
http://fun3d.larc.nasa.gov

Session 7:
Time-Dependent and Dynamic-Mesh

Simulations
Bob Biedron

FUN3D Training Workshop
July 27-28, 2010 1

http://fun3d.larc.nasa.gov

Learning Goals
•  What this will teach you

–  How to set up and run time-accurate simulations on static and
dynamic (moving) meshes
•  Subiteration convergence: what to strive for and why
•  Nondimensionalization
•  Choosing the time step
•  Body / Mesh motion options
•  Input / Output
•  Visualization

•  What you will not learn
–  Overset, Aeroelastic, or 6-DOF: covered in follow-on sessions

•  What should you already know
–  Basic steady-state solver operation and control
–  Basic flow visualization

FUN3D Training Workshop
July 27-28, 2010 2

http://fun3d.larc.nasa.gov

Setting
•  Background

–  Many of problems of interest involve unsteady flows, most of
which also involve moving geometries

–  Governing equations written in Arbitrary Lagrangian-Eulerian
(ALE) form to account for grid speed

–  Nondimensionalization often more involved/confusing/critical
•  Compatibility

–  Fully compatible for compressible flows; mixed elements; 2D/3D
–  Not compatible with generic gas model

•  Status
–  Incompressible flow: should be fully compatible with moving grids,

but currently has one or more bugs; working to fix Fixed in V11.2
–  Isolated moving bodies generally do-able
–  Close approach / bodies in contact not so much - no near-term

plans to address this
FUN3D Training Workshop

July 27-28, 2010 3

http://fun3d.larc.nasa.gov

Governing Equations
•  Arbitrary Lagrangian-Eulerian (ALE) Formulation

 Arbitrary control surface velocity; Lagrangian if
 (moves with fluid); Eulerian if (fixed in space)
•  Discretize using Nth order backward differences in time, linearize

about time level n+1, and introduce a pseudo-time term:

•  Physical time-level ; Pseudo-time level
•  Need to drive subiteration residual using pseudo-time

subiterations at each time step – much more later – otherwise you
have more error than the expected truncation error

FUN3D Training Workshop
July 27-28, 2010 4

€

∂(

Q V)
∂t

= − F −
 q

W T()∂V∫ ⋅
 n dS − Fv∂V∫ ⋅

 n dS =

R

KEY
POINT

http://fun3d.larc.nasa.gov

Time Advancement - Order of Accuracy
•  Currently have several types of backward difference formulae (BDF) that

are compatible with both static and moving grids:
–  In order of formal accuracy: BDF1 (1storder), BDF2 (2ndorder),

BDF2OPT (2ndorderOPT), BDF3 (3rdorder),
MEBDF4 (4thorderMEBDF4)

–  Can pretty much ignore all but BDF2 or BDF2OPT
•  BDF1 is inaccurate and has little gain in CPU time / step over 2nd

order schemes
•  BDF3 not guaranteed to be stable; feeling lucky?
•  MEBDF4 only efficient if working to very high levels of accuracy -

including spatial accuracy - generally not where you will be with
practical problems

•  BDF2OPT (recommended) is a stable blend of BDF2 and BDF3
schemes; formally 2nd order accurate but error is ~1/2 that of BDF2;
also allows for a more accurate estimate of the temporal error for the
error controller (p.7)

FUN3D Training Workshop
July 27-28, 2010 5

KEY
POINT

http://fun3d.larc.nasa.gov

Time Advancement - Subiterations (1/4)
•  Pseudo-time helpful for large time steps (pseudo_time_stepping =
“on”)- benefits convergence - we always use it in our applications

•  Each time step is a mini steady-state problem in pseudo-time
•  Subiterations (subiterations > 0) are essential

–  Subiteration control in each time step operates exactly like iteration
control in a steady state case:
•  CFL ramping is available for mean flow and turbulence model –

however, be aware that ramping schedule should be
< subiterations or the specified final CFL won’t be obtained

•  Ramping and first_order_iterations start over each time step
•  We usually don’t ramp CFL or use 1st order in time-dependent cases

•  How many subiterations? – that is the $64k $64B question
–  In theory, should drive subiteration residual “to zero” each time step –

but you cannot afford to do that!
–  Otherwise have additional errors other than (2nd order time)

FUN3D Training Workshop
July 27-28, 2010 6

http://fun3d.larc.nasa.gov

Time Advancement - Subiterations (2/4)
•  In a perfect world, the answer is to use the temporal error controller

–  Activated via the CLO --temporal_err_control Real_Value
•  Real_Value = 0.1 or 0.01 says iterate until the subiteration

residual is 1 or 2 orders lower than the (estimated) temporal error
•  Subiterations kick out when this level of convergence is reached OR

subiteration counter > subiterations
•  (empirically) 1 order is about the minimum; 2 orders is better, BUT…
•  Often, if the turbulence subiteration residual doesn’t hang / converge

slowly – the mean flow subiterations will, and the max subiterations
you specify will be used (the world is not perfect – need solvers with
better / faster convergence)

•  When it kicks in, the temporal error controller is the best approach,
and the most efficient; even if it doesn’t kick in, it can be informative

•  Be wary reaching conclusions about the effect of time-step refinement
unless the subiterations are “sufficiently” converged for each size step

FUN3D Training Workshop
July 27-28, 2010 7

http://fun3d.larc.nasa.gov

Time Advancement - Subiterations (3/4)
•  How to monitor and assess the subiteration convergence:

–  Printed to the screen, so you can “eyeball” it
–  With temporal error controller, if the requested tolerance is not met,

message(s) will be output to the screen:
•  WARNING: mean flow subiterations failed to converge
to specified temporal_err_floor level

•  WARNING: turb flow subiterations failed to converge
to specified temporal_err_floor level

•  Note: when starting unsteady mode, first timestep never achieves
target error (no error estimate first step, so target is 0)

•  Note: x-momentum residual (R_2) is the mean-flow residual targeted
by the error controller

–  Tecplot file with subiteration convergence history is output to a file:
[project]_subhist.dat

•  Plot (on log scale) R_2 (etc) vs Fractional_Time_Step
FUN3D Training Workshop

July 27-28, 2010 8

http://fun3d.larc.nasa.gov

Time Advancement - Subiterations (4/4)

FUN3D Training Workshop
July 27-28, 2010 9

All Time Steps Final Few Time Steps

http://fun3d.larc.nasa.gov

Nondimensionalization of Time
•  Notation: * indicates a dimensional variable, otherwise nondimensional;

the reference flow state is usually free stream (“ “), but need not be
•  Define:

–  L*ref = reference length of the physical problem (e.g. chord in ft)
–  Lref = corresponding length in your grid (nondimensional)
–  a*ref = reference speed of sound (e.g. ft/sec) (compressible)
–  U*ref = reference velocity (e.g. ft/sec; compressible: U*ref = Mach a*ref)
–  t* = time (e.g. sec)

•  Then nondimensional time in FUN3D is related to physical time by:
–  t = t* a*ref (Lref/L*ref) (compressible)
–  t = t* U*ref (Lref/L*ref) (incompressible)

–  Usually have Lref/L*ref = 1*, but need not - e.g. typical 2D airfoil grid

–  Lref/L*ref because Reynolds No. in FUN3D is defined per unit grid length

FUN3D Training Workshop
July 27-28, 2010 10

KEY
POINT

http://fun3d.larc.nasa.gov

Determining the Time Step
•  Identify a characteristic time t*chr that you need to resolve with some

level of accuracy in your simulation; perhaps:
–  Some important shedding frequency f*shed (Hz) is known or estimated

t*chr ~ 1 / f*shed

–  Periodic motion of the body t*chr ~ 1 / f*motion
–  You have lots of CPU time and you are hoping to resolve some range

of frequencies in a DES-type simulation t*chr ~ 1 / f*highest
–  If none of the above, you can estimate the time it takes for a fluid

particle to cross the characteristic length of the body, t*chr ~ L*ref /U*ref

–  tchr = t*chr a*ref (Lref/L*ref) (comp) tchr = t*chr U*ref (Lref/L*ref) (incomp)

•  Say you want N time steps within the characteristic time:
–  t = tchr / N (tip: use plenty of precision to compute, and input, t)

•  Figure a minimum of N = 100 for reasonable resolution of tchr with a 2nd
order scheme - really problem dependent (frequencies > f* may be
important); but don’t over resolve time if space is not well resolved too

FUN3D Training Workshop
July 27-28, 2010 11

KEY
POINT

http://fun3d.larc.nasa.gov

Example 1 - Unsteady Flow at High Alpha (1/9)
•  Example 1 considers flow past a (2D) NACA 0012 airfoil at 45o angle of

attack - the flow separates and is unsteady
–  Rec* = 4.8 million, Mref = 0.6, assume a*ref = 340 m/s
–  chord = 0.1m, chord-in-grid = 1.0 so Lref/L*ref = 1.0/0.1 = 10 (m-1)
–  Say we know from experiment that lift oscillations occur at ~450 Hz
–  t*chr = 1 / f*chr = 1 / 450 Hz = 0.002222 s
–  tchr = t*chr a*ref (Lref/L*ref) = (0.002222)(340)(10) = 7.555
–  t = tchr / N so t = 0.07555 for 100 steps / lift cycle
–  By way of comparison, for M = 0.6, a*ref = 340 m/s, and L*ref = 0.1 m

it takes a fluid particle ~ (0.1)/(204) = 0.00049 s to pass by the airfoil;
this leads to smaller, more conservative estimate for the time step, by
about a factor of 5

FUN3D Training Workshop
July 27-28, 2010 12

http://fun3d.larc.nasa.gov

Example 1 - Unsteady Flow (2/9)
•  It takes more time than we have here to settle into a periodic state from free

stream, so we’ll run this as a restart from a previous solution, for 100 steps
•  Log into your account on cypher-work14: and cd to Unsteady_Demos/
High_Alpha

•  There you will find a set of files:
–  n0012_i153.ugrid
–  n0012_i153.mapbc
–  fun3d.nml
–  n0012_i153.flow
–  qsub_high_alpha
–  time_history.lay, subit_history.lay, vort_animation.lay,

u_animation.lay

FUN3D Training Workshop
July 27-28, 2010 13

http://fun3d.larc.nasa.gov

Example 1 - Unsteady Flow (3/9)

FUN3D Training Workshop
July 27-28, 2010 14

http://fun3d.larc.nasa.gov

Example 1 - Unsteady Flow (4/9)
•  Flow viz: output u-velocity and y-component of vorticity
•  Relevant fun3d.nml namelist data

 &project
 project_rootname = "n0012_i153"
 case_title = "NACA 0012 airfoil, 2D Hex Mesh"
 /
 &governing_equations
 viscous_terms = "turbulent"
 /
 &reference_physical_properties
 mach_number = 0.60
 reynolds_number = 4800000.00
 temperature = 520.00
 angle_of_attack = 45.0
 /
 &force_moment_integ_properties
 x_moment_center = 0.25
 /
 &turbulent_diffusion_models
 turb_model = "sa"
 /

FUN3D Training Workshop
July 27-28, 2010 15

http://fun3d.larc.nasa.gov

Example 1 - Unsteady Flow (5/9)
•  Relevant fun3d.nml namelist data (cont)

&nonlinear_solver_parameters
 time_accuracy = "2ndorderOPT” ! Our Workhorse Scheme
 time_step_nondim = 0.07555 ! 100 steps/cycle @ 450 Hz
 pseudo_time_stepping = "on” ! This is the default; set for emphasis
 subiterations = 30
 schedule_cfl = 50.00 50.00 ! constant cfl each step; no ramping
 schedule_cflturb = 30.00 30.00
 /

 &linear_solver_parameters
 meanflow_sweeps = 50
 turbulence_sweeps = 30
 /

 &code_run_control
 steps = 100 ! need ~2000 steps to be periodic from freestream
 restart_read = ”on” ! “off”: start from freestream
 / ! “on_nohistorykept”: start from steady state soln

 &raw_grid
 grid_format = "aflr3"
 data_format = “ascii”
 twod_mode = .true.
 / FUN3D Training Workshop

July 27-28, 2010 16

http://fun3d.larc.nasa.gov

Example 1 - Unsteady Flow (6/9)
•  Relevant fun3d.nml namelist data (cont)
&boundary_output_variables
 primitive_variables = .false. ! turn off default
 y = .false. ! So tecplot displays correct 2D orientation by default
 u = .true.
 vort_y = .true.
 / ! no boundaries specified – default is one of sym. planes

•  Look at the qsub_high_alpha script; we will terminate subiterations if
residual is 10x smaller than error estimate and get boundary animation
output every 5th time step:

 mpirun -np 24 nodet_mpi --animation_freq +5
--temporal_err_control 0.1

•  qsub qsub_high_alpha ! will take ~4 minutes to run

•  Did it work? As always, last line or screen output should be: Done.
•  Subiterations converge? grep “WARNING” screen_output | wc

to find zero occurrences – in this case they all did

FUN3D Training Workshop
July 27-28, 2010 17

http://fun3d.larc.nasa.gov

Example 1 - Unsteady Flow (7/9)
•  Bring some files back for plotting…

•  On cypher-work14:
–  tar -cvf output.tar *.lay *hist.tec
n0012_i153_tec_boundary_timestep*.dat

•  On your local machine:
–  mkdir High_Alpha and cd High_Alpha
–  scp cypher-work14:~/Unsteady_Demos/High_Alpha/
output.tar .

–  tar -xvf output.tar
–  Should now have: time_history.lay, subit_history.lay,
u_animation.lay, vort_animation.lay,
n0012_i153_hist.tec, n0012_i153_subhist.dat,
n0012_i153_tec_boundary_timestep2005.dat, …
n0012_i153_tec_boundary_timestep2100.dat

FUN3D Training Workshop
July 27-28, 2010 18

http://fun3d.larc.nasa.gov

Example 1 - Unsteady Flow (8/9)

FUN3D Training Workshop
July 27-28, 2010 19

Complete Time History
(time_history.lay)

Subiteration Convergence, Final 10 Steps
(subit_history.lay)

http://fun3d.larc.nasa.gov

Example 1 - Unsteady Flow (9/9)
•  Animation of Results

FUN3D Training Workshop
July 27-28, 2010 20

X-Component of Velocity
(u_animation.lay)

Y-Component of Vorticity
(vort_animation.lay)

note: Tecplot default contour
levels too large – set levels

 to +/- 5 or so

http://fun3d.larc.nasa.gov

Mesh / Body Motion (1/3)
•  A body is defined as a user-specified collection of solid boundaries in grid

–  Generally, in &raw_grid input, should opt to lump multiple
boundaries by family type to minimize subsequent input

•  Body motion options:
–  Several built-in functions: translation and/or rotation with either

constant velocity or periodic displacement – body is rigid
–  Read series of surface files – rigid or deforming (not covered here)
–  6 DOF with UAB libraries (covered in another session)
–  Application-specific: mode-shape based aeroelasticity (linear

structures); rotorcraft nonlinear beam (covered in other sessions)
•  Mesh motion options – to accommodate body motion:

–  Rigid - maximum 1 body containing all solid surfaces (unless overset)
–  Deforming – can support multiple bodies without overset, but limited to

small relative displacements
–  Combine with overset for large displacements (covered tomorrow)

FUN3D Training Workshop
July 27-28, 2010 21

http://fun3d.larc.nasa.gov

Mesh / Body Motion (2/3)
•  Rigid mesh motion via application of 4x4 transform matrix - fast; positivity

of cell volumes guaranteed to be maintained
•  Mesh deformation handled via solution of a linear elasticity PDE:

–  fixed; E is selectable as:
•  1 / slen --elasticity 1 (default)
•  1 / volume --elasticity 2 (rarely used anymore)
•  1 / slen**2 --elasticity 5 (last ditch for difficult problems)

•  Elasticity solved via GMRES method; CPU intensive - can be 30% or more
of the flow solve time; check convergence (screen output)

•  Fairly robust, but can generate negative cell volumes; code stops
•  “untangling” step attempted if neg. volumes generated - tet meshes only;

need refine package FUN3D Training Workshop
July 27-28, 2010 22

http://fun3d.larc.nasa.gov

Mesh / Body Motion (3/3)
•  GMRES solver used for mesh deformation has default parameter

settings which can be adjusted in the namelist &elasticity_gmres (in
the fun3d.nml file):

 ileft nsearch nrestarts tol
 1 +50 10 1.e-06

–  You generally won’t have to adjust the default values
–  Exception: “structured” grids with very tight wake spacing can be very

hard to deform and you may need to set tol very small, e.g. 1.e-12
(and will need more restarts); usually not an issue with typical grids

–  If negative volumes are generated and not untangled (don’t have
refine, or have mixed elements), try reducing tol

–  GMRES is not used for rigid motion
•  All dynamic-mesh simulations require the CLO --moving_grid
•  All dynamic-mesh simulations require some input data via an auxiliary

namelist file: moving_body.input
FUN3D Training Workshop

July 27-28, 2010 23

http://fun3d.larc.nasa.gov

Nondimensionalization of Motion Data (1/2)
•  Recall: * indicates a dimensional variable, otherwise nondimensional
•  Typical motion data we need to nondimensionalize: translational velocity,

translational displacement, angular velocity, and oscillation frequency
–  Exception: 6-DOF and modal-based aeroelasticity use primarily

dimensional data as inputs
•  Angular or translational displacements / velocities are input into FUN3D

as magnitude and direction
•  Displacement input: angular in degrees; translational
•  Translational velocity is nondimensionalized just like flow velocity:

–  U* = translation speed of the vehicle (e.g. ft/s)
–  U = U* / a*ref (comp.; this is a Mach No.) U = U* / U*ref (incomp)

•  Rotation rate:
–  = body rotation rate (e.g. rad/s)
–  (L*ref/Lref) / a*ref (comp) (L*ref/Lref) / U*ref (incomp)

FUN3D Training Workshop
July 27-28, 2010 24

http://fun3d.larc.nasa.gov

Nondimensionalization of Motion Data (2/2)
•  Oscillation frequency of the physical problem can be specified in different

forms
–  f * = frequency (e.g. Hz)
–  = circular frequency (rad/s) (not to be confused with rotation rate)
 = 2 f *
–  k = reduced frequency, k = ½ L*ref / U*ref (be careful of exact

definition - sometimes a factor of ½ is not used)
•  Built-in sinusoidal oscillation in FUN3D is defined as sin(2 f t) where, in

terms of input variables f = rotation_freq or f = translation_freq
note: currently no provision for a phase lag to sin()

•  So the corresponding nondimensional frequency for FUN3D is
–  f = f * L*ref / a*ref (comp) f = f * L*ref / U*ref (incomp)
–  f = L*ref / a*ref f = L*ref / U*ref

–  f = k M*ref / f = k /

FUN3D Training Workshop
July 27-28, 2010 25

http://fun3d.larc.nasa.gov

Overview of moving_body.input (1/2)
•  Note: just the most-used items shown here – see web site for complete

list; all input is dimensionless unless noted
•  The &body_definitions namelist defines the body(s) in motion:
 &body_definitions ! below, index b=body# i=boundary#
 n_moving_bodies ! how many bodies in motion
 body_name(b) ! set unique name for each body
 n_defining_boundary(b) ! # boundaries to define this body; shortcut:
 ! a value -1 will use all solid walls;
 ! only use if n_moving_bodies = 1
 defining_boundary(i,b) ! list of boundaries that define this body; if
 ! n_defining_boundary = -1 list one value;0 OK
 motion_driver(b) ! mechanism by which the body is moved:
 ! ‘none’,‘forced’,‘aeroelastic’,‘file’, ‘6dof’
 mesh_movement(b) ! specifies how mesh will move to accommodate
 ! body motion: ‘rigid’, ‘deform’
 /

•  Caution: boundary numbers must reflect any lumping applied at run time!
•  All variables above except n_moving_bodies are set for each body
•  Current limitation: value of mesh_movement must be same for all bodies

FUN3D Training Workshop
July 27-28, 2010 26

http://fun3d.larc.nasa.gov

Overview of moving_body.input (2/2)
•  Use &forced_motion namelist to specify a limited set of built-in motions
 &forced_motion ! below, index b=body#
 rotate(b) ! how to rotate this body: 0 don’t (default);
 ! 1 constant rotation rate; 2 sinusoidal in time
 rotation_rate(b) ! body rotation rate; used only if rotate = 1
 rotation_freq(b) ! frequency of oscillation; use only if rotate = 2
 rotation_amplitude(b) ! oscillation amp. (degrees); only if rotate=2
 rotation_vector_x(b) ! x-comp. of unit vector along rotation axis
 rotation_vector_y(b) ! y-comp. of unit vector along rotation axis
 rotation_vector_z(b) ! z-comp. of unit vector along rotation axis
 rotation_origin_x(b) ! x-coord. of rotation center (to fix axis)
 rotation_origin_y(b) ! y-coord. of rotation center
 rotation_origin_z(b) ! z-coord. of rotation center
 /

•  There are analogous inputs for translation (translation_rate, etc.)
•  Note: FUN3D’s sinusoidal oscillation function (translation or rotation) has

2 built in, e.g sin(2 rotation_freq t), frequency is not a circular
frequency

FUN3D Training Workshop
July 27-28, 2010 27

http://fun3d.larc.nasa.gov

Output Files
•  In addition to the usual output files, for moving-grids there are 3 ASCII

Tecplot files for each body
–  PositionBody_N.dat tracks linear (x,y,z) and angular (yaw, pitch,

roll) displacement of the “CG” (rotation center)
–  VelocityBody_N.dat tracks linear (Vx,Vy,Vz) and angular

() velocity of the “CG” (rotation center)
–  AeroForceMomentBody_N.dat tracks force components (Fx,Fy, Fz)

and moment components (Mx,My,Mx)
–  Data in all files are nondimensional by default (e.g. “forces” are

actually force coefficients); moving_body.input file has option to
supply dimensional reference values such that this data is output in
dimensional form - see website for details

–  Forces are by default given in the inertial reference system;
moving_body.input file has option to output forces in the body-
fixed system - see website for details

FUN3D Training Workshop
July 27-28, 2010 28

http://fun3d.larc.nasa.gov

Example 2 - Pitching Airfoil (1/10)
•  Example 2 is the one of the well known AGARD pitching airfoil

experiments, “Case 1”:
–  Rec* = 4.8 million, Minf = 0.6, chord = c* = 0.1m , chord-in-grid = 1.0
–  Reduced freq. k = 2 f * / (U*inf / 0.5c*) = 0.0808, (f *= 50.32 Hz)

–  Angle of attack variation (exp): (deg)
•  Same grid and mapbc files as Example 1; other files differ
•  Setting the FUN3D data:

–  angle_of_attack = 2.89 rotation_amplitude = 2.41
–  Recall f = k M*ref /
–  rotation_freq = f = 0.0808 (0.6) / 3.14… = 0.01543166
–  So in this case we actually didn’t have to use any dimensional data

since the exp. frequency was given as a reduced (non dim.) frequency

FUN3D Training Workshop
July 27-28, 2010 29

http://fun3d.larc.nasa.gov

Example 2 - Pitching Airfoil (2/10)
•  Setting the FUN3D data (cont):

–  Time step: the motion has gone through one cycle of motion when
t = T, so that

 sin(2 rotation_freq T) = sin(2)
 T = 1 / rotation_freq (this is our t chr)

 for N steps / cycle, T = N t so
 t = T / N = (1 /rotation_freq) / N
–  Again, use 100 steps to resolve this frequency:
 t = (1 / 0.01543166) / 100 = 0.64801842
–  Alternatively, could use tchr = (1/ f *) a*inf (Lref/L*ref), with f * = 50.32 Hz,

and, as for the previous example, assume a*inf

FUN3D Training Workshop
July 27-28, 2010 30

http://fun3d.larc.nasa.gov

Example 2 - Pitching Airfoil (3/10)
•  Again, run as a 100 step (1 pitch cycle) restart from a previous solution
•  Log into your account on cypher-work14: and cd to Unsteady_Demos/
Pitching_Airfoil

•  There you will find a set of files:
–  n0012_i153.ugrid (same as example 1)
–  n0012_i153.mapbc (same as example 1)
–  fun3d.nml
–  moving_body.input
–  n0012_i153.flow
–  qsub_pitching_airfoil
–  time_history.lay, subit_history.lay, mach_animation.lay,

cp_animation.lay

FUN3D Training Workshop
July 27-28, 2010 31

http://fun3d.larc.nasa.gov

Example 2 - Pitching Airfoil (4/10)
•  Relevant fun3d.nml namelist data (only namelists that differ are shown)
•  Use “sampling” output on plane rather than boundary output

 &reference_physical_properties

 …
 angle_of_attack = 2.89
 /
 &nonlinear_solver_parameters

 …
 time_step_nondim = 0.64801842 ! 100 steps/pitch cycle
 /
 &sampling_output_variables
 primitive_variables = .false.
 y = .false.
 cp = .true.
 mach = .true.
 /
 &sampling_parameters
 number_of_geometries = 1
 type_of_geometry(1) = 'plane’ ! 2D case, should get same as sym. plane!
 plane_center(:,1) = 0., -0.5, 0. ! x,y,z
 plane_normal(:,1) = 0., 1.0, 0.
 / FUN3D Training Workshop

July 27-28, 2010 32

http://fun3d.larc.nasa.gov

Example 2 - Pitching Airfoil (5/10)
•  Relevant moving_grid.input data
&body_definitions

 n_moving_bodies = 1, ! number of bodies

 body_name(1) = 'airfoil', ! name must be in quotes

 n_defining_bndry(1) = -1, ! all solid boundaries constitute body (though only have 1)

 defining_bndry(1,1) = 0, ! index 1: boundary number index 2: body number

 motion_driver(1) = 'forced', ! 'forced', '6dof', 'file', 'aeroelastic'

 mesh_movement(1) = 'rigid', ! 'rigid', 'deform'

/
&forced_motion

 rotate(1) = 2, ! rotation type: 1=constant rate 2=sinusoidal

 rotation_freq(1) = 0.01543166, ! reduced rotation frequency

 rotation_amplitude(1) = 2.41, ! pitching amplitude

 rotation_origin_x(1) = 0.25, ! x-coordinate of rotation origin

 rotation_origin_y(1) = 0.0, ! y-coordinate of rotation origin

 rotation_origin_z(1) = 0.0, ! z-coordinate of rotation origin

 rotation_vector_x(1) = 0.0, ! unit vector x-component along rotation axis

 rotation_vector_y(1) = 1.0, ! unit vector y-component along rotation axis

 rotation_vector_z(1) = 0.0, ! unit vector z-component along rotation axis

/ FUN3D Training Workshop
July 27-28, 2010 33

http://fun3d.larc.nasa.gov

Example 2 - Pitching Airfoil (6/10)
•  Look at the qsub_pitching script: this is a moving grid case so we must

indicate that; terminate subiterations when residual is 10x smaller than
error estimate, and get sampling animation output every 5th time step:

 mpirun -np 24 nodet_mpi --moving_grid --sampling_freq +5
--temporal_err_control 0.1

•  Note: use sampling output here to illustrate what you might do in 3D to
extract a plane data from the flow field, instead of, or in addition to,
boundary output like we did in Example 1

•  qsub qsub_pitching ! will take ~6 minutes to run

•  Did it work? As always, last line or screen output should be: Done.
•  Subiterations converge? grep “WARNING” screen_output | wc

to find 16 occurrences – in this case 16 time steps don’t quite reach the
cutoff level in the max 30 subiterations we allowed

FUN3D Training Workshop
July 27-28, 2010 34

http://fun3d.larc.nasa.gov

Example 2 - Pitching Airfoil (7/10)
•  Bring some files back for plotting…

•  On cypher-work14:
–  tar -cvf output.tar *.lay *hist.tec
n0012_i153_tec_sampling_geom1_timestep*.dat

•  On your local machine :
–  mkdir Pitching_Airfoil and cd Pitching_Airfoil
–  scp cypher-work14:~/Unsteady_Demos/Pitching_Airfoil/
output.tar .

–  tar -xvf output.tar
–  Should now have: time_history.lay, subit_history.lay,
mach_animation.lay, cp_animation.lay,
n0012_i153_hist.tec, n0012_i153_subhist.dat,
n0012_i153_tec_sampling_geom1_timestep605.dat, …
n0012_i153_tec_sampling_geom1_timestep700.dat

FUN3D Training Workshop
July 27-28, 2010 35

http://fun3d.larc.nasa.gov

Example 2 - Pitching Airfoil (8/10)

FUN3D Training Workshop
July 27-28, 2010 36

Time History
(time_history.lay)

Sample Subiteration Convergence
(where mean flow just misses tolerance)

(subit_history.lay)

http://fun3d.larc.nasa.gov

Example 2 - Pitching Airfoil (9/10)

FUN3D Training Workshop
July 27-28, 2010 37

Mach Number
(mach_animation.lay)

Pressure Coefficient
(cp_animation.lay)

http://fun3d.larc.nasa.gov

Example 2 - Pitching Airfoil (10/10)

FUN3D Training Workshop
July 27-28, 2010 38

We ran rigid mesh: deforming mesh produces nearly identical results

Comparison with Landon, AGARD-R-702, Test Data,1982
Note: comparison typical of other published CFD results

Pitching Moment vs. Alpha Lift vs. Alpha

http://fun3d.larc.nasa.gov

Troubleshooting Body / Grid Motion
•  When first setting up a dynamic mesh problem, strongly suggest using

one or both of the CLO’s --body_motion_only and
--grid_motion_only

•  Both options are used in conjunction with --moving_grid, and turn off
the solution of the flow equations for faster processing
–  --body_motion_only also turns off the grid motion; especially

useful for 1st check of a deforming mesh case since the elasticity
solver is also bypassed; cannot restart from this

–  --grid_motion_only performs all mesh motion, including elasticity
solution – in a deforming case this can tell you up front if negative
volumes will be encountered; restart is possible

–  Caveat: can’t really do this for aeroelastic or 6DOF cases since motion
and flow solution are coupled

•  Use these with some form of animation output: only solid boundary output
is appropriate for --body_motion_only; with --grid_motion_only
can look at any boundary, or use sampling to look at interior planes, etc.

FUN3D Training Workshop
July 27-28, 2010 39

http://fun3d.larc.nasa.gov

List of Key Input/Output Files
•  Beyond basics like fun3d.nml, [project]_hist.tec, etc.:
•  Input

–  moving_body.input (dynamic grids only)
•  Output

–  [project]_subhist.dat
–  PositionBody_N.dat (dynamic grids only)
–  VelocityBody_N.dat (dynamic grids only)
–  AeroForceMomentBody_N.dat (dynamic grids only)

FUN3D Training Workshop
July 27-28, 2010 40

http://fun3d.larc.nasa.gov

FAQ’s
•  Most frequent questions arise regarding how to set the time step…

covered at great length here
•  The second-most (maybe the first) asked question is how much CPU

time does it take?
–  If you have to ask you can’t afford it !
–  Really depends on how small a time step is used, and how many

subiterations are used/needed
•  Any special considerations for incompressible time dependent /

moving grid cases? Yes, for moving grids:
–  Must use CLO --roe_jac in order to use correct linearization

routines
–  However, incompressible flow on moving grids is currently not

functional - hope to have fixed soon Fixed in v11.2
–  Use BC 5050 or 5025 instead of 5000

FUN3D Training Workshop
July 27-28, 2010 41

http://fun3d.larc.nasa.gov

What We Learned
•  Overview of governing equations for unsteady flows with moving grids
•  Time discretization and the subiteration scheme

–  Must drive subiteration residual toward zero to recover design order
–  Temporal error controller
–  How to assess subiteration convergence

•  Nondimensionalization of time and motion parameters
•  Determining the time step
•  Typically more involved than steady-state cases where all you

usually have to consider are the familiar Re and Mach numbers
•  Body and mesh motion options

–  Primarily focused on specified (“forced”) motion
–  Other options available; some covered in subsequent sessions

•  Animation as a visualization and troubleshooting tool

FUN3D Training Workshop
July 27-28, 2010 42

