
http://fun3d.larc.nasa.gov

Session 9:
Overset and 6-DOF Simulations

Bob Biedron

FUN3D Training Workshop
July 27-28, 2010 1

http://fun3d.larc.nasa.gov

Learning Goals
•  What this will teach you

–  Static and dynamic simulations using overset meshes (general)
–  Using FUN3D with (lib)SUGGAR++ for dynamic simulations
–  Setup for overset, 6DOF simulations

•  What you will not learn
–  Setup and use of SUGGAR++ (stand-alone code; covered in another

session)
•  What should you already know

–  Basic time-accurate and dynamic-mesh solver operation and control

FUN3D Training Workshop
July 27-28, 2010 2

http://fun3d.larc.nasa.gov

Part I – Overset Simulations

FUN3D Training Workshop
July 27-28, 2010 3

http://fun3d.larc.nasa.gov

Setting
•  Background

–  Many (most?) moving-body problems of interest involve large
relative motion - rotorcraft, store separation are prime examples
•  Deforming meshes can accommodate only limited relative motion

before mesh degenerates
•  Single rigid mesh can accommodate only one body, and not

relative motion
•  Use overset grids to overcome these limitations - not to overcome

complex geometry per se – that’s why we use unstructured grids!
•  Compatibility

–  FUN3D requires both DiRTlib and SUGGAR++ codes from PSU
–  Grid formats: VGRID, AFLR3, FieldView (FV)

•  Status
–  Bodies in contact / emerging bodies - no near-term plans

FUN3D Training Workshop
July 27-28, 2010 4

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – General (1/4)
•  Configuring FUN3D

–  Compile / install DiRTlib and SUGGAR; available scripts (download from
FUN3D website) make it “easy”

–  When configuring FUN3D, use --with-dirtlib=/path/to/
dirtlib and --with-suggar=/path/to/suggar

–  FUN3D will expect to find the following libraries in those locations:
•  libdirt.a, libdirt_mpich.a and libp3d.a (these may be

soft links to the actual serial and mpi builds of DiRTlib)
•  libsuggar.a and libsuggar_mpi.a (may be soft links)
•  Scripts do this automatically – they put links to all archives in one

spot, so /path/to/dirtlib = /path/to/suggar
•  Grids (remember z is “up” for FUN3D)

–  A composite overset grid is comprised of 2 or more component grids -
independently generated - but with similar cell sizes in the fringe areas

–  SUGGAR++ is used to create the composite mesh
FUN3D Training Workshop

July 27-28, 2010 5

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – General (2/4)
•  Boundary conditions:

–  SUGGAR++ needs BC info for each component grid - set either via the
SUGGAR++ input XML file OR an auxiliary file for each component grid;
SUGGAR++ will output this auxiliary file for the composite mesh

–  FUN3D also needs BC info for the composite grid; depending on grid
type, file names / content may differ slightly between FUN3D / SUGGAR

–  “ext” is the FUN3D grid extension, e.g.: grid.fvgrid_fmt, grid.r8.ugrid
–  AFLR3 / FV grids: suggar_mapbc file has extra column; FUN3D ignores

3 ! number of boundaries (patches)
1 5000 Box farfield ! patch_index, fun3d_bc, family_name, suggar_bc

2 4000 Wing_Surf solid
3 -1 Wing_FarFld overlap

FUN3D Training Workshop
July 27-28, 2010 6

VGRID grid FV grid AFLR3 grid

FUN3D grid.mapbc
(standard VGRID file)

grid.mapbc
(not same as VGRID)

grid.mapbc
(not same as VGRID)

SUGGAR++ grid.mapbc
(standard VGRID file)

grid.ext.suggar_mapbc
(not same as VGRID)

grid.ext.suggar_mapbc
(not same as VGRID)

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – General (3/4)
•  Boundary conditions (cont):

–  set BC type to -1 in component-grid “mapbc” files for boundaries that
are set via interpolation from another mesh

FUN3D Training Workshop
July 27-28, 2010 7

Grid Courtesy Eric Lynch, GA Tech

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – General (4/4)
•  Create an XML input file for SUGGAR++

–  Basic SUGGAR++ setup covered in another session; however must
show some XML here to show certain FUN3D-specific points

–  Set the name for the <composite_grid> and
<domain_connectivity> files to the name of your FUN3D project

–  Can mix and match component grid types (VGRID, FV, AFLR) and
select one of the types for the composite grid - but recall VGRID only
supports tetrahedra

•  Run SUGGAR++ and make sure it all works as expected. You should
now have a [project].dci file; this domain connectivity information
file contains all necessary overset data for solver interpolation between
the nonmoving component meshes

•  Good idea to use the “gviz” tool from PSU to view composite mesh
assembly, holes points, fringe points, etc.

FUN3D Training Workshop
July 27-28, 2010 8

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Static (1/2)
•  Running FUN3D with static overset meshes:

–  Add --overset to any other CLOs you may have and run as usual
–  In screen output, should see:

Reading DCI data: ([project].dci)

Loading of dci file header took Wall …

Opening filename: ([project].g2l) (repeated nproc times !)

Loading of dci file took Wall Clock time = 5.324230 seconds

Using DiRTlib version 1.40 for overset capability

DiRTlib developed by Ralph Noack, Penn State University Applied Research
Laboratory

–  Followed by the usual FUN3D output, ending with Done.
–  If you request visualization output data for an overset case, “iblank”

data will automatically be output to allow blanking of the hole / out
points for correct visualization of the solution / grid in Tecplot

FUN3D Training Workshop
April 27-29, 2010 9

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Static (2/2)

FUN3D Training Workshop
July 27-28, 2010 10

without iblank with iblank

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Dynamic (1/4)
•  SUGGAR++ setup

–  Starting with a basic SUGGAR++ XML file:
•  Add <dynamic/> to <body> elements that are to move, e.g.
 <body name="wing">
 <volume_grid name="wing" style="vgrid_set" filename="wing"/>
 </body>
 <body name="store">
 <dynamic/>
 <volume_grid name="store" style="vgrid_set" filename="store"/>
 </body>

•  Note: better to use a self-terminated <dynamic/> rather than
<dynamic> … </dynamic> since if there are any <transform>
elements in between, SUGGAR++ won’t apply them unless explicitly
told to

–  Use SUGGAR++ to generate the initial (t = 0) composite grid; let’s
assume you called the XML file Input.xml_0

FUN3D Training Workshop
July 27-28, 2010 11

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Dynamic (2/4)
•  In the FUN3D moving_body.input file

–  Define the bodies and specify motion as usual; boundary numbers
correspond to those in the composite mesh mapbc file, accounting for
any boundary lumping that may be selected at run time

–  use the component body names from the Input.xml_0 file
–  Add name of the xml file used to generate the t = 0 composite mesh:

&composite_overset_mesh
 input_xml_file = 'Input.xml_0'
/

•  Running FUN3D
–  Use CLOs --overset --moving_grid --dci_on_the_fly
–  The last tells FUN3D to call libSUGGAR++ routines to compute new

overset data when the grids are moved; if this CLO is not present,
solver will try to read the corresponding dci file from disk

FUN3D Training Workshop
July 27-28, 2010 12

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Dynamic (3/4)
•  Running FUN3D (cont)

–  Note: for dynamic meshes, the component grids (and any
“suggar_mapbc” files) must be available (can be soft linked) in the
FUN3D run directory, in addition to the t = 0 composite-grid files

–  When using --dci_on_the_fly, must specify one additional
processor for SUGGAR++ (in future, hope to be able to use more)

•  The first processor gets assigned the SUGGAR++ task
•  This processor must have enough memory for entire overset problem

(same as needed for SUGGAR++ alone)
–  Other overset-grid CLOs
 --dci_period N periodic motion over N steps (default 0)
 --dci_freq N compute dci data only every Nth step (1)
 --reuse_existing_dci use existing files if present, even with
 --dci_on_the_fly (.F.)
 --grid_motion_and_dci_only create dci files; no flow solve (.F.)

FUN3D Training Workshop
July 27-28, 2010 13

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Dynamic (4/4)
•  As always, can use animation to verify; these were done ex post facto,

but GVIZ has motion replay options too

FUN3D Training Workshop
July 27-28, 2010 14

http://fun3d.larc.nasa.gov

Part II – 6-DOF Simulations

FUN3D Training Workshop
July 27-28, 2010 15

http://fun3d.larc.nasa.gov

Setting
•  Background

–  FUN3D is currently coupled to the 6-DOF library originally developed
by the Univ. of Alabama at Birmingham and Mississippi State Univ.
under the DOD PET program

•  Compatibility
–  Requires limited-availability library (available only to Government

Organizations and Govt. Contractors working on a DOD contract)
–  Requires overset grids (DiRTlib and SUGGAR++)

•  Status
–  6-DOF capability in place but exercised very little to date - one or

two validation cases - we simply are not working tasks which need
6-DOF (rotorcraft utilizes a very different 6-DOF capability)

–  Use Version 11.3 or higher - a couple of significant fixes for 6-DOF
–  Version 11.3 has a minor bug in 6-DOF module for the case where

the grid is not scaled 1:1 with the full-sized configuration; fixed for
v11.4

FUN3D Training Workshop
July 27-28, 2010 16

http://fun3d.larc.nasa.gov

UAB 6-DOF Libraries (1/2)
•  Originally developed by the Univ. of Alabama at Birmingham and

Mississippi State Univ. under the DOD PET program
•  Maintained and distributed by Nathan Prewitt Nathan.C.Prewitt@usace.army.mil

•  General attributes
–  Multi body; hierarchical body definition
–  Allows for constrained motion (not yet implemented in FUN3D)
–  Allows for prescribed motion (e.g. specified motion of fins - not yet

implemented in FUN3D)
–  Runge-Kutta 4th order time integration; quaternion based
–  Works with dimensional data
–  Rigid bodies only

•  FUN3D user does not directly interact with the 6-DOF library, except to
compile it and link against FUN3D; 6-DOF specific input primarily via
FUN3D’s moving_body.input file

FUN3D Training Workshop
July 27-28, 2010 17

http://fun3d.larc.nasa.gov

UAB 6-DOF Libraries (2/2)
•  Configuring FUN3D

–  Compile the 6DOF libraries, following the README that comes with the
package. Top-level directory is called 6DOF (below that will be EXP, HT
and Motion directories; you need to compile source via makefiles in
each directory, as per the README file)

–  When configuring FUN3D, use --with-sixdof=/path/to/6DOF
–  FUN3D will expect to find the following libraries in those locations:

•  6DOF/Motion/lib/libmo.a
•  6DOF/HT/lib/libht.a
•  6DOF/EXP/lib/libexp.a

–  Recall that overset grids are required, so need --with-dirtlib=/
path/to/dirtlib and --with-suggar=/path/to/suggar too

•  Input for 6-DOF is a combination of nondimensional data (basic flow solver
input via fun3d.nml: e.g. time step) and dimensional (e.g. mass and
inertial properties via moving_body.input)

FUN3D Training Workshop
July 27-28, 2010 18

http://fun3d.larc.nasa.gov

 moving_body.input File (1/2)
•  6-DOF obviously has moving bodies so as usual need to group boundaries

into moving bodies and since this is overset, need to set the initial XML file:
&body_definitions
 n_moving_bodies = 1, ! number of bodies in motion
 body_name(1) = 'store', ! name must be in quotes
 n_defining_bndry(1) = 3, ! number of boundaries that define this body
 defining_bndry(1,1) = 5, ! index 1: boundry number index 2: body number
 defining_bndry(2,1) = 6, ! index 1: boundry number index 2: body number
 defining_bndry(3,1) = 7, ! index 1: boundry number index 2: body number
 mesh_movement(1) = 'rigid', ! 6DOF likely incompatible with deforming meshes (currently)
 motion_driver(1) = '6dof’ ! 6DOF is in the driver’s seat
 dimensional_output = .true. ! moving body history files will contain dimensional data
 body_frame_forces = .true. ! moving body F/M history output relative to body frame
 ref_velocity = 1011.7, ! sound speed ft/sec at 26k ft - to dimensionalize for 6DOF
 ref_density = 0.00102, ! slug/ft3 at 26k ft - to dimensionalize for 6DOF
 ref_length = 1.00 ! actually the length scale L*ref/Lref (1 unit in grid = 1 ft)
/ ! bug in v11.3: grid MUST be scaled 1:1; fixed in v11.4
&composite_overset_mesh
 input_xml_file = 'Input.xml_0' ! same as used to create composite mesh
/

FUN3D Training Workshop
July 27-28, 2010 19

http://fun3d.larc.nasa.gov

 moving_body.input File (2/2)
•  Additional namelist for specifying body mass, inertia, external forces, etc

&sixdof_motion
 mass(1) = 62.1118, ! body mass (slugs), body 1
 cg_x(1) = 1.483333333333, ! x-location of CG in body coordinates, body 1
 cg_y(1) = 10.83333333333, ! y-location of CG in body coordinates
 cg_z(1) = -2.95000000000, ! z-location of CG in body coordinates
 i_xx(1) = 20.0 ! Ixx momment of inertia, body 1
 i_yy(1) = 360.0, ! Iyy momment of inertia
 i_zz(1) = 360.0, ! Izz momment of inertia
 i_xy(1) = 0.0, ! Ixy product of inertia
 i_xz(1) = 0.0, ! Ixz product of inertia
 i_yz(1) = 0.0, ! Iyz product of inertia
 body_lin_vel(:,1) = 0.0, 0.0, 0.0, ! initial velocity (x,y,z components), body 1
 body_ang_vel(:,1) = 0.0, 0.0, 0.0, ! initial ang. velocity (p,q,r components) of body 1
 euler_ang(1,1) = 0.0, ! initial euler angle - yaw, body 1
 euler_ang(2,1) = 0.0, ! initial euler angle - pitch
 euler_ang(3,1) = 0.0, ! initial euler angle - roll
 gravity_dir(:) = 0.0, 0.0, -1.0 ! x,y,z components of gravity vector (z “up” in fun3d)
 gravity_mag = 32.2, ! gravitational constant
 n_extforce(1) = 2, ! no. of external forces applied, body 1
 file_extforce(1,1) = 'force_fwd_body1.dat' ! file with forward ejector force vs time
 file_extforce(2,1) = 'force_aft_body1.dat’ ! file with aft ejector force vs time
/ ! similar provisions for external moments

FUN3D Training Workshop
July 27-28, 2010 20

http://fun3d.larc.nasa.gov

 External Force/Moment Specification
•  Rudimentary provision for imposing ejector forces

•  Input is dimensional, consistent with units used in moving_body.input

•  Analogous format for imposed moment specification

•  Example

! Body Name ! must be consistent with name in moving_body.input
'store’
! Force Name
'fwd_ejector'
! Coordinate System (0 inertial, >0 body frame)
1
! Number of Data Points to Read
3
! Repeat Flag (0...last values remain forever; 1...repeat data)
0
! Time Fx Fy Fz Xloc Yloc Zloc
 0.0 0.0 0.0 -2400.0 0.893333333 10.833333333 -2.12
 0.055 0.0 0.0 -2400.0 0.893333333 10.833333333 -2.12
 0.05500000001 0.0 0.0 0.0 0.893333333 10.833333333 -2.12

FUN3D Training Workshop
July 27-28, 2010 21

http://fun3d.larc.nasa.gov

 Things To Look For In Screen Output (1/2)
•  6DOF info section starts with some useless info (from user point of view)
 6DOF Initialization:

 Nondimesionalization factors for 6DOF equations:
 (6DOF force/moment nondim. differs from aerodynamics)
 inertia_factor = 0.98039216E+03
 mass_factor = 0.98039216E+03
 gravity_factor = 0.97700436E-06
 length_factor = 0.10000000E+01
 velocity_factor = 0.98843531E-03
 time_factor = 0.10117000E+04
 force_factor = 0.95784741E-03
 moment_factor = 0.95784741E-03
 body 1
 aero_force_factor = 0.97295271E-03
 aero_xmoment_factor = 0.58377163E-03
 aero_ymoment_factor = 0.58377163E-03
 aero_zmoment_factor = 0.58377163E-03

FUN3D Training Workshop
July 27-28, 2010 22

http://fun3d.larc.nasa.gov

 Things To Look For In Screen Output (2/2)
•  After which the user input is echoed:

 Gravity Magnitude and Direction: 0.322000E+02 0.000000E+00 0.000000E+00
-0.100000E+01

 Dimensional 6DOF data for Body 1 Time = 0.0000000E+00
 Body Name: store
 Mass: 0.621118E+02
 CG Location: 0.148333E+01 0.108333E+02 -0.295000E+01
 Ixx,Iyy,Izz: 0.200000E+02 0.360000E+03 0.360000E+03
 Ixy,Ixz,Iyz: 0.000000E+00 0.000000E+00 0.000000E+00
 Linear Vel: 0.000000E+00 0.000000E+00 0.000000E+00
 Angular Vel: 0.000000E+00 0.000000E+00 0.000000E+00
 Yaw,Pitch,Roll: 0.000000E+00 0.000000E+00 0.000000E+00

 External forces for Body 1 imposed from the file(s) :
 force_fwd_body1.dat
 force_aft_body1.dat

•  Note that CG location output here is in the body-frame, so generally won’t
differ at restart; however velocities and angular orientation are current
values relative to the inertial frame, so will change at restart

FUN3D Training Workshop
July 27-28, 2010 23

http://fun3d.larc.nasa.gov

Output Files
•  In addition to the usual output files, for moving-grids there are 4 ASCII

Tecplot files for each body; these are the primary 6-DOF data of interest
–  PositionBody_N.dat tracks linear (x,y,z) and angular (yaw, pitch,

roll) displacement of the CG
–  VelocityBody_N.dat tracks linear (Vx,Vy,Vz) and angular

() velocity of the CG
–  AeroForceMomentBody_N.dat tracks force components (Fx,Fy, Fz)

and moment components (Mx,My,Mx)
–  ExternalForceMomentBody_N.dat tracks applied force F/M (6-

DOF only)
–  Data in all files are nondimensional by default (e.g. “forces” are

actually force coefficients); moving_body.input file has option to
supply dimensional reference values such that this data is output in
dimensional form (see previous example moving_body.input)

–  Forces are by default given in the inertial reference system; option to
output forces in the body-fixed system (see previous example)

FUN3D Training Workshop
July 27-28, 2010 24

http://fun3d.larc.nasa.gov

Sample Case - Wing/Pylon/Store (1/6)
•  Only 6-DOF case computed to date is for the “classic” 1990 data set from

the AEDC Aerodynamic Wind Tunnel (4T)
–  Mach 0.95 (data for Mach 1.2 also available)
–  Grid used was one created for a cell-centered solver, and so is actually

inappropriate for FUN3D; also relatively coarse at 2.3M nodes
–  Grid includes a portion of the sting used in the tunnel, but sting

contributions to forces/moments ignored (next slide)
–  Tunnel aerodynamic F/M data taken in a quasi-static manner
–  Trajectory based on full scale, 26k feet altitude, with ejector forces
–  Example moving_body.input file shown in previous slides

correspond to this case, so won’t repeat here
–  Nondimensional time step of 5.0585 corresponds to 0.005 seconds;

time-accurate solution started from converged steady-state solution
–  Large number of orphans for first 15 time steps or so (t ~ 0.075 sec);

max 1544 orphans at 4th time step (t = 0.02 sec)
FUN3D Training Workshop

July 27-28, 2010 25

http://fun3d.larc.nasa.gov

Sample Case - Wing/Pylon/Store (2/6)
•  “Sting” was not metric in experimental force measurement; forces on

these boundaries are excluded by having a file called
remove_boundaries_from_force_totals:

 File for turning off the contribution of selected boundaries
 No. boundaries to turn off (be careful with boundary lumping)
 6
 Boundary to turn off
 1
 2
 3
 4
 6
 8

•  Run Steady state case with CLO: --overset
•  Run 6-DOF restart from steady state with CLO’s:
 --six_dof --dci_on_the_fly --overset --moving_grid
--temporal_err_control 0.01 --animation_freq +5

FUN3D Training Workshop
July 27-28, 2010 26

http://fun3d.larc.nasa.gov

Sample Case - Wing/Pylon/Store (2/6)
•  SUGGAR++ XML file Input.xml_0 (SUGGAR++ covered elsewhere)
 <global>
 <donor_quality value="0.9"/>
 <symmetry_plane axis="Y"/>
 <minimize_overlap keep_inner_fringe="yes"/>
 <output>
 <unstructured_grid style="unsorted_vgrid_set” filename="wingstore"/>
 <domain_connectivity style="unformatted_gen_drt_pairs" filename="wingstore.dci"/>
 </output>
 <body name="wingstore”>
 <body name="wing">
 <transform>
 <scale value= '1.6666666666667'/>
 </transform>
 <volume_grid name="wing" style="vgrid_set" filename="zx03wing"/>
 </body>
 <body name="store">
 <transform>
 <scale value= '1.6666666666667'/>
 </transform>
 <dynamic/>
 <volume_grid name="store" style="vgrid_set" filename="zx03bomb">
 <specified_donor_suitability_function value="2.e-20"/>
 </volume_grid>
 </body>
 </body>
 </global> FUN3D Training Workshop

July 27-28, 2010 27

http://fun3d.larc.nasa.gov

Sample Case - Wing/Pylon/Store (3/6)
•  Store Trajectory: CG position and velocity from PositionBody_1.dat

and VelocityBody_1.dat

FUN3D Training Workshop
July 27-28, 2010 28

http://fun3d.larc.nasa.gov

Sample Case - Wing/Pylon/Store (4/6)
•  Store Trajectory: angular orientation and angular rates from
PositionBody_1.dat and VelocityBody_1.dat; low value of Ixx
presumably makes roll more sensitive to force/moment inaccuracies

FUN3D Training Workshop
July 27-28, 2010 29

http://fun3d.larc.nasa.gov

Sample Case - Wing/Pylon/Store (5/6)
•  Store Aerodynamics: force and moment coefficients - nondimensionalized

from dimensional data in AeroForceMomentBody1.dat

FUN3D Training Workshop
July 27-28, 2010 30

http://fun3d.larc.nasa.gov

Sample Case - Wing/Pylon/Store (6/6)
•  Colorful Fluid Dynamics: pressure coefficient

FUN3D Training Workshop
July 27-28, 2010 31

http://fun3d.larc.nasa.gov

List of Key Input/Output Files
•  Beyond basics like fun3d.nml, [project]_hist.tec, etc.:
•  Input

–  moving_body.input (any moving body case)
–  Input.xml_0 (dynamic overset; no standard name)
–  [project].dci (any overset case)
–  force_fwd_body1.dat (optional, 6DOF only, no standard name)

•  Output
–  PositionBody_N.dat (any moving body case)
–  VelocityBody_N.dat (any moving body case)
–  AeroForceMomentBody_N.dat (any moving body case)
–  ExternalForceMomentBody_N.dat (6DOF only)

FUN3D Training Workshop
July 27-28, 2010 32

http://fun3d.larc.nasa.gov

FAQ’s
•  Underutilized capability, so not many “frequently” asked questions…
•  How long does it take?

–  Currently (July 2010), the 2.3 million node Wing/Store/Pylon
simulation (starting from a steady-state solution) takes
approximately 2 hrs on 80(+1) processors of a 3.0 GHz P4 Dual
Core 4GB GigE cluster (92 time steps using temporal_err_control
0.01 with max 50 subiterations); note that this case is small
enough that a single processor for SUGGAR++ is not an
impediment - not true as problem size increases

•  Why don’t I get any DCI files output from a 6-DOF case like I do from
other overset, moving-grid cases?
–  6-DOF cases are assumed to be non-periodic, so there would

seem to be no need to reuse DCI data, hence no need to output
them and waste file space - output can be turned on by altering a
flag in the code if desired

FUN3D Training Workshop
July 27-28, 2010 33

http://fun3d.larc.nasa.gov

What We Learned
•  How to set up and run static and dynamic overset meshes in FUN3D

–  To fully utilize, requires knowledge of SUGGAR++ - covered in
another session

•  6-DOF simulations
–  Modest amount of additional input required beyond that required

for moving overset case with forced/specified motion
–  Reluctant to call this capability “ready for prime time” based on

one or two results - but very willing to work with users to iron out
problems or add needed capabilities

FUN3D Training Workshop
July 27-28, 2010 34

