FUN3D v13.4 Training Session 8: Supersonic and Hypersonic Perfect Gas Simulation

Mike Park

http://fun3d.larc.nasa.gov

Session Overview

- How to use FUN3D to compute perfect gas supersonic and hypersonic flows (eqn_type="compressible")
 - What are the challenges and strategies
 - Inviscid flux types and inviscid flux gradient limiters options that work the best for supersonic and hypersonic flows
 - Required practice for running adjoint with gradient limiters for design and grid adaptation
- Methods to initialize supersonic and hypersonic flows
- Example of a hypersonic flow application
- What to do when things go wrong
- The focus is on high-speed flows, but the strategies discussed can be used in other flow regimes

Perfect and Generic Gas Simulation

- The input parameters described in this talk are only valid for (eqn_type="compressible")
- Generic gas input parameters are different, but the philosophy is similar
- Work is underway to merge the options where possible, but consult generic gas specific documentation for details

What Are the Challenges?

- The inviscid terms can be discontinuous, i.e., when there are shocks
 - Entropy problem: strong shocks can cause difficulties in inviscid flux schemes especially near points in the flow where the dissipation vanishes
 - Monotonicity problem: shocks cause discontinuities that make robust implementation of higher order schemes difficult
- The inviscid terms can be a problem when there is strong expansion
 - Positivity problem: strong expansions can cause difficulties such that the local conditions approach a vacuum
 - Sonic rarifaction or "expansion shock" problem: strong expansions near the sonic point where dissipation due to the u-a eigenvalues vanishes can cause difficulties
- Turbulence modeling challenges compound these issues but are not the focus of this talk

Inviscid Flux Types

- Inviscid flux schemes fall into several categories:
 - Contact preserving, i.e., good for viscous flows
 - Flux difference splitting scheme of flux_construction = "roe"
 - Non positivity near vacuum conditions
 - The sonic rarefaction problem
 - The "carbuncle" problem
 - Non preservation of the total enthalpy in shocks
 - Entropy fixes (Eigenvalue smoothing) exist for some but not all of these problems
 - Flux splitting schemes such as flux_construction = "hllc" and "ldfss" may display some limited unphysical behavior at very strong normal shocks
 - Non-contact preserving, i.e., not usually good for viscous flows
 - Flux vector split scheme, flux_construction ="vanleer", has desirable qualities
 - Positivity near vacuum conditions
 - Preservation of the total enthalpy in shocks

Inviscid Flux Types

- Inviscid flux schemes fall into several categories:
 - Hybrid or "blended" schemes
 - The flux_construction = "dldfss" scheme is a blend of two schemes
 - The vanleer scheme at shocks via a shock detector
 - The ldfss scheme near walls via a shock and boundary layer detector

Inviscid Flux Gradient Limiter Types

- Gradient limiters are available in two types:
 - Edge based : limiting is done on an edge by edge basis, flux_limiter = "minmod", "vanleer", "vanalbada" and "smooth"
 - They are <u>less dissipative</u> and they work pretty well on hex grids but they <u>are not as robust</u> on mixed element or tetrahedral grids.
 - They are <u>not "freezable</u>" and may cause convergence to get hung up by limiter cycling. They also <u>cannot</u> be used when using the adjoint solvers
 - Stencil based : limiting is done based on the max and min reconstructed higher order edge gradients that exist over the entire control volume "stencil", flux_limiter = "barth", "hvanleer", "hvanalbada", "hsmooth", and "venkat"
 - They are more robust but more dissipative and work on all grid types
 - They are "<u>freezable</u>", i.e., can be frozen after a suitable number of iterations, which sometimes will allow the solution to converge further
 - They <u>must</u> be frozen when solving adjoint equations
 - Limiters with the "h" prefix include a heuristic stencil based pressure limiter to increase robustness

Inviscid Flux Gradient Limiter Tips

- Gradient limiter selection is problem specific, make sure you experiment with your case
- Some limiters are dimensional, see smooth_limiter_coef documentation in the manual
 - This can increase or decrease the limiter effect
- Recent experience with finer grids have changed some preferences formed on the coarse grids used a decade ago

Realizability

- Nonphysical (negative density or pressure) reconstructions are set to cell averages (first order) accompanied with a "realizability" warning
- Nonlinear density and pressure updates are floored to a ratio of freestream with the f_allow_minimum_m namelist variable
 - The default floor may need to be lowered if the simulation requires it

Calorically Perfect Supersonic Flow

- Maximum Mach number in computational domain < 3.0 such that:
 - Shocks are relatively weak
 - Expansion fans are relatively weak
- Inviscid flux options suitable for these applications:
 - When Euler: viscous_terms = "inviscid"
 - flux_construction = "vanleer", "ldfss", "hllc" or "roe"
 - When Navier-Stokes: viscous_terms = "laminar" or "turbulent"
 - flux_construction = "ldfss", "hllc", or "roe"
- Inviscid flux gradient limiter options most suitable for these applications:
 - flux_limiter = "vanleer", "vanalbada", "hvanleer", or "hvanalbada"
- For applications that require solving the adjoint:
 - flux_construction = "vanleer" or "roe"
 - flux_limiter = "hvanleer" or "hvanalbada"

Calorically Perfect Hypersonic Flow

- Maximum Mach number in computational domain > 3.0 such that:
 - Shocks may be strong, especially when there are normal shocks
 - Expansion fans may be strong
- Inviscid flux options suitable for these applications:
 - When Euler: viscous_terms = "inviscid"
 - flux_construction = "vanleer" or "dldfss"
 - When Navier-Stokes: viscous_terms = "laminar" or "turbulent"
 - flux_construction = "dldfss"
- Inviscid flux gradient limiter options most suitable for these applications:
 - flux_limiter = "hvanleer" or "hvanalbada"
- For applications that require solving the adjoint:
 - flux_construction = "vanleer" or "roe"
 - flux_limiter = "hvanleer" or "hvanalbada"

Nonlinear Equations

- When solving nonlinear equations (e.g., Euler, Navier-Stokes), the initial guess is critical!
- Transients can be much more challenging than the steady solution
 - Solution under and over shoots can be aggravated
 - Nonphysical states may be transited
 - Boundary conditions are less robust with large gradients nearby
 - Linear system solution scheme and nonlinear defect correction solution schemes can become unstable

Strategy

- Perform the simulation in phases
 - Initialization
 - Target solution scheme
 - Optional end game that freezes limiter for better iterative convergence.
- Initialization is the primary challenge to success for high speed, internal, and propulsion flows

Initialization Strategies

- The default initialization fills the domain with freestream flow and applies strong boundary conditions
 - Creates high gradients adjacent to the boundary
 - Sets up an unphysical expansion on backward facing surfaces
- The goal of initialization is to improve this default flow field with one that establishes the physical mechanisms of the simulations (e.g., boundary layers, shear layers, recirculation zones)
 - Moves large gradient regions away from the boundaries and into the interior of the domain
- You have the freedom to use methods that are inaccurate as long as you later restart the solution with an appropriate method for your simulation
 - Includes changing boundary conditions, freestream conditions, etc.

Initialization Strategies

- Use first_order_iterations to create a spatially first-order solution
 - This helps the nonlinear update because there are less approximations in defect correction
- Use a more dissipative flux scheme
 - Roe with excessive Eigenvalue smoothing
 - rhs_u_eigenvalue_coef, lhs_u_eigenvalue_coef, rhs_a_eigenvalue_coef, lhs_a_eigenvalue_coef
 - "vanleer" for Navier-Stokes
- Restart from a lower Mach number or angle of attack solution
- Slow down (lower CFL number or physical time step)
 - This aids the stability of the linear solve and nonlinear updates
- Combinations of these strategies

Initialization Strategies

- Explicitly initialize with the &flow_initialization namelist
 - Fill plenums with subsonic high density and pressure gas
 - Place a subsonic wake behind an aft facing step
 - Surround the entire vehicle with a sphere of post shock flow conditions (subsonic high density and pressure gas)
 - May reduce the execution time by allowing the use of larger CFL numbers

Solution Scheme

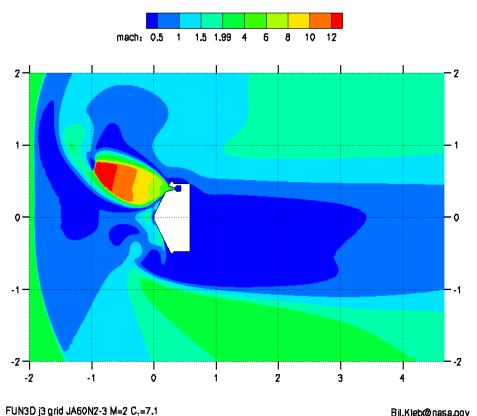
- See the advantages and disadvantages of the available fluxes and limiters
- Adjust (ramp) the CFL number for the best convergence rate
- Expect the solution convergence to stall due to limiter buzz

End Game

- Optionally freeze the gradient limiter to overcome limiter buzz
 - Make sure the solution is sufficiently converged

Multiple Step Approach

- Applications with shocks and expansions may need to be run in multiple steps
 - Step 1 : Run solution first order while scheduling the CFL number to evolve the solution to a quasi-steady state;
 - Initialize the flow appropriately
 - Set first_order_iterations to the same as the number of iterations specified by steps
 - Use schedule_iteration, schedule_cfl, and schedule_cflturb to
 slowly increase CFL number
 - Step 2 : Restart solution higher order while scheduling the CFL number to compute the final solution;
 - Read the restart file, i.e. restart_read = "on"
 - **Set** first_order_iterations = 0
 - The CFL ramping of schedule_iteration, schedule_cfl, and schedule_cflturb may need to be less aggressive

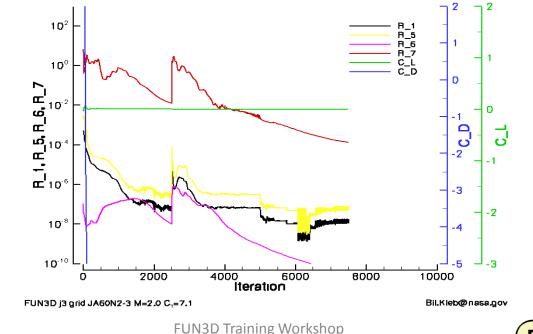


Supersonic/Hypersonic Retropropulsion Flow Example

- Turbulent retropropulsion reentry plume flow in one run that includes the three phases
- Relevant namelist settings

```
&code run control
 steps
                     = 7500
 restart read
                 = 'off'
&inviscid flux method
 first order iterations = 2500
 freeze limiter interation = 5000
 flux limiter = 'hvanalbada'
 flux construction = 'dldfss'
&nonlinear solver parameters
 schedule iteration =
                             100
 schedule cfl
                     = 0.1
                              10.
 schedule cflturb
                        0.01
                     =
                               1.
```


FUN3D Training Workshop December 11-12, 2018


20

N3D

Fully Unstructured Navier-Stoke

Supersonic/Hypersonic Retropropulsion Flow Example

- Switch from 1st-order to 2nd-order scheme occurs at 2500 iterations
- The hvanalbada limiter was frozen at 5000 iterations
- Continuity and energy equation residuals converged ~4 orders
 - Jet unsteadiness probably preventing further convergence
- Lift has converged, i.e., is no longer changing

21

http://fun3d.larc.nasa.gov

Supersonic/Hypersonic Retropropulsion Flow Example Some Observations

- Turbulent flow has made this case easier to run because of the added dissipation caused by the eddy viscosity in the retropropulsion jet
- If this case were laminar, it would probably be more difficult to run
 - You would need to be careful that the dldfss flux scheme does not add too much dissipation by refining the grid
 - You may need to resort to a multiple step running approach or explicit initialization of the flow field

Diagnosis When Things Go Wrong

- Restart the solution and visualize just before an increase in the residual
- Create movies near the largest residual location
- Try to isolate the problem location
- Check your grid resolution near the maximum residual location
 - Under-resolved expansions can cause a lot of trouble
 - Really large grid aspect ratios near expansions can cause trouble
- Check to make sure your boundary conditions are well posed
 - This is especially true for internal flows

Diagnosis When Things Go Wrong

- Isolate the problem to linear system or nonlinear update
 - Set linear_projection = .true. or change the number of linear sweeps
 - Lowering CFL number can aid linear and nonlinear stability
 - Try a different initialization strategy

What We Learned

- Recommended use cases and descriptions of flux schemes
- Recommended use cases for gradient limiters and how to freeze them
- Initialization strategies
- What the convergence behavior may look like
- What to do when things go wrong

