FUN3D v13.4 Training Session 9: Thermochemical Nonequilibrium Simulations Kyle Thompson

Aerothermodynamics Branch

Learning Goals

What we will cover:

- Description of data files, namelist options, and functionality unique to the generic gas path
 - Thermodynamics, Transport Properties, Chemical Kinetics, Radiation, Ablation
 - LAURA functionality
 - Grid adaptation and alignment for prismatic grids (Line adaptation).
 - Eigenvalue limiting control
- Troubleshooting

What we will not cover:

 Specific guidance on how the suite of namelist parameters are defined to provide converged solutions for sample applications – consult "A Tutorial for the Generic Gas Path in FUN3D", NASA-TM-2014-218658

Additional Reference Material

U.S. persons who have been approved to receive the high-energy-physics options in FUN3D may also obtain NASA/TM-2014-218658 for detailed examples.

NASA/TM-2014-218658

A Tutorial for the Generic Gas Path in Fun3D

Peter A. Gnoffo, William A. Wood, William L. Kleb, Stephen J. Alter and Christopher E. Glass Langley Research Center, Hampton, Virginia

http://fun3d.larc.nasa.gov

Contents

1	Introduction	7					
2	Fun3D Input Overview						
3 Fun3D Input: fun3d.nml							
3.1 Project Namelist							
	3.2 Raw Grid Namelist	11					
	3.3 Governing Equations Namelist	11					
	3.4 Reference Properties Namelist	12					
	3.5 Force and Moment Integration Namelist	13					
	3.6 Inviscid Flux Namelist	13					
	3.6.1 Inviscid Flux Reconstruction Algorithms	14					
	3.6.2 Eigenvalue Limiting	15					
	3.6.3 First Order Iterations	16					
	3.6.4 First or Second Order Turbulent Flux	16					
	3.6.5 Pole Gradient	17					
	3.7 Non-linear Solver Namelist	17					
	3.8 Linear Solver Namelist	18					
3.9 Boundary Conditions Namelist		18					
	3.10 Turbulent Diffusion Model Namelist	19					
	3.11 Output Boundary Namelist	20					
	3.12 Grid Adaptation Namelist						
4	Fun3D Input: tdata						
	4.1 Perfect Gas	22					
	4.2 Equilibrium Gas	23					
	4.3 Mixture of Thermally Perfect Gases						
_							

5 Fun3D Input: project_root_name.mapbc

 $\mathbf{24}$

6	Test Examples				
	6.1	Prelimit	naries	25	
	6.2	Perfect	Gas	26	
		6.2.1	air_pg_tlns_5kps_axi_sphere	26	
		6.2.2	air_pg_tlns_5kps_axi_sphere_makeTets	29	
		6.2.3	air_pg_tlns_1kps_8deg_sphere_cone_lineadapt	31	
		6.2.4	air_pg_tlns_M6_axi_cev	34	
		6.2.5	cev-Tunnel9-Laminar	38	
		6.2.6	cev-Tunnel9-CS	41	
	6.3	Equilib	rium Air	43	
		6.3.1	equilibrium_air-FEM	43	
		6.3.2	equilibrium_air-table_lookups	47	
	6.4	Reactin	g Gases	49	
		6.4.1	air_5sp_2t_tlns_5kps_axi_sphere	50	
		6.4.2	FullCEV-3km-5sp	52	
		6.4.3	cev-6km-5sp-1T	58	
		6.4.4	cev-6km-5sp-1T_makeTets	60	
		6.4.5	cev-10km-11sp-2t	61	
		6.4.6	air_11sp_2t_11kps_axi_stardust	66	
		6.4.7 1	mars_1sp_co2	68	
		6.4.8 1	titan_18sp_2T_6kps_axi_70deg_scone	71	

			_						
	6.5		76						
			76						
	6.6		79						
			79						
	6.7		34						
			34						
			35 36						
	6.8 Ablation								
		6.8.1 coupled_radiation_and_blowing 8	37						
		6.8.2 coupled_ablation-computed_rates	90						
		6.8.2.1 Solution Start-Up	$\partial 2$						
		6.8.2.2 Solution Progression	$\partial 2$						
		6.8.2.3 Solution Completion	92						
7	Sun	Summary 94							
8	Арр	pendix A: Convert LAURA Input to Fun3D input 9	95						
9	Арр	Appendix B: Gas Physics Modules							
	9.1 Thermodynamics								
		9.1.1 Initialization	97						
		9.1.2 Thermodynamics Argument List)8						
9.2 Transport Properties									
		9.2.1 Initialization)2						
		9.2.2 Transport Property Argument List)2						
	9.3	Chemical Kinetics)4						
		9.3.1 Initialization)4						
		9.3.2 Chemical Kinetics Argument List)4						
	9.4	Thermal Relaxation)5						
		9.4.1 Initialization							
		9.4.2 Thermal Relaxation Argument List							
		include recondence in the second							

December 11-12, 2018

Release

 A separate request for the generic gas path and a new usage agreement are required

Configuration

- Follow instructions for baseline FUN3D but include one additional option:
- ../configure --enable-hefss ...
- (hefss: high energy flow solver synthesis)

Presence of Files in Working Directory

Red = must have in working directory.

Blue = will use copy in working directory if present; else will use copy in [install-prefix]/share/physics_modules.*

Green = required in working directory if special options are requested.*

*If you receive an error message that a file is not found, then it is likely that the installation is flawed. You can copy the file from Physics_Modules into the working directory.

Thermodynamics Data

- species_thermo_data (Section B.8 of manual)
- The majority of simulations do not require changes to this file – exceptions include:
 - Add pseudo species to describe combustion products in an approximate way to save resources.
 - Provide parametric variation to thermal relaxation models.
 - Value of C_p(T) frozen at curve fit extrema is not an acceptable option.

```
N

&species_properties

elec_impct_ion = 4.196 ! 14.53 ! 4.196 from excited state

siga = 5.e-20, 0., 0.

mol_wt = 14.

/

3

0.0000000E+00 0.0000000E+00 0.25000000E+01 0.0000000E+00

0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

0.56104638E+05 0.41939093E+01 200.000 1000.000

0.88765014E+05 -0.10712315E+03 0.23621883E+01 0.29167201E-03

-0.17295151E-06 0.40126579E-10 -0.26772276E-14 0.0000000E+00

0.56973513E+05 0.48652358E+01 1000.000 6000.000

0.54751811E+09 -0.31075750E+06 0.69167827E+02 -0.68479881E-02

0.38275724E-06 -0.10983677E-10 0.12779860E-15 0.0000000E+00

0.25505856E+07 -0.58487697E+03 6000.000 20000.000
```


Collision Cross Section Data - 1

- species_transp_data (Section B.10 of manual)
- Original LAURA log-linear fit between 2000K and 4000K
 - $\log_{10}(\pi\Omega^{(1,1)})$ and $\log_{10}(\pi\Omega^{(2,2)})$ in m²
- Supplanted by high-order fit data if available (next slide)
- The majority of simulations do not require changes to this file – exceptions include:
 - Need quick look at new species transport property model.

Ar Ar -14.6017 -14.6502 -14.5501 -14.6028 ! trr132+kestin et al Ar CH4 -14.5827 -14.6319 -14.5328 -14.5806 ! kestin et al

Collision Cross Section Data - 2

- species_transp_data_0 (Section B.11 of manual)
- Sources
 - Wright, M.: Recommended Collision Integrals for Transport Property Computations Part 1: Air Species. AIAA J., vol. 43, no. 12, 2005, pp. 2558-2564.
 - Wright, M.: Recommended Collision Integrals for Transport Property Computations Part 2: Mars and Venus Entries. AIAA J., vol. 45, no. 1, 2005, pp. 281-288.
- Supersedes log-linear fit data if available (previous slide)
- The majority of simulations do not require changes to this file.
- The data file contains all original sources and details of the curve fits.

Chemical Kinetic Data

- **kinetic_data** (Section B.9 of manual)
- Advantageous to keep local copy for parametric studies involving thermochemical nonequilibrium.

```
N + e- <=> N+ + e- + e-
2.500e+34 -3.82 1.682e+05
teff1 = 3
teff2 = 3
```

! Ref 1

Radiation Data

- hara_data, hara_namelist_data (Section B.12 of manual)
- Define gas_radiation and rad_use_impl_lines in fun3d.nml.
- Coupled radiation requires implicit lines spanning entire domain.

&governing_equations eqn_type = 'generic' viscous_terms = 'laminar' gas_radiation = 'coupled' rad_use_impl_lines = .true.

Thermochemical Model

• tdata (Section B.7 of manual)

perfect_gas	one	two	FEM
&species_properties	N2 .767	N2 .767	N2 .767
gamma = 1.4	Ν	Ν	Ν
mol_wt = 28.8	O2 .233	O2 .233	O2 .233
suther1 = 0.1458205E-05	0	0	0
suther2 = 110.333333	NO	NO	NO
prand = 0.72		O2+	O2+
/		O+	O+
		NO+	NO+
		e-	e-

Multiple Inflow Boundaries

fun3d.nml

= 1305.0

= .true.

tdata &boundary_conditions wall_temperature(1) one temperature wall_temp_flag(1) model wall catalysis model(1) = 'non-catalytic' N2 1.0 $plenum_id(2) = 3$ 02 $plenum_t0(2) = 1000.0$ $plenum_p0(2) = 3800.0$ **H2** 0 н $plenum_id(6) = 3$ OH $plenum_t0(6) = 900.0$ **H2O** $plenum_p0(6) = 16000.0$ N2 0.7686 O2 0.2314 H2 1.0000 0.0000 0 0.0000 н OH 0.0000 H2O 0.0000

Governing Equations – fun3d.nml

• Detail in manual Sec. B.4.6

```
&governing_equations
eqn_type = "generic"
viscous_terms = "laminar"
chemical_kinetics = "finite-rate" ! "frozen"
thermal_energy_model = "non-equilb" ! "frozen"
gas_radiation = "off" ! "on"
rad_use_impl_lines = .false.
multi_component_diff = .false.
```


Inviscid_flux_method - fun3d.nml

• Detail in manual Sec. B.4.9

&inviscid_flux_method
 flux_construction = 'stvd' ! 'roe' ! 'multidm'
 flux_limiter = 'minmod_gg' ! 'hvanalbada'
 gen_turb_advectn_ho = .false.

multidm_option = 1
fixed_direction = .true.

Some improvement of heating on tetrahedral grids.

adptv_entropy_fix = .true. rhs_u_eigenvalue_coef = 0.5 lhs_u_eigenvalue_coef = 1.0 rhs_a_eigenvalue_coef = 0.5 lhs_a_eigenvalue_coef = 1.0 re_min_vswch = 5. re_max_vswch = 50.

 Eigenvalue limiting controls to suppress
 carbuncle but enable accurate heating on prismatic grids.

pole_gradient = .false.

http://fun3d.larc.nasa.gov

Boundary Conditions – fun3d.nml

• Detail in manual Sec. B.4.18

wall_temperature(:) = 1. wall_temp_flag(:) = .false. wall radeq flag(:) = .false. wall_emissivity(:) = 0.8wall_emissivity_b(:) = 0. wall emissivity c(:) = 0. wall_emissivity_d(:) = 0. wall_temp_relax(:) = 0.001wall_catalysis_model(:) = 'super-catalytic' catalytic_efficiency_o(:) = 0. catalytic efficiency n(:) = 0. plenum t0(:) = 1000. plenum p0(:) = 1000. $plenum_id(:) = 0$ $fixed_in_id(:) = 0$ $fixed_in_rho(:) = 0.$ fixed_in_uvw(:,1:3) = 0. fixed in t(:) = 0. fixed_in_tv(:) = 0. fixed_in_turb(:,1:7) = 0.

Turbulent Diffusion Model – fun3d.nml

- Detail in manual Sec. B.4.10
- Algebraic models available if implicit lines span domain.
 - baldwin-lomax
 - cebeci-smith
- Models tested in the generic gas path
 - sa-catris
 - kw-sst
 - kw-sst2003
 - wilcox-kw98
 - wilcox-kw06

Boundary Output Variables– fun3d.nml

- Detail in manual Sec. B.4.27
- The units of convective heating (*heating*) and radiative heating (*q_rad*) are W/cm².
- The units of shear in the x, y, and z directions (shear_x, shear_y, and shear_z, respectively) are in N/m².
- The units of temperature (*tt, tv*) are in K.
- All other variables are non-dimensionalized by reference density, velocity, and length consistent with units used to demonstrate the Mach number independence principle.

http://fun3d.larc.nasa.gov

Grid Adaptation – fun3d.nml

- Detail in manual Sec. B.4.34
- Line adaptation available if implicit lines span domain.

Line Extraction Utility

- From the utils directory of your configuration use
 - plot3d_to_aflr3 to convert from plot3d, multiblock, structured grid to aflr3 unstructured grid
 - aflr3_line_extraction to extract lines from surface to the inflow boundary

```
abcfd% aflr3_line_extraction

...

Input 0 for 3D, any other integer for 2D:

0

...

Input 1 or 2 to change inputs, any other integer to proceed:

1

Project rootname: coupled_radiation

...

Current, two-dimensional flag = F

Type 1 to change, any other number to keep as is: 0

twod= F

...

Extracted formatted lines file : coupled_radiation.lines_fmt
```

Done!

Troubleshooting

http://fun3d.larc.nasa.gov

Possible Remedies

- Level 0
 - Consult NASA-TM-2014-218658 for a test case most like your case for guidance in selecting namelist parameters.
- Level 1
 - If perfect gas fails to converge, then there is likely a problem with grid quality or boundary conditions. Capturing surface contour plots, contour plots in the symmetry plane, or contour plots in cut planes through "challenging" topological features will often reveal problems with the grid or boundary conditions. Plot streamlines to confirm consistency with boundary conditions.
- Level 2
 - If first-order fails to converge and Level 1 checks pass, then the problem is likely one or more of the following conditions: overaggressive cfl ramping, inadequate eigenvalue limiting, temperature transient causes instability in the kinetic model.
- Level 3
 - If simplified kinetic model works where more complete model fails then additional limiting on max / min temperatures may be required for offending reactions. Proceed with caution that real physics isn't compromised!
- Level 4
 - If simple (Dirichlet) bc converges, then a more conservative (smaller) relaxation factor may be required for the radiative equilibrium wall boundary (wall_temp_relax(:)).

Warnings

64 0.226705883950811E-05 0.80561E-05 0.2348E-01 0.5379E-02 0.1232E+00 3 Lift -0.189740078163752E-02 Drag 0.679775300136714E-02
INFO: Temperature below 1.0000 4 times. Reset. Min: 0.50000
INFO: Temperature below 1.0000 6 times. Reset. Min: 0.50000
INFO: Temperature below 1.0000 9 times. Reset. Min: 0.50000

- Such warnings (and related involving density) are not necessarily a problem.
- Usually, they are indicative of an undershoot or overshoot across a captured shock as its position evolves.
- Often, they disappear as the solution converges.
- Occasionally, they persist indicating a shortcoming of the limiter.
- If the number of occurrences keeps growing, the solution is diverging.

Summary

- Generic gas path simulations require additional data files available in the PHYSICS_MODULES directory.
- Recommended flux reconstruction and limiting options are documented in the tutorial.
- Not all options for the compressible gas path are available for the generic gas path.
 - Not all of the turbulence models are engaged in the generic gas path.
 - Not all of the boundary conditions are engaged in the generic gas path.
 - Not all of the flux reconstruction option are engaged in the generic gas path.
 - Usually, engagement will only require accommodation of correct equation of state or speed of sound.
- Prismatic grids orthogonal to the boundary layer, free shear layers, and captured shocks are HIGHLY recommended if accurate simulation of surface heating and shear is required.
 - The *multidm* option can be engaged for an all-tetrahedral grid to improve simulation quality, but this option is not as effective as a good grid.
 - The utility *aflr3_make_tets* will convert a mixed-element grid into tetrahedra.

