompress"
artificial_compress = 5.0
/
&reference_physical_properties
gridlength_conversion = 1.00
dim_input_type = "nondimensional"
temperature_units = "Rankine"
reynolds_number = 17410.0
temperature = 580.0
angle_of_attack = 0.0
angle_of_yaw = 0.0
/
```

..................

.....

Example 1- Incompressible Turbulent Flow on a Tetrahedral Wing-Body Mesh

May need to make some modifications to solver parameters

```
&nonlinear_solver_parameters
    time_accuracy = "steady"
        pseudo_time_stepping = "on"
        schedule_number = 2
        schedule_iteration = 1 50
        schedule_cfl = 10.0 100.0
        schedule_cflturb = 1.0 35.0
        /
```

- Note that for this very coarse test case the solution is sensitive to the choice of the artificial compressibility factor
- Default artificial compressibility factor is 15

Example 1- Incompressible Turbulent Flow on a Tetrahedral Wing-Body Mesh

Execution

(mpirun ./nodet_mpi --animation_freq -1 >screen_output)>& error_output

- Did it work?
 - As always, last line or screen output should be: Done.
 - Did the residuals converge (2-3 orders of magnitude reduction)?
 - Are the forces steady(non-oscillatory)? If not, is the variation less than significant in terms of engineering accuracy?
 - Is the yplus < 1.0 on surface?</p>

Example 1 - Incompressible Turbulent Flow on a Tetrahedral Wing-Body Mesh

Residual/Force History From f6fx2b_trn_hist.tec Yplus Contours From f6fx2b_tec_boundary.plt

FUN3D Training Workshop April 27-29, 2010

Troubleshooting

- What if the residuals don't converge?
 - Techniques for the compressible equations should work
 - Increase linear sweeps (can be expensive)
 - Lower CFL numbers
 - Start with some first order iterations
 - Artificial compressibility factor may be too high/low- try altering it
- What if the forces/moments aren't steady?
 - Lower CFL numbers
 - Try restarting solution with a time-accurate computation (constant delta) time)
- What if the solution is very sensitive to artificial compressibility factor?
 - Grid may be too coarse
 - Flow may not really be incompressible

Try comparing to low-Mach number compressible solution http://fun3d.larc.nasa.gov April 27-29, 2010

11

FUN3D

Fully Unstructured Navier_Sto

What We Learned

- Overview of incompressible equations (artificial compressibility factor)
- Non-dimensionalization of incompressible equations
- Turbulent incompressible steady-state wing/body case
 - Input variation from the compressible case
 - Output variable to check
 - Troubleshooting

