Session 8: Aeroelastic Simulations

Bob Biedron

FUN3D Training Workshop July 27-28, 2010

1

Learning Goals

- What this will teach you
 - The two methods of aeroelastic coupling with FUN3D
 - Static coupling with an external structural solver (linear or nonlinear structures)
 - Dynamic coupling to a self contained, mode-based, linear structures model
- What you will not learn
 - Projection of forces/displacements to/from CFD and FEM
 - Structural modeling or FEM usage
- What should you already know
 - Basic steady-state, time-dependent, and dynamic-mesh solver operation and control, especially as pertains to deforming meshes
 - Basic flow visualization

2

Setting

- Background
 - Aeroelastic problems of interest that can be tackled with FUN3D fall into 2 general categories
 - Static: weak interaction between structures and aero; structural displacement asymptotes to a fixed level; coupling between CFD and CSD can be done infrequently - typically interested in accounting for the structural displacement on (say) cruise performance
 - Dynamic: the change in aero affects the structural deformation to the extent that there is an unsteady coupling between the two; coupling between CFD and CSD must be done frequently prediction of flutter onset is the classic example
- Compatibility
 - Compatible with compressible flow; mixed elements; 2D/3D
- Status
 - Dynamic (flutter) analysis used fairly routinely; static much less so

Static Aeroelastic Coupling (1/4)

- Basic process
 - 1. Solver starts with a grid extending around a user-defined aeroelastic surface (collection of one or more grid boundaries)
 - 2. Solver reads in a new surface shape and deforms the mesh to fit
 - 3. Solver performs the requested number of iterations, and dumps out aerodynamic loads: Cp Cfx, Cfy, Cfz (dT/dn also dumped out) to a Tecplot file
 - 4. Middleware (*not provided*), maps the aerodynamic loads at CFD grid points onto the mesh points used by the structural solver
 - 5. Structural solver computes new displacements from the airloads
 - 6. Middleware maps structural displacements onto CFD surface, and updates a specially-named Tecplot file (next slide)
 - 7. Back to step 2; repeat until converged airloads and displacements
- Jamshid Samareh of NASA Langley provides middleware ("Discrete Data transFer" - DDF) for this loads and deflection transfer

NASA

FUN3D Training Workshop July 27-28, 2010

4

Static Aeroelastic Coupling (2/4)

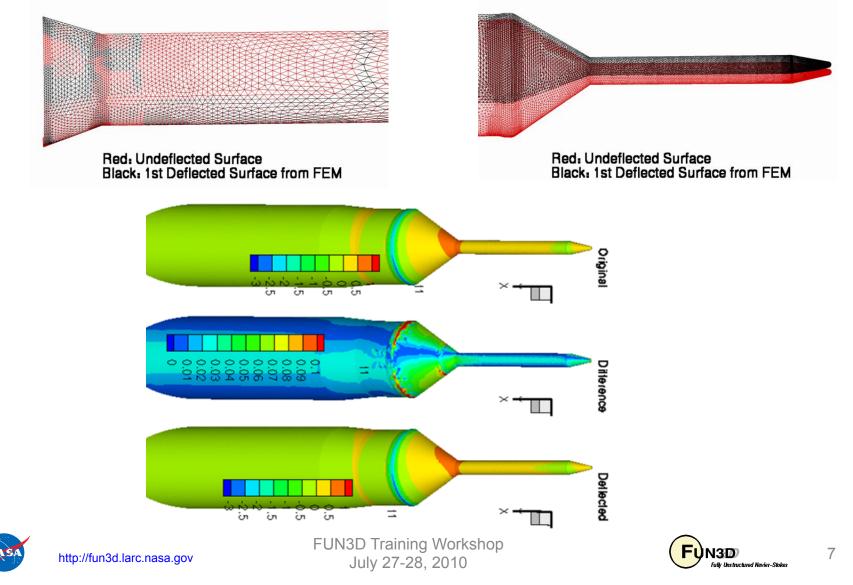
- Surface file for FUN3D to read (overwritten/updated by middleware)
 - Naming convention: [project].body1_timestep1
 - Note: *must* be **body1_timestep1** for static aeroelastics
 - Tecplot formatted, FEPOINT style; webpage gives details, but file must contain the following variables: x, y, z, id
 - id is the index of the point in the global (raw) mesh (more later)
 - Use CLO --read_surface_from_file to have solver read file
 - Can use --write_massoud_file (more later) to generate the starting (undeformed) version of this file
- Airloads file output by FUN3D (to be read by middleware)
 - Naming convention: [project]_ddfdrive_bndryN.dat
 - Tecplot (ASCII), FEPOINT style; webpage gives details; the output variables are x, y, z, id, cp, cfx, cfy, cfz, T (temperature), and dT/dn
 - Use --write_aero_loads_to_file to have solver write this file

Static Aeroelastic Coupling (3/4)

 By default, --write_aero_loads_to_file will write one file per solid boundary; may group boundaries into one body with the following in fun3d.nml:

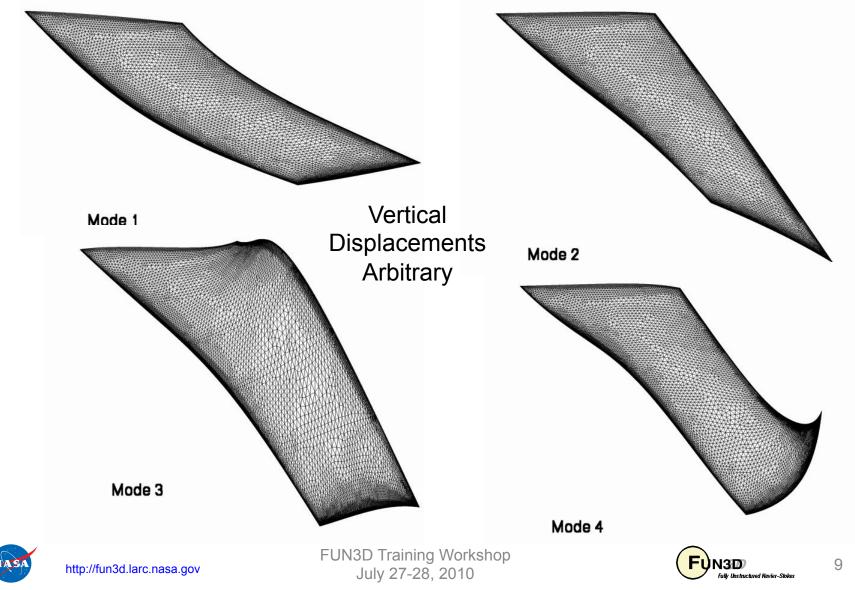
```
&aero_loads_output
n_bodies = 1
nbndry(1) = 3
boundary_list(1) = `5 7 9'
/
```

will result in a file named [project]_ddfdrive_bodyM.dat (M=1)


- To run a loosely coupled static aeroelastic case
 - Use --aeroelastic_external
 - Turns on both --read_surface_from_file and --write_aero_loads_to_file
 - Run solver in steady-state mode
- In principle, process will work if applied every time step of a time-accurate simulation; however, current file I/O method is very inefficient for this

Static Aeroelastic Coupling (4/4)

Early Application of Static Aeroelastics: Deflection of Launch Vehicle WT Model


Dynamic Aeroelastic Coupling (1/6)

- For tightly coupled, time-accurate aeroelastic modeling, FUN3D relies on a modal decomposition approach *same implementation as CFL3D*
 - "Small" deflections are assumed, allowing the deflected shape to be constructed as a *linear* combination of "mode shapes"- sutable for flutter *onset*, but not large deflections that occur as flutter escalates
 - A nonlinear aerodynamics model is used (FUN3D), so effects of shocks and viscosity can be captured
 - Structural dynamic response is decomposed into eigenmodes of known frequency (extracted a priori from an FEM model)
 - Typically only a limited set of the "important" eigenmodes is retained for dynamic aeroelastic analysis
 - Middleware (<u>not provided</u>) maps eignenmodes onto CFD surface in a one-time preprocessing step; at startup FUN3D reads these
 - Aerodynamics at current time step determine the weight applied to each eigenmode; current shape is weighted sum of eigenmodes

Dynamic Aeroelastic Coupling (2/6) AGARD Wing 445 Mode Shapes

Dynamic Aeroelastic Coupling (3/6)

- File nomenclature / format for mode shape input files
 - Can have multiple aeroelastic bodies (in contrast to static case) though usually only one is used
 - For each aeroelastic body, each mode shape is in a different file: [project].bodyB_modeM
 - Files are ASCII Tecplot files, similar to those input for static aeroelastic analysis, only now have modal amplitudes tacked on:

```
TITLE="wing-445.6 Mode 1"

VARIABLES= "x" "y" "z" "id" "xmd" "ymd" "zmd"

ZONE I= 57286 , J= 101359 , F=FEPOINT

0.109050E+01 -0.650348E+00 -0.294021E-01 17 0.000000E+00 0.000000E+00 0.869050E-01

0.691189E+00 -0.650348E+00 0.000000E+00 18 0.000000E+00 0.000000E+00 0.448300E-01

0.000000E+00 0.000000E+00 0.000000E+00 23 0.000000E+00 0.000000E+00 -0.276958E-02

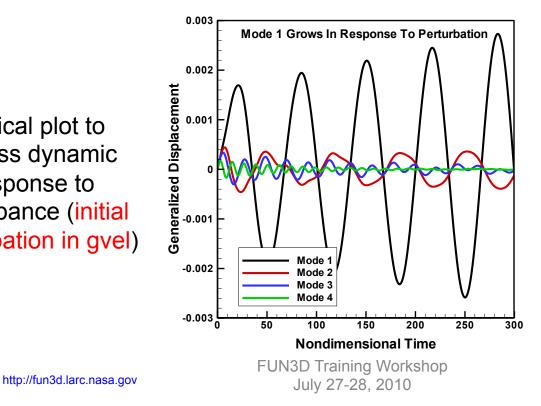
0.438172E+00 0.00000E+00 -0.322640E-01 24 0.00000E+00 0.00000E+00 0.365961E-03
```

 Can use --write_massoud_file (more later) to generate a template file with x,y,z, and id to which the middleware can append modal amplitudes

Dynamic Aeroelastic Coupling (4/6)

Highlights of moving_body.input file – see webpage for all the details
 &body definitions

```
! define bodies as collection of surfaces; b = body #
• • •
 motion driver(b) = 'aeroelastic'
 mesh movement(b) = 'deform'
&aeroelastic modal data ! below, b = body #, m = mode number
 plot modes = .true.
                         ! can tecplot to verify mode shapes read correctly
 nmode(b)
            = 4
                         ! 4 modes for this body
 uinf(b) = 973.4
                         ! free stream velocity (ft/s)
                        ! scale factor ft/grid unit i.e L*<sub>ref</sub>/L<sub>ref</sub>
 grefl(b) = 1.00
 qinf(b) = 89.3
                         ! free stream dynamic pressure, psf
 freq(m,b) = 60.3135016 ! mode frequency (rad/s)
                         ! skip remaining 3 modes for space
...
 gmass(m,b) = 0.08333 ! generalized mass (nondim)
...
 damp(m,b) = 0.000
                         ! Critical damping ratio, z (nondim) (use large value
                         ! 0.99999 to obtain static aeroelastic deflections)
...
 qvel0(m,b) = 0.1
                         ! nonzero initial velocity to kick off dynamic
                          ! response; set = 0 on restart - don't kick me twice
...
```

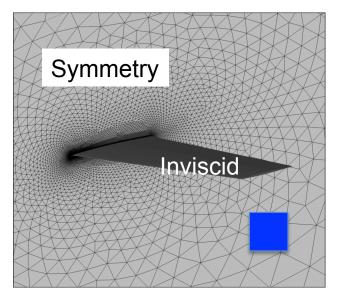



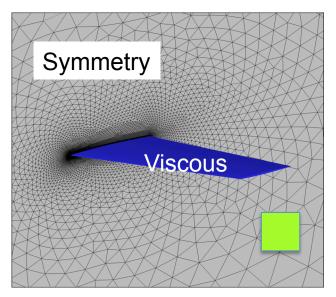
Dynamic Aeroelastic Coupling (5/6)

 Output of generalized force, displacement and velocity into files: aehist bodyN modeM.dat(ASCII Tecplot)

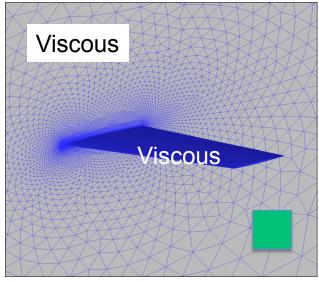
```
\# qinf = 8.93000E+01 uinf = 9.73400E+02 Mach = 9.00000E-01
variables = "time", "gdisp", "gvel", "gforce"
zone t = "modal history for airfoil, mode
                                          1"
                  0.0000E+00
    0.0000E+00
                                1.0000E-01
                                               0.0000E+00
    3.00000E-01
                  2.77139E-05
                                9.98227E-02
                                              -9.81176E-02
    6.00000E-01
                  5.53548E-05
                                9.94742E-02
                                              -8.60835E-02
```

Typical plot to assess dynamic response to disturbance (initial perturbation in gvel)



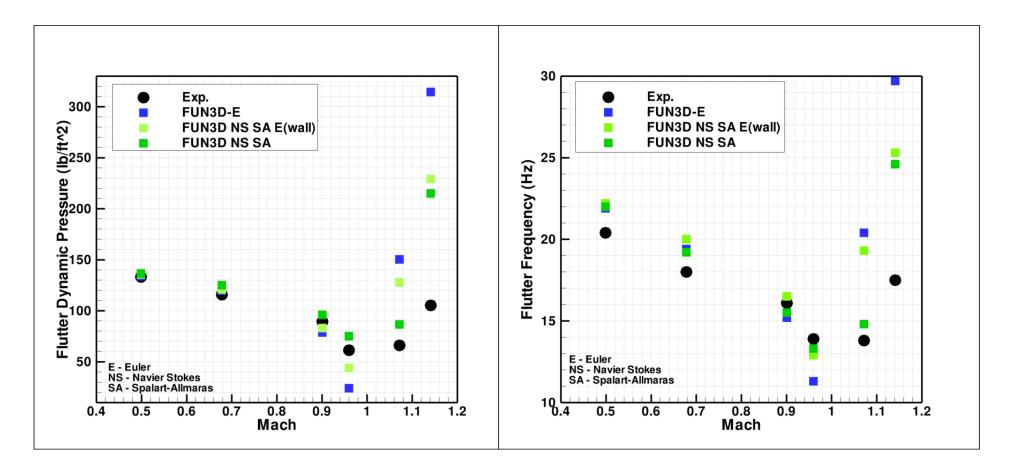


...



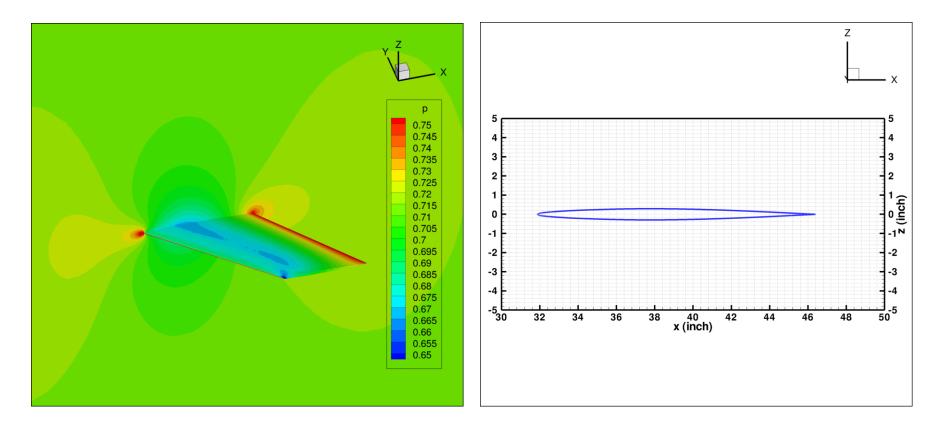
Aeroelastic Analysis of AGARD 445.6 Wing

Results Courtesy Pawel Chwalowski, Aeroelasticity Branch NASA Langley


FUN3D Training Workshop July 27-28, 2010 Color boxes correspond to symbols on next page

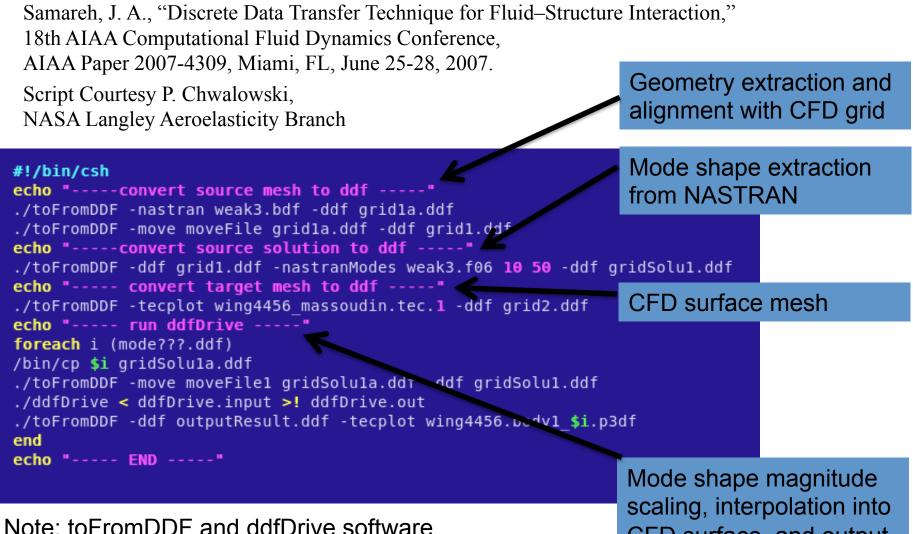
Aeroelastic Analysis of AGARD 445.6 Wing

Results Courtesy Pawel Chwalowski, Aeroelasticity Branch, NASA Langley



Aeroelastic Analysis of AGARD 445.6 Wing

Results Courtesy Pawel Chwalowski, Aeroelasticity Branch, NASA Langley


Inviscid Flow Mach=0.901, Flutter condition, Q = 78.6 psf

Sample Script: Mode-Shapes From NASTRAN

need to be requested from J. Samareh

CFD surface, and output

Creating A "MASSOUD" File For DDF

- Either approach for aeroelastic simulations requires that the surface file or mode-shape file read by FUN3D have an identifier ("id") that indicates the number of that surface point in the global (raw) grid; middleware needs to preserve this id when updating surface x,y,z values
- Use the command line option --write_massoud_file
- -By default, this will result in a separate file for each solid boundary named [project]_massoud_bndryN.dat (ASCII Tecplot file)
- -In the **fun3d.nml** file, the user may group selected boundaries into "bodies" for output with (e.g.):

```
&massoud_output
n_bodies = 2
nbndry(1) = 3
boundary_list(1) = `5 7 9'
nbndry(2) = 2
boundary_list(2) = `3 4'
/
```

which gives [project]_massoud_bodyM.dat for each body - can be used as a template for the input surface file

http://fun3d.larc.nasa.gov

Additional Considerations

- Be especially careful with dimensions since at one point or another exchange must be done between CFD and FEM - need to ensure consistency! CFD meshes and FEM meshes often don't occupy the same space. DDF code is designed to handle this.
- Note that frequencies increase in the higher modes; choose time steps accordingly

List of Key Input/Output Files

- Beyond basics like fun3d.nml, [project]_hist.tec, etc.:
- Input
 - moving_body.input
 - [project].body1_timestep1 (with CLO; static aeroelastic)
 - [project].bodyB_modeM (modal structures only)
- Output
 - aehist_bodyB_modeM.dat (modal structures only)
 - [project]_ddfdrive_bndryN.dat (with CLO)

Troubleshooting/FAQ

- Is there anything I can do to speed up mesh deformation?
 - Try using --restart_deformation restarts deformation at each step from previous elasticity solution; probably not a good idea for large deformations, but for small deformations can be OK
- Is there anything I can do to overcome negative volumes when the grid is deformed?
 - Best: build FUN3D against Mike Park's "refine" library to bring in "untangling" capability (untangling attempted automatically)
 - Might work in a few cases: lower the tol parameter in the &elasticity_gmres namelist (but pay the price for tighter convergence every time step)

What We Learned

- Overview of two approaches for aeroelastic analysis with FUN3D
 - Steady-state loose coupling for static aeroelastic simulations objective being to include the effect of the final deflected shape on the aerodynamics
 - Time-dependent tight coupling (with linear structural model using mode shapes) – objective typically being flutter-onset prediction
- Broad-brush treatment here; the important step of FEM to CFD data transfer only touched upon

